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Abstract

Background—Aggregation of α-synuclein is central to the pathophysiology of PD. Biomarkers 

related to α-synuclein may be informative for PD diagnosis/progression.

Objectives—To analyze α-synuclein in CSF in drug-naïve PD, healthy controls, and prodromal 

PD in the Parkinson’s Progression Markers Initiative.

Methods—Over up to 36-month follow-up, CSF total α-synuclein and its association with MDS-

UPDRS motor scores, cognitive assessments, and dopamine transporter imaging were assessed.

Results—The inception cohort included PD (n = 376; age [mean {standard deviation} years]: 

61.7 [9.62]), healthy controls (n = 173; age, 60.9 [11.3]), hyposmics (n = 16; age, 68.3 [6.15]), and 

idiopathic rapid eye movement sleep behavior disorder (n = 32; age, 69.3 [4.83]). Baseline CSF α-

synuclein was lower in manifest and prodromal PD versus healthy controls. Longitudinal α-

synuclein decreased significantly in PD at 24 and 36 months, did not change in prodromal PD over 

12 months, and trended toward an increase in healthy controls. The decrease in PD was not shown 

when CSF samples with high hemoglobin concentration were removed from the analysis. CSF α-

synuclein changes did not correlate with longitudinal MDS-UPDRS motor scores or dopamine 

transporter scan.

Conclusions—CSF α-synuclein decreases early in the disease, preceding motor PD. CSF α-

synuclein does not correlate with progression and therefore does not reflect ongoing dopaminergic 

neurodegeneration. Decreased CSF α-synuclein may be an indirect index of changes in the 

balance between α-synuclein secretion, solubility, or aggregation in the brain, reflecting its overall 

turnover. Additional biomarkers more directly related to α-synuclein pathophysiology and disease 

progression and other markers to be identified by, for example, proteomics and metabolomics are 

needed.
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Clinical trials for Parkinson’s disease (PD) are currently examining putative neuroprotective 

agents, but are hampered by the lack of biomarkers that measure key pathophysiological 

processes. Intracellular aggregation and intercellular spread of pathological forms of α-

synuclein (α-syn) are central to the progressive neurodegeneration of PD.1
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Levels of α-syn in cerebrospinal fluid (CSF) are decreased in PD and other 

synucleinopathies2–5 and may serve as a marker to assist in diagnosis and prognosticating 

progression. We recently reported that CSF α-syn levels in de novo PD showed minimal 

change over 12 months.6 Longitudinal changes in CSF α-syn and other biomarkers have 

been examined in other PD cohorts for up to 2 years with discrepant findings.7,8 Subject 

selection, preanalytical factors, and different assays may have contributed to discrepancies 

(see Discussion). Studies across neurodegenerative disorders indicate that neurodegeneration 

and biomarker changes start long before the onset of clinical symptoms. Characterizing the 

longitudinal dynamics of CSF α-syn during prodromal stages and after motor PD begins 

may advance our understanding of how the spread of α-syn contributes to progression, and 

can provide benchmark data for the design and interpretation of current and upcoming 

disease-modifying clinical trials for PD.

We therefore analyzed the levels of total α-syn in longitudinal CSF samples of PD 

participants and healthy controls (HCs), and in a cohort of prodromal PD. We did not 

measure subspecies or posttranslationally modified forms of α-syn. We hypothesized that 

CSF α-syn would change over 36 months with PD progression, that decreased levels would 

be present in prodromal PD, and that CSF α-syn would correlate with clinical measures or 

imaging indices of progression.

Patients and Methods

Participants

The PPMI (Parkinson’s Progression Markers Initiative) is an ongoing, prospective, 

longitudinal, observational, international multicenter study that aims to identify biomarkers 

for the progression of PD. As described,5,9 newly diagnosed, drug-naïve PD patients (N = 

423) and age- and sex-matched HCs (N = 196) were included (http://ppmi-info.org/study-

design). Inclusion and exclusion criteria have been published elsewhere.9 Briefly, inclusion 

criteria for PD participants were the following: (1) aged >30 years; (2) presence of two of 

the following: bradykinesia, rigidity, and resting tremor or an asymmetric resting tremor or 

asymmetric bradykinesia; (3) diagnosis made within the last 24 months; (4) PD drug naïvety, 

and (5) dopamine transporter (DaT) deficit in the putamen on 123-I Ioflupane DaT imaging 

by central reading.

Between July 2013 and March 2015 participants with isolated (iRBD) rapid eye movement 

(REM) sleep behavior disorder (RBD) or isolated hyposmia were recruited in PPMI centers 

for the prodromal part of PPMI. iRBD participants met the following criteria: (1) men or 

women aged ≥60 years and (2) confirmation of RBD by polysomnography (PSG) with 

central reading (details below) and/or clinical diagnosis of RBD by the site investigator, 

including existing PSG. Central PSG interpretation10 was based on the following criteria: (1) 

18% of any electromyography (EMG) activity in m. mentalis, 32% of any EMG activity in 

mentalis and flexor digitorum superficialis (FDS; in 3-second bins); (2) 27% of any EMG 

activity in m. mentalis and 32% of any EMG activity in m. mentalis and FDS (in 30-second 

bins). In 2 cases, a central PSG reading was not available because of technical difficulties 

with electronic PSG transfer, but these participants had a clinical diagnosis of iRBD by the 

site investigator, including previous PSG, and also had to show decreased DaT imaging.
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Hyposmic participants were aged ≥60 years with olfaction at or below the 10th percentile by 

age and sex, as determined by the University of Pennsylvania Smell Identification Test 

(UPSIT). All iRBD and hyposmic participants also required confirmation from the imaging 

core at the Institute for Neurodegenerative Disorders that screening DaTscan (or vesicular 

monoamine transporter type 2/PET scan for sites where DaTscan is not available) was read 

as eligible. Around 80% of the prodromal participants were selected with a DaT deficit 

similar to participants with early PD, and 20% were selected with no DaT deficit. Prodromal 

subjects without DaT deficit were similar in age, sex, and risk profile to those with mild-to-

moderate DaT deficit. Exclusion criteria can be found in the study protocol at http://

www.ppmi-info.org/study-design/research-documentsand-sops/.

This article is based on α-syn analyses from CSF samples obtained from PD and HCs at 

baseline and 6-, 12-, 24-, and 36-month visits and for prodromal subjects at baseline and 6- 

and 12-month visits; overall data were downloaded December 4, 2017 from the PPMI 

database (www.ppmi-info.org).

Standard Protocol Approvals, Registrations, and Patient Consent

Approval was received from the ethical standards committee on human experimentation for 

all human participants. Written informed consent for research was obtained from all study 

participants. The study is registered with clinicaltrials.gov as NCT01141023.

CSF Sample Collection and Analysis

CSF was collected using standardized lumbar puncture procedures. Sample handling, 

shipment, and storage were carried out as described5 and according to the PPMI biologics 

manual (http://ppmi-info.org). Aliquots of 0.5 mL of frozen CSF were used by BioLegend 

(Cambridge, MA) to measure CSF hemoglobin levels and CSF total α-syn with a sandwich-

type immunoassay (BioLegend, San Diego, CA, formerly Covance). In the analyses below, 

we excluded three CSF values in PD subjects as outliers: all were >5,000 pg/mL (which 

greatly exceeded the 95% confidence limit for the range of all PD CSF α-syn data), and in 

all 3 subjects, subsequent longitudinal CSF levels of α-syn were substantially (>50%) lower.

Clinical Assessment Measures

The clinical assessment battery is described on the PPMI website and has been published 

previously.11 In brief, motor assessment used the revised UPDRS published by the 

International Parkinson and Movement Disorder Society (MDS-UPDRS III and total score).
12 Use of medications for PD was recorded at each visit after baseline assessment and is 

expressed as levodopa equivalent doses (LEDs)13 and stratified according to LED subtotal 

from dopamine replacement or dopamine agonists.

Cognitive testing included the Montreal Cognitive Assessment (MoCA) and psychometric 

tests of memory (Hopkins Verbal Learning Test-revised; HVLT-R), processing speed/

attention (Symbol Digit Modality Test; SDMT), executive function/working memory 

(Wechsler Memory Scale–Third Edition Letter-Number Sequencing [LNS] test), and 

visuospatial abilities (Benton Judgment of Line Orientation [BJLO] test).14 The REM Sleep 
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Behavior Disorder Screening Questionnaire (RBDSQ) was used to assess subjectively 

reported symptoms of RBD.15

Dopamine Single-Photon Emission Computing Tomography Imaging

Dopamine imaging was performed by DaTscan using standardized methods.9 Quantitative 

DaTscan measures in striatal binding ratio (SBR) of caudate, putamen, or striatal uptake 

were used in our analyses.

Genetic Variables

To examine whether selected genetic variants were associated with CSF biomarkers, we 

used data for APOE genotypes, MAPT, and single-nucleotide polymorphisms related to 

SNCA (i.e., rs3910105 and rs356181), measured by the PPMI Genetics Core.16

SNCA transcripts were analyzed as documented in the Laboratory of Neuroimaging (LONI) 

database (https://ida.loni.usc.edu/pages/access/studyData.jsp?

categoryId=7&subCategoryId=52) by assaying transcript counts in human blood in a high-

precision nanoString gene expression assay. PAXgene tubes (Qiagen, Valencia, CA) were 

collected by venipuncture according to standardized protocols (http://www.ppmi-info.org/

study-design/research-documents-andsops/), incubated at room temperature for 24 hours, 

frozen, and shipped on dry ice. RNA extraction, followed the PAXgene procedure and 

quality control, was performed using the RNA Integrity Number package.17 The SNCA 
probes used target the boundaries of exon 3 and exon 4 (termed E3E4-SNCA), transcripts 

specifically with a long 3-untranslated region (3UTR) region (termed 3UTR-1 and 3UTR2-

SNCA), transcripts that skip exon 5 (termed E4E6-SNCA), or the rate shot SNCA-007 

transcript isoform (Enseml ID ENST00000506691) that comprises exons 1–4.

Statistical Analysis

Statistical analyses were performed using SAS software (version 9.4; SAS Institute Inc., 

Cary, NC) on data retrieved from the PPMI data portal at the LONI at the University of 

Southern California. All tests performed using CSF α-syn were rank-based. t tests or chi-

square were used to compare baseline demographic and clinical variables in participants 

with longitudinal CSF data versus participants who only had baseline CSF data; these 

comparisons were performed separately in all four groups. Repeated-measures linear mixed 

models were used to test for changes over time in CSF α-syn levels separately by group. In 

addition, repeated-measures linear mixed models were used to examine longitudinal 

relationships between CSF α-syn levels and PD medication use.

Simple linear models were used to analyze potential baseline predictors of baseline CSF α-

syn, separately in PD and HCs. First, the univariate relationship between each predictor and 

CSF α-syn level was examined. Then, any variables that had univariate associations with a P 
values <0.2 were included in a multivariable model. Finally, a backward selection process 

was used to remove variables individually until all variables remaining in the model were 

significant at the 0.1 level.
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Spearman rank-correlation coefficients between changes in CSF α-syn levels and changes in 

clinical progression variables and changes in DaTscan measures were reported, and also for 

SNCA transcript information and CSF α-syn levels. Kruskal-Wallis H tests were used to test 

for associations between CSF α-syn levels and genetic variables.

Results

Demographic and Clinical Data

The study enrolled 423 PD, 196 HC, 39 iRBD, and 26 hyposmic participants. From these 

participants, 376 PD, 173 HC, 32 prodromal iRBD, and 16 prodromal hyposmic participants 

had complete data, including CSF; their demographic and clinical data at baseline visits are 

shown in Table 1A and Table 1B. Comparison of participants with CSF baseline and 

longitudinal data versus those with baseline data showed that PD participants who dropped 

out after baseline had slightly worse cognitive performance shown on HVLT (P = 0.039), 

SDMT (P < 0.001), LNS (P = 0.031), and in BJLO (P = 0.002). Prodromal hyposmic 

participants with baseline data had worse cognitive performance (on HVLT, P = 0.0007; 

SDMT, P = 0.045) and lower mean caudate SBR values (P = 0.011) on DaTscan. iRBD 

participants with milder iRBD by RBDSQ (<6) were more likely to drop out after baseline 

assessment (P = 0.029; data not shown).

Baseline and Longitudinal CSF α-syn Values

CSF α-syn levels were significantly lower in PD compared to HC across all visits (P < 

0.0001). Changes in CSF α-syn in PD, controls, and both prodromal cohorts over time are 

shown in Table 2 and Figure 1. CSF total α-syn levels in PD decreased slightly from 

baseline to 36 months (P = 0.032), whereas levels did not change in the control group (P = 

0.054; Table 2). Longitudinal changes were not significant in analyses restricted to the 185 

PD and 86 HC samples with low hemoglobin concentrations (<200 ng/mL; P = 0.196).

Among prodromal groups, the hyposmic participants showed the lowest mean CSF α-syn 

levels, whereas iRBD participants had intermediate levels between HCs and PD. In both 

prodromal groups, CSF α-syn remained relatively stable over the study interval from 

baseline to 6 and 12 months (P = 0.915 for hyposmic and P = 0.714 for prodromal RBD 

participants).

Baseline Predictors of Change in CSF α-syn and Correlation With Clinical Progression 
Variables

In multivariate regression analysis, older age (P = 0.007), and height (P = 0.002, but not 

body mass index [BMI]) were significant predictors of baseline CSF α-syn in PD 

participants (data not shown). Changes in CSF α-syn were not related to changes in MDS-

UPDRS III, MoCA, and DaTscan values (P > 0.05) in PD, and had a relationship to MoCA 

changes in HC over 36 months (P = 0.021; Table 3). In the iRBD group, there was a 

significant negative correlation between CSF α-syn and MDS-UPDRS III over 12 months (P 
= 0.037).
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To examine different phenotypes, we analyzed the correlations of change of CSF α-syn in 

PD participants showing hyposmia (by UPSIT <25) and REM sleep behavior symptoms 

(RBDSQ >6) and found no significant correlation between clinical progression and CSF α-

syn in these subgroups (data not shown). In PPMI PD subjects, we previously observed a 

greater decrease in CSF α-syn levels over 12 months in subjects who took dopamine 

medications, with a weak relationship with LED.6 We again found a longitudinal 

relationship between CSF α-syn and LED based on dopamine replacement (P = 0.016), but 

it lost significance when we excluded samples with hemoglobin <200 ng/mL (P = 0.361 and 

0.083; Table 4).

Association of CSF α-syn With Genetics and SNCA Transcripts

Genetic variants in APOE e4, MAPT, and polymorphisms in the SNCA gene (SNCA 
rs356181 and rs3910105) were not associated with baseline or longitudinal change of CSF 

α-syn in PD and HCs (P > 0.05). Another recent study found that a polygenic hazard score 

also showed no association with CSF α-syn levels.18 SNCA transcripts were not associated 

with baseline and longitudinal α-syn in PD or in HC (data not shown).

Variability of α-syn Measurements Between 2013 and 2016

A subset of PD participants and HCs had CSF α-syn measured in 2013 and again (from 

different CSF aliquots, but using the same enzyme-linked immunosorbent assay [ELISA]) in 

2016. Levels from both analyses were strongly correlated (Spearmen rho = 0.71; P < 0.001), 

with a systematic shift toward lower values of α-syn in the 2016 analyses relative to those of 

2013 (data not shown). The shift may be attributed to preanalytical factors in CSF sample 

handling (e.g., aliquoting or gradient effects or long-term freezing effect) or analytical/assay 

factors, which can occur with the manual performance of multiple 96-well ELISA plates. 

Ongoing studies of α-syn measurement, including mass spectrometry, will address some of 

these issues.19

Discussion

Longitudinal changes in CSF α-syn and other biomarkers in PD have been examined in 

other cohorts for up to 2 years: two studies show increasing CSF levels over time,7,8 one 

reported a decrease20 and another more recent study showed no longitudinal effects in a 

small cohort.21 Subject characteristics, preanalytical factors, and different assays may have 

contributed to these discrepancies. Discrepant dynamics of CSF α-syn were found in 

samples from the DATAOP (Deprenyl and Tocopherol Antioxidant Therapy of 

Parkinsonism) trial, in analyses that used different assays and inclusion criteria.20 One study 

that reported an increase over time only included samples from participants with diagnostic 

likelihood of clinical PD estimated at 90% to 100%, whereas another study also excluded 

subjects with other neurological disorders identified during follow-up.22 In contrast, the 

study reporting a decrease included the entire DATATOP cohort without selection.

The strengths of the PPMI include multicenter recruitment, clinical, biosample, and imaging 

standardization, high rates of follow-up, and inclusion of prodromal patients at risk for PD. 

We have now extended the interval of follow-up for CSF biomarkers in PD and HCs in the 
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PPMI to 36 months compared to our previous analyses.6 To assess how early in the disease 

course CSF α-syn may decrease, we also evaluated levels in prodromal participants with 

hyposmia and iRBD, both of which carry high risk for PD or related disorders.23,24 Overall, 

CSF α-syn decreased longitudinally in PD and increased slightly (nonsignificant) in HCs 

over 36 months. The magnitude of change was small and was no longer significant when 

around 50% of CSF samples with hemoglobin contamination were removed. Because of the 

high abundance of α-syn in blood, blood contamination during lumbar puncture impacts 

CSF α-syn. At baseline, the PD-HC differences in CSF α-syn remained significant even 

when samples with high hemoglobin concentrations (>200 ng/mL) were included. 

Therefore, the loss of longitudinal significance with exclusion for high hemoglobin 

concentrations could be explained by the lower numbers of PD subjects at baseline (n = 187 

vs. n = 376), but could also indicate no longitudinal change of CSF α-syn in PD.

The 10% to 15% decrease in CSF α-syn in PD versus controls is a consistent finding across 

cohorts25 with some variability; one earlier study that included iRBD had only a small 

number of controls.26 Despite marked overlap of individual values with HC, mean levels in 

PPMI PD subjects were significantly lower than HC across all visits. The reason for the 

decrease remains unclear. One explanation is that CSF α-syn is decreased because of 

intracellular aggregation of α-syn in the brain. A recent review27 summarizes the different 

pathways involved in the degradation of intracellular α-syn that includes chaperone-

mediated autophagy, endosomal, and proteasomal degradation as well as macroautophagy. 

Extracellular α-syn may represent other clearance pathways and is subject to proteolysis by 

extracellular proteases, such as neurosin, that has been detected in CSF28 and that inversely 

correlated with α-syn accumulation in brains with dementia with Lewy bodies (DLB).29

Our findings that subjects with likely prodromal PD (iRBD and hyposmic subjects with 80% 

of pathological DaTscan) already have decreased CSF α-syn is consistent with significant 

pathology being present during these prodromal stages, analogous to the decrease in CSF 

amyloid beta 42 in Alzheimer’s disease.30 iRBD is a highly specific prodromal condition 

with a high conversion rate (>80%) to an α-syn aggregation disorder after 16 years.31 PD 

subjects with RBD may have a more aggressive form of PD with cognitive decline.32 iRBD 

may progress to more aggressive α-syn aggregation disorders (i.e., to DLB) and—rarely—to 

MSA. Greater neurodegeneration may contribute to the finding of higher levels in the iRBD 

than the PD and hyposmia groups.

It is unclear whether the decrease of CSF α-syn develops even earlier during prodromal PD 

or may represent a trait that is a risk factor for PD. In the PPMI, CSF α-syn levels in HC 

subjects are followed longitudinally to see whether those with lower levels may develop PD 

later.

The lack of a relationship between CSF α-syn and genetic risk factors or SNCA transcripts 

supports a state, rather than a trait, marker. How α-syn gets into CSF is incompletely 

understood, although a recent study indicates that neuronal activity, particularly at excitatory 

synapses, is a major contributor to its release.33 In contrast to PD, levels of α-syn are 

markedly increased in CSF in Creutzfeldt-Jakob disease, where rapid and progressive 

neuronal death occurs.34
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The reasons for CSF α-syn variability remain to be determined. One explanation could be 

partly attributed to misdiagnoses that are not excluded in this cohort and that are reported to 

be a problem among de novo PD subjects.35 To date, based on thorough neurological 

judgement at each visit, there are three misdiagnoses among the PD subjects analyzed here: 

2 were diagnosed with MSA (1 with autopsy confirmation) and 1 with corticobasal 

degeneration. Further clinical follow-up, and the approved brain donation program in the 

PPMI as well as future biomarker approaches, for example, the ratio of α-syn/tau protein,36 

neurofilament light chain,37 or others could help to distinguish PD from atypical PD 

syndromes.

The decrease of CSF α-syn in PD over 36 months did not correlate with progression of 

motor and nonmotor symptoms, or with a decrease of dopamine transporter signal, both 

robust indices of PD progression. Therefore, the events that result in decreased CSF α-syn 

do not appear to directly drive PD progression. We confirmed the earlier association of 

symptomatic medication with greater decline in CSF α-syn in PD, for unclear reasons. We 

could not identify other predictors of changes in CSF besides age and possibly BMI.

Although we observed a significant decrease of CSF α-syn in PD over 36 months’ follow-

up, and levels tended to be stably decreased within patients, CSF α-syn, as measured with 

the assay used, will not serve as a diagnostic marker for PD and is unlikely to be a sole 

outcome measure for clinical trials or progression. Substantial overlap between PD and HC 

groups may result from biological or genetic variability, (co)medication, comorbidities, or 

other factors. Furthermore, subtypes of PD may reflect different pathophysiological factors, 

with clinical heterogeneity. Other CSF biomarkers are currently being analyzed in the PPMI, 

including total and phosphorylated tau protein, and β-amyloid 1–42, reflecting different 

pathological contributions to cognitive and motor progression.38 Further progress in 

diagnostic and progression biomarkers will benefit from analysis of abnormal forms of α-

syn39–42 and of novel biomarkers identified through methods such as proteomics and 

metabolomics.
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FIG. 1. 
Mean CSF α-syn levels at each visit in control, PD, and prodromal groups.
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Table 4.

Longitudinal relationship between CSF α-syn and PD medications in PD participants

Variable

PD Participants

Estimate (95% CI) P Value

Relationship with CSF α-syn levels
 PD medication use 4.55 (–38.24, 47.34) 0.834

 Total LED 0.055 (−0.014, 0.125) 0.118

 LED subtotal: dopamine replacement 0.086 (0.016, 0.156) 0.016

 LED subtotal: dopamine agonists −0.155 (−0.341, 0.031) 0.102

Relationship with CSF α-syn levels
a

 PD medication use 9.60 (−50.80, 69.99) 0.754

 Total LED 0.007 (−0.080, 0.094) 0.878

 LED subtotal: dopamine replacement 0.040 (−0.046, 0.127) 0.361

 LED Subtotal: dopamine agonists −0.292 (−0.560, −0.024) 0.083

P values are based on the ranks of CSF α-syn levels.

a
Subset of participants with hemoglobin <200 ng/mL at all time points.

Excludes participants missing hemoglobin values at one or more time points and the 3 PD subjects with outlying/aberrant CSF data.

CI, confidence interval.
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