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ABSTRACT
New a,b-unsaturated ketones 4a,b; 5a–c; and 6a,b; as well as 4-H pyran 7; pyrazoline 8a,b; isoxazoline 9;
pyridine 10–11; and quinoline-4-carboxylic acid 12a,b derivatives were synthesized and evaluated for in
vitro antitumour activity against HepG2, MCF-7, HeLa, and PC-3 cancer cell lines. Antioxidant activity was
investigated by the ability of these compounds to scavenge the 2,20-azinobis(3-ethylbenzothiazoline-6-sul-
fonic acid) radical cation (ABTS�þ). Compounds 6a, 6b, 7, and 8b exhibited potent antitumour activities
against all tested cell lines with [IC50] ffi5.5–18.1 mM), in addition to significantly high ABTS�þ scavenging
activities. In vitro EGFR kinase assay for 6a, 6b, 7, and 8b as the most potent antitumour compounds
showed that; compounds 6b, and 7 exhibited worthy EGFR inhibition activity with IC50 values of 0.56 and
1.6mM, respectively, while compounds 6a and 8b showed good inhibition activity with IC50 values of 4.66
and 2.16mM, respectively, compared with sorafenib reference drug (IC50¼ 1.28mM). Molecular modelling
studies for compounds 6b, 7, and 8b were conducted to exhibit the binding mode towards EGFR kinase,
which showed similar interaction with erlotinib.
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Introduction

Cancer is a group of diseases involving abnormal cell growth
with the potential to spread into or invade nearby tissues1–3.
Although chemotherapy is the mainstay of cancer therapy, it pro-
duces substantial side effects that may be attributed to cytotoxic
effects on normal cells1–3. This clearly underlies the urgent need
for developing novel chemotherapeutic agents that will be more
selective for cancer cells, and thus produce fewer side effects1–12.
On the other hand, free radicals and the reactive oxygen species
are constantly generated through many biological processes in
the body13. The capability of antioxidants to reduce the risk of
certain cancer types is linked to their ability to scavenge free
radicals, reduce oxidative stress, and decrease abnormal cell div-
ision13–17. Administration of a single molecule acting through a
different mechanism is a better drug candidate than drug combi-
nations18. Hence, several studies have investigated both anti-
cancer and antioxidant activities of numerous newly synthesized
molecules18–23.

Furthermore, a high level of EGFR kinase enzyme is overex-
pressed in several tumours such as those in colon, prostate,
breast, HeLa, HepG2, and non-small lung cancers24–31. The inhib-
ition of EGFR kinase enzyme is used in cancer treatment, and is

effected by blocking this enzyme with small molecules such as
erlotinib (A)32,33, neratinib (B)34–36, sorafenib (C)37, and crizotinib
(D)38–40 (Figure 1). Additionally, the a,b-unsaturated ketones,
such as curcumin (E; Figure 1), are a major class of widespread
natural products and constitute the core structure of many
drugs covering a wide range of biological applications, including
EGFR inhibition as well as antioxidant and antitumour
activities22,23,41–53. Moreover, heterocycles such as pyrazoline
(F; Figure 1)54,55, isoxazoline56, pyran22, pyridine57, and quin-
oline58 derivatives possess potent antioxidant and antitumour
activities as well as some of these compounds possessed EGFR
inhibition activities53,59,60.

Taking all the aforementioned facts into account in our con-
tinuous efforts to develop new structures to serve as antitumour
and antioxidant agents, we synthesized new a,b-unsaturated
ketones, 4-H pyran, pyrazoline, isoxazoline, pyridine, and quinoline
derivatives (G; Figure 1). The rationale for evaluating the antitu-
mour, antioxidant, and EGFR kinase inhibition activities of the
designed molecules (G; Figure 1) was as follows: (i) design the
structure–activity relationship for compounds incorporating
a,b-unsaturated ketones with diverse substituent groups; (ii) recog-
nise the effectiveness of the cyclic a,b-unsaturated ketones versus
the acyclic derivatives; (iii) thus, compare the cycloalkanones and
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their piperidinone analogues; (iv) heterocyclic compounds result-
ing from the addition reaction of a,b-unsaturated ketones such as
pyrane, pyrazoline, oxazoline, and pyridine derivatives were also
included in the study in order to cover the most relative
analogues.

Furthermore, the most active antitumour compounds were sub-
jected to EGFR kinase inhibition test and docked into the binding
sites of EGFR kinase enzyme to explore their complementarity
with the specified binding pockets.

Materials and methods

Chemistry

Melting points (�C, uncorrected) were measured using a Fisher-
Johns apparatus. Elemental analyses were carried out at the micro-
analytical unit, Cairo University. IR spectra (potassium bromide
[KBr]) were acquired using a Mattson 5000 FT-IR spectrometer (� in
cm�1). 1H NMR and 13C NMR spectra were obtained in deuterated
dimethyl sulphoxide (DMSO-d6) or deuterated chloroform (CDCl3)

Figure 1. The reported antitumour (A–F) and the designed (G) compounds.
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on Bruker 400 and 100MHz instruments, respectively, using tetra-
methyl silane (TMS) as an internal standard. Chemical shifts were
reported downfield from TMS in ppm, d units. Mass spectrometry
(MS) measurements were performed on a JEOL JMS-600H spec-
trometer. The purities of the compounds were evaluated by thin
layer chromatography (TLC), which was performed on silica gel G
(Merck), and spots were visualised by irradiation with ultraviolet
light (UV; 254 nm). Compound 3, 4-(cyclopentyloxy)benzaldehyde,
was synthesized in accordance with the method described in the
literature61.

General method for the synthesis of a,b-unsaturated ketone
derivatives (4a,b; 5a-c; and 6a,b)

A solution of 4-(cyclopentyloxy)benzaldehyde 3 (1.9 g, 0.01mol) in
ethanol (20ml) was added to a stirred solution of the appropriate
ketone (0.03mol) in ethanol (20ml) containing NaOH (0.8 g,
0.02mol). The reaction mixture was refluxed for 8 h, cooled and
the solvent was evaporated under reduced pressure. The resulting
solid was triturated with diethyl ether, filtered, dried, and crystal-
lised from the appropriate solvent.

4-(4-(Cyclopentyloxy)phenyl)but-3-en-2-one (4a)
Crystallisation solvent, ethanol; Yield, 40%; melting point (mp):
219–220 �C; IR (KBr) �max/cm

�1 1610 (C¼O), 1530, 1525, 1510,
1470 (C¼C). 1H NMR (DMSO-d6); d: 7.95 (d, 2H, Ar-H, J¼ 8Hz),
7.52 (d, 2H, Ar-H, J¼ 8Hz), 7.28 (d, 1H, CH¼CH, J¼ 8.4 Hz), 6.53
(d, 1H, CH¼CH, J¼ 8.4 Hz), 4.80–4.70 (m, 1H, CH), 2.26 (s, 3H,
CH3), 1.95–1.85 (m, 2H, CH2), 1.75–1.66 (m, 4H, 2CH2), 1.60–1.52
(m, 2H, CH2). MS m/z (%); 232.00 (6.39, Mþþ2), 231.00 (20.31,
Mþþ1), 230.10 (21.46, Mþ), 224.00 (52.84), 147.00 (49.56), 142.10
(100.00), 121.00 (22.93), 100.00 (16.25). Anal. Calcd. for C15H18O2

(%): C, 78.23; H, 7.88. Found: C, 78.63; H, 8.18.

3-(4-(Cyclopentyloxy)phenyl)-1-(4-methylphenyl)prop-2-en-1-one
(4b)
Crystallisation solvent, water; Yield, 85%; mp: 220–222 �C; IR (KBr)
�max/cm

�1 1615 (C¼O), 1540, 1535, 1525, 1480 (C¼C). 1H NMR
(CDCl3); d: 7.85 (d, 4H, Ar-H, J¼ 8Hz), 7.32 (d, 4H, Ar-H, J¼ 8Hz),
7.18 (d, 1H, CH¼CH, J¼ 8.4 Hz), 6.73 (d, 1H, CH¼CH, J¼ 8.4 Hz),
4.80–4.72 (m, 1H, CH), 2.36 (s, 3H, CH3), 1.85–1.80 (m, 2H, CH2),
1.70–1.62 (m, 4H, 2CH2), 1.60–1.50 (m, 2H, CH2).

13C NMR (DMSO-
d6); d: 198.2, 155.8, 143.3, 135.6, 134.3, 129.1, 128.4, 128.0, 114.8,
78.3, 32.2, 23.5, 21.0. MS m/z (%); 306.13 (17.66, Mþ), 238.10
(100.00), 237.08 (87.48), 210.08 (14.15), 209.07 (14.02), 195.06
(16.87), 144.03 (42.22). Anal. Calcd. for C21H22O2 (%): C, 82.32; H,
7.24. Found: C, 82.0 2; H, 7.05.

2-(4-(Cyclopentyloxy)benzylidene)cyclopentanone (5a)
Crystallisation solvent, ethanol; Yield, 55%; mp: 282–283 �C; IR
(KBr) �max/cm

�1 1600 (C¼O), 1535, 1520, 1510, 1500 (C¼C). 1H
NMR (DMSO-d6); d: 7.55 (d, 2H, Ar-H, J¼ 8Hz), 7.11 (brs, 1H, CH¼),
6.90 (d, 2H, Ar-H, J¼ 8Hz), 4.89–4.80 (m, 1H, CH), 3.20–3.10 (m, 2H,
CH2), 2.11–1.88 (m, 4H, 2CH2), 1.72–1.61 (m, 4H, 2CH2), 1.60–1.45
(m, 4H, 2CH2). MS m/z (%); 257.08 (0.98, Mþþ1), 256.09 (1.28, Mþ),
146.05 (54.79), 145.04 (35.70), 131.03 (100.00), 117.06 (25.47),
115.03 (38.21), 107.02 (73.33). Anal. Calcd. for C17H20O2 (%): C,
79.65; H, 7.86. Found: C, 80.05; H, 8.06.

2-(4-(Cyclopentyloxy)benzylidene)cyclohexanone (5b)
Crystallisation solvent, water; Yield, 50%; mp: 291–292 �C; IR (KBr)
�max/cm

�1 1620 (C¼O), 1550, 1642, 1530, 1470 (C¼C). 1H NMR
(DMSO-d6); d: 7.25 (d, 2H, Ar-H, J¼ 8Hz), 7.00 (brs, 1H, CH¼), 6.85
(d, 2H, Ar-H, J¼ 8Hz), 4.90–4.82 (m, 1H, CH), 2.80 (t, 2H, CH2,
J¼ 4.5 Hz), 2.40 (t, 2H, CH2, J¼ 4.5 Hz), 2.00–1.90 (m, 2H, CH2),
1.85–1.60 (m, 6H, 3CH2), 1.50–1.30 (m, 2H, CH2), 1.20–1.00 (m, 2H,
CH2). MS m/z (%); 272.15 (2.78, Mþþ2), 271.13 (15.64, Mþþ1),
270.11 (52.26, Mþ), 203.08 (26.47), 202.07 (74.25), 201.07 (25.10),
145.05 (21.80), 107.02 (100.00). Anal. Calcd. for C18H22O2 (%): C,
79.96; H, 8.20. Found: C, 80.01; H, 8.50.

2-(4-(Cyclopentyloxy)benzylidene)cycloheptanone (5c)
Crystallisation solvent, water; Yield, 60%; mp: 284–285 �C; IR (KBr)
�max/cm

�1 1625 (C¼O), 1555, 1540, 1534, 1490 (C¼C). 1H NMR
(DMSO-d6); d: 7.21 (d, 2H, Ar-H, J¼ 8.2 Hz), 7.02 (brs, 1H, CH¼),
6.80 (d, 2H, Ar-H, J¼ 8.2 Hz), 4.60–4.50 (m, 1H, CH), 3.20–3.10 (m,
2H, CH2), 2.11–1.75 (m, 10H, 5CH2), 1.60–1.47 (m, 6H, 3CH2). MS
m/z (%); 286.30 (0.2, Mþþ2), 285.20 (0.8, Mþþ1), 284.10 (35.00,
Mþ), 216.10 (58.00), 215.10 (100.00), 121.10 (34.00), 120.10 (46.08),
41.10 (37.07). Anal. Calcd. for C19H24O2 (%): C, 80.24; H, 8.51.
Found: C, 80.70; H, 8.91.

3-(4-(Cyclopentyloxy)benzylidene)-1-methylpiperidin-4-one (6a)
Crystallisation solvent, water; Yield, 65%; mp: 248–250 �C. IR (KBr)
�max/cm

�1 1600 (C¼O), 1540, 1525, 1535, 1490 (C¼C). 1H NMR (,
DMSO-d6); d: 7.00 (d, 2H, Ar-H, J¼ 8Hz), 6.80–6.71 (m, 3H, Ar-H,
CH¼), 4.60–4.50 (m, 1H, CH), 3.15 (s, 2H, CH2), 2.85 (t, 2H, CH2,

J¼ 4.5 Hz), 2.60 (t, 2H, CH2, J¼ 4.5 Hz), 2.30 (s, 3H, N–CH3),
2.10–1.90 (m, 2H, CH2), 1.80–1.71 (m, 4H, 2CH2), 1.55–1.45 (m, 2H,
CH2). MS m/z (%); 287.16 (6.34, Mþþ2), 286.15 (21.93, Mþþ1),
285.15 (8.16, Mþ), 166.05 (17.92), 161.06 (4.83), 112.08 (34.02),
111.09 (42.67), 110.02 (100.00). Anal. Calcd. for C18H23NO2 (%): C,
75.76; H, 8.12; N, 4.91. Found: C, 75.86; H, 8.22; N, 5.01.

3-(4-(Cyclopentyloxy)benzylidene)-1-ethylpiperidin-4-one (6b)
Crystallisation solvent, water; Yield, 64%; mp: 240–241 �C. IR (KBr)
�max/cm

�1 1635 (C¼O), 1560, 1550, 1530, 1485 (C¼C). 1H NMR
(DMSO-d6); d: 7.20 (d, 2H, Ar-H, J¼ 8Hz), 6.90–6.80 (m, 3H, Ar-H,
CH¼), 4.90–4.80 (m, 1H, CH), 3.70 (q, 2H, CH2CH3, J¼ 7Hz), 3.20 (s,
2H, CH2), 2.85 (t, 2H, CH2, J¼ 4.5 Hz), 2.65 (m, 2H, CH2), 2.00–1.90
(m, 2H, CH2), 1.75–1.60 (m, 4H, 2CH2), 1.55–1.45 (m, 2H, CH2), 1.02
(t, 3H, CH2CH3, J¼ 7Hz). MS m/z (%); 301.30 (18.00, Mþþ2), 300.20
(38.50, Mþþ1), 299.20 (26.00, Mþ), 137.90 (36.09), 132.90 (42.35),
123.90 (100.00), 72.10 (58.50), 58.00 (51.77). Anal. Calcd. for
C19H25NO2 (%): C, 76.22; H, 8.42; N, 4.68. Found: C, 76.62; H, 8.72;
N, 5.00.

Synthesis of ethyl 6-amino-5-cyano-4-(4-(cyclopentyloxy)phenyl)-
2-methyl-4H-pyran-3-carboxylate (7)

A mixture of 4-(cyclopentyloxy)benzaldehyde 3 (0.57 g, 0.003mol),
ethylacetoacetate (0.39 g, 0.003mol), malononitrile (0.20 g,
0.003mol), and sodium benzoate (15mol%) in ethanol (20ml) was
stirred at room temperature for 24 h. The reaction mixture was fil-
tered, and the solid product was washed with water and then
with ethanol, dried and crystallised from dimethylformamide.
Yield, 45%; mp >300 �C; IR (KBr) �max/cm

�1 3401 and 3326 (NH2),
2221 (C�N), 1697 (C¼O). 1H NMR (DMSO-d6); d: 8.30 (brs, 2H,
NH2, D2O exchangeable), 7.30 (d, 2H, Ar-H, J¼ 8Hz), 7.90 (d, 2H,
Ar-H, J¼ 8Hz), 5.70 (s,1H, 4-H of pyran), 5.10–5.00 (m, 1H, CH),
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4.10 (q, 2H, CH3CH2O, J¼ 7.5 Hz), 2.50 (s, 3H, CH3), 2.00–1.90 (m,
2H, CH2), 1.80–1.60 (m, 6H, 3CH2), 1.20 (t, 3H, CH3CH2O, J¼ 7.5 Hz).
MS m/z (%); 368.25 (0.81, Mþ), 348.07 (18.46), 321.06 (28.72),
276.07(91.20), 275.06 (68.87), 274.06 (28.04), 248.05 (17.64), 107.06
(100.00). Anal. Calcd. for C21H24N2O4 (%): C, 68.46; H, 6.57; N, 7.60.
Found: C, 68.66; H, 7.00; N, 8.00.

Synthesis of compounds 8a and 8b

A mixture of compound 4b (0.91 g, 0.003mol) and hydrazine
hydrate (0.15 g, 0.003mol) in absolute ethanol (30ml) or phenyl
hydrazine (0.32 g, 0.003mol) in glacial acetic acid (5ml) was
heated under reflux for 9–10 h. After cooling, the separated prod-
ucts were filtered, dried, and crystallised from ethanol to yield the
title compounds.

5-(4-(Cyclopentyloxy)phenyl)-3-(4-methylphenyl)-4,5-dihydro-1H-
pyrazole (8a)
Yield, 55%; mp: 145–146 �C. IR (KBr) �max/cm

�1 3450 (NH), 1547
(C¼N). 1H NMR (DMSO-d6); d: 7.91–7.10 (m, 8H, Ar-H), 6.75 (dd,
J¼ 11.7, 4.5 Hz, 1H, 5-H of pyrazoline), 4.92–4.82 (m, 1H, CH), 3.75
(dd, J¼ 11.7, 18.0 Hz, 1H, 4-H of pyrazoline), 3.50 (dd, J¼ 4.5,
18.0 Hz, 1H, 4-H of pyrazoline), 2.38 (s, 3H, CH3), 2.10–1.93 (m, 2H,
CH2), 1.90–1.49 (m, 6H, 3CH2), 9.20 (brs, 1H, NH, D2O exchange-
able). MS m/z (%); 321.30 (2.00, Mþþ1), 320.20 (6.50, Mþ), 318.90
(22.02), 261.00 (20.50), 145.10 (16.02), 143.90 (100.00), 120.10
(32.00), 90.90 (31.00). Anal. Calcd. for C21H24N2O (%): C, 78.71; H,
7.55; N, 8.74. Found: C, 79.01; H, 7.88; N, 8.95.

5-(4-(Cyclopentyloxy)phenyl)-1-phenyl-3-(4-methylphenyl)-4,5-dihy-
dro-1H-pyrazole (8b)
Yield, 60%; mp: 139–141 �C. IR (KBr) �max/cm

�1 1547, 1560, 1550,
1545 (C¼N, C¼C). 1H NMR (DMSO-d6); d: 7.00–7.90 (m, 13H, Ar-
H), 6.85–6.75 (m, 1H, 5-H of pyrazoline), 4.80–4.70 (m, 1H, CH),
3.90–3.80 (m, 1H, 4-H of pyrazoline), 3.50–3.30 (m, 1H, 4-H of pyra-
zoline), 2.37 (s, 3H, CH3), 2.00–1.95 (m, 2H, CH2), 1.90–1.50 (m, 6H,
3CH2). MS m/z (%); 397.00 (10.81, Mþþ1), 396.40 (13.81, Mþ),
281.05 (36.86), 233.06 (26.59), 220.05 (100.00), 180.04 (36.11),
151.10 (25.03), 117.00 (53.87). Anal. Calcd. for C27H28N2O (%): C, C,
81.78; H, 7.12; N, 7.06. Found: C, 82.08; H, 7.22; N, 7.16.

Synthesis of 5-(4-(cyclopentyloxy)phenyl)-3-(4-methylphenyl)-4,5-
dihydroisoxazole (9)

A mixture of compound 4b (0.91 g, 0.003mol), hydroxylamine
hydrochloride (0.2 g, 0.003mol), and potassium hydroxide (0.2 g,
0.003mol) in ethanol (20ml) was refluxed for 12 h. The solvent
was evaporated under reduced pressure and the residue obtained
was triturated with water, filtered, and dried to yield compound 9,
which crystallised from ethanol. Yield, 56%; mp: 120–122 �C. IR
(KBr) �max/cm

�1 1540, 1565, 1555, 1545 (C¼N, C¼C). 1H NMR
(DMSO-d6); d: 7.90–7.30 (m, 8H, Ar-H), 6.80–6.70 (m,1H, 5-H of iso-
xazole), 4.80–4.70 (m, 1H, CH), 3.90–3.80 (m, 2H, 4-H of isoxazo-
line), 2.36 (s, 3H, CH3), 2.00–1.85 (m, 2H, CH2), 1.80–1.50 (m, 6H,
3CH2). MS m/z (%); 321.09 (0.81, Mþ), 292.05 (21.82), 291.05
(46.86), 236.06 (36.59), 222.05 (100.00), 179.04 (26.11), 161.10
(25.93), 118.00 (63.87). Anal. Calcd. for C21H23NO2 (%): C, 78.47; H,
7.21; N, 4.36. Found: C, 78.90; H, 7.60; N, 4.96.

Synthesis of 4-(4-(cyclopentyloxy)phenyl)-2-oxo-6-(4-
methylphenyl)-1,2-dihydropyridine-3-carbonitrile (10)

A mixture of compound 4b (1.53 g, 0.005mol), ethylcyanoacetate
(0.56 g, 0.005mol), and ammonium acetate (3.1 g, 0.04mol) in
absolute ethanol (50ml) was refluxed for 8 h. After cooling, the
product was collected by filtration, washed with ethanol, dried,
and crystallised from ethanol to yield the title compound. Yield,
40%; mp: 278–280 �C; IR (KBr) �max/cm

�1 3445 (NH), 2215 (C�N),
1652 (C¼O). 1H NMR (DMSO-d6); d: 8.28–8.04 (m, 3H, Ar-H), 8.07
(br, s, 1H, NH, D2O exchangeable), 8.10–7.92 (m, 2H, Ar-H),
7.40–7.28 (m, 2H, Ar-H), 7.10–7.05 (m, 2H, Ar-H), 5.00–4.95 (m, 1H,
CH), 2.39 (s, 3H, CH3), 2.10–1.95 (m, 2H, CH2), 1.85–1.61 (m, 6H,
3CH2). MS m/z (%); 370.00 (15.81, Mþ), 255.05 (21.12), 285.05
(38.06), 230.06 (29.49), 229.05 (100.00), 188.04 (66.11), 153.10
(15.13), 119.00 (50.7 7). Anal. Calcd. for C24H22N2O2 (%): C, 77.81;
H, 5.99; N, 7.56. Found: C, 78.01; H, 6.10; N, 7.99.

Synthesis of 2-amino-4-(4-(cyclopentyloxy)phenyl)-6-(4-
methylphenyl)nicotinonitrile (11)

A mixture of compound 4b (1.53 g, 0.005mol), malononitrile
(0.30 g, 0.005mol), and ammonium acetate (3.1 g, 0.04mol) in
absolute ethanol (50ml) was refluxed for 10 h. The reaction mix-
ture was then cooled, poured into crushed ice, and the product
separated out was filtered, washed with water, dried, and crystal-
lised from water to yield compound 11. Yield, 45%; mp:
272–273 �C; IR (KBr) �max/cm

�1 3406 and 3336 (NH2), 2212 (C�N),
1599(C¼N). 1H NMR (DMSO-d6); d: 8.29–8.19 (m, 3H, Ar-H), 8.10
(brs, 2H, NH2, D2O exchangeable), 7.90 (d, 2H, Ar-H, J¼ 4Hz), 7.40
(d, 2H, Ar-H, J¼ 4Hz), 7.10 (d, 2H, Ar-H, J¼ 4Hz), 5.00–4.90 (m, 1H,
CH), 2.40 (s, 3H, CH3), 2.10–2.00 (m, 2H, CH2), 1.90–1.75 (m, 4H,
2CH2), 1.70–1.60 (m, 2H, CH2). MS m/z (%); 369.14 (1.17, Mþ),
334.10 (20.39), 307.08 (19.44), 241.05 (20.53), 182.92 (13.80), 160.09
(35.90), 146.25 (100.00), 107.07 (24.46). Anal. Calcd. for C24H23N3O
(%): C, 78.02; H, 6.27; N, 11.37. Found: C, 78.42; H, 6.66; N, 11.55.

General method for the synthesis of 2-(4-(cyclopentyloxy)styryl)-
6-substituted quinoline-4-carboxylic acids (12a,b)

A mixture of compound 4a (1.15 g, 0.005mol) and isatin deriva-
tives (0.005mol) in 50% aqueous ethanol (40ml) containing potas-
sium hydroxide (1.28 g, 0.023mol) was refluxed for 24 h. The
reaction mixture was filtered, and the filtrate was acidified with
acetic acid and the solvent was evaporated under reduced pres-
sure. The residue obtained was triturated with water, filtered, and
dried to yield compounds 12a,b which crystallised from
dimethylformamide.

6-Bromo-2-(4-(cyclopentyloxy)styryl)quinoline-4-carboxylic
acid (12a)
Yield, 40%; mp >300 �C; IR (KBr) �max/cm

�1 3425 (OH), 1640
(C¼O), 1565 (C¼N). 1H NMR (CDCl3); d 11.30 (brs, 1H, OH, D2O
exchangeable), 7.78–6.88 (m, 10H, CH¼CH, Ar-H), 4.80–4.70 (m,
1H, CH), 2.00–1.90 (m, 2H, CH2), 1.70–1.60 (m, 4H, 2CH2), 1.50–1.40
(m, 2H, CH2). MS m/z (%); 439.00 (12.41, Mþþ2), 438.00 (16.05,
Mþþ1), 437.00 (13.00, Mþ), 239.20 (56.20), 145.10 (32.00), 97.10
(57.01), 94.90 (71.00), 71.10 (100.00), Anal. Calcd. for C23H20BrNO3

(%): C, 63.02; H, 4.60; Br, 18.23; N, 3.20. Found: C, 63.42; H, 4.70; Br,
18.00; N, 2.92.
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2-(4-(Cyclopentyloxy)styryl)-6-fluoroquinoline-4-carboxylic
acid (12b)
Yield, 50%; mp >300 �C; IR (KBr) �max/cm

�1 3421 (OH), 1690
(C¼O), 1577 (-C¼N-). 1H NMR (CDCl3); d 11.40 (brs, 1H, OH, D2O
exchangeable), 7.88–6.42 (m, 10H, CH¼CH, Ar-H), 4.90–4.82 (m,
1H, CH), 2.10–1.90 (m, 2H, CH2), 1.80–1.70 (m, 4H, 2CH2), 1.55–1.45
(m, 2H, CH2).

13C NMR (DMSO-d6); d: 183.2, 158.8, 149.6, 140.0,
135.1, 134.2, 128.1, 126.8, 144.3, 144.3, 82.1, 32.2, 24.1. MS m/z (%);
377.07 (0.86, Mþ), 373.99 (40.47), 283.00 (23.66), 270.01 (15.00),
240.07 (10.76), 187.07 (25.35), 151.04 (11.07), 142.12 (100.00). Anal.
Calcd. for C23H20FNO3 (%): C, 73.20; H, 5.34; F, 5.03; N, 3.71. Found:
C, 73.30; H, 5.34; F, 5.33; N, 4.01.

Biological testing

Antitumour evaluation
The evaluation of the antitumour activity was performed using
tetrazolium salt MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-
tetrazolium bromide) assay as reported62,63.

Antioxidant assay
The absorbance (Acontrol) of a green-blue solution (ABTSþ radical
solution) resulted from a mixture of ABTS and manganese dioxide
(MnO2) and was recorded at kmax 734 nm, according to the
reported procedure64,65. The absorbance (Atest) was measured
upon the addition of 20ml of 1mg/ml solution of the test sample
in spectroscopic grade methanol/phosphate buffer (1:1 v/v) to the
ABTS solution. The decrease in absorbance is expressed as %
inhibition, which can be calculated from the following equation:

% inhibition¼ Acontrol�Atest

Acontrol
� 100:

L-Ascorbic acid 20 ml (2mM) solution was used as standard anti-
oxidant (positive control). A blank sample was run using only
methanol/phosphate buffer (1:1), while the negative control was
run with ABTS and the methanol/phosphate buffer.

EGFR kinase inhibition assay
EGFR kinase activity was determined via EGFR Human In-Cell ELISA
Kit in 96-well plates according to the manufacturer's instructions
(EGFR Kinase Assay Kit Catalog # ab126419 of ABCAM, Cambridge,
MA), as supplemental information66. The EGFR kinase activities for
each compound were expressed as IC50 values using seven con-
centrations (10.0, 5.0, 2.5, 1.25, 0.625, 0.31, and 0.15 mM).

Docking methodology

All modelling experiments were conducted with MOE programs
running on PC computer (MOE 2008.10 of Chemical Computing
Group. Inc, Montreal, QC, Canada)67. Starting coordinates of the X-
ray crystal structure of EGFR enzyme in complex with eroltinib
(PDB code 1M17) is obtained from the RCSB Protein Data Bank. All
the hydrogen was added and enzyme structure was subjected to
a refinement. The docking methodology was similar to that
described in our previous reports5,68–70.

Results and discussion

Chemistry

Synthesis of compounds 4–7 (Scheme 1)
The compound 4-(cyclopentyloxy)benzaldehyde (3) was obtained
as a key intermediate in a 75% yield by the reaction of 4-hydroxy-
benzaldehyde (1) with bromocyclopentane (2) in the presence of
phase-transfer catalyst; t-butylammonium bromide (Bu4NBr).
Condensation of 4-(cyclopentyloxy)benzaldehyde (3) with various
aliphatic, aromatic, cyclic, and heterocyclic ketones in an ethanolic
solution of sodium hydroxide afforded the corresponding com-
pounds 4a,b; 5a–c; and 6a,b. The structures of the synthesized
compounds were confirmed by their elemental and spectral analy-
ses. Proton nuclear magnetic resonance (1H NMR) spectra of com-
pounds 4a and 4b were confirmed by two doublets of vinylic
protons at 7.28, 6.53, and 7.18, 6.73 ppm, respectively.

Moreover, the 1H NMR spectrum of compound 4a showed a
singlet signal at 2.26 ppm attributed to an acetyl group. The 1H
NMR spectrum compound 4b was verified by the presence of new

Scheme 1. Synthesis of the designed a,b-unsaturated ketones and 4-H pyran derivatives.
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aromatic signals at 7.85–7.32 ppm in addition to a singlet signal at
2.36 ppm due to the presence of a 4-methyl group. The presence
of a new peak at 198.2 ppm due to a carbonyl (CO) group was
demonstrated in 13C NMR spectrum.

1H NMR spectra of compounds 5a–c were characterised by the
presence of cycloalkane protons at 4.90–1.00 ppm. The 1H NMR
spectrum of compound 6a is characterised by the presence of a
singlet peak at 2.3 ppm corresponding to the methyl protons of
the N-CH3 group, while a triplet–quartet pattern characteristic of
an ethyl group (N-CH2CH3) was identified in the 1H NMR spectrum
of compound 6b at 2.65 and 3.70 ppm, respectively. Synthesis of
4-H pyran derivative (7) was achieved by stirring 4-(cyclopentylox-
y)benzaldehyde (3), malononitrile, and ethyl acetoacetate in etha-
nol in the presence of a catalytic amount of sodium benzoate at
room temperature. The infra-red (IR) spectrum of compound 7
exhibited bands at 3401, 3326 (NH2), 2221 (C�N), and 1697
(C¼O) cm�1

. Meanwhile, the 1H NMR spectrum showed a triplet
and quartet at 1.20 and 4.10 ppm integrating for the COOCH2CH3

group, respectively. In addition, presence of two singlet peaks at
5.70 and 8.30 ppm for the methyl (CH3) and amine (NH2) groups,
respectively.

Synthesis of compounds 8–12 (Scheme 2)
The compound 3-(4-(cyclopentyloxy)phenyl)-1-(4-methylphenyl)-
prop-2-en-1-one (4b) was heated under reflux with hydrazine
hydrate or phenylhydrazine in ethanol or glacial acetic acid, result-
ing in the corresponding pyrazoline derivatives 8a and 8b. 1H
NMR spectra of compounds 8a and 8b were characterised by the
disappearance of the olefinic protons with the appearance of pyra-
zoline protons at 6.85–6.75, 3.90–3.75, and 3.50–3.30 ppm.
Moreover, facile cyclocondensation of compound 4b with

hydroxylamine hydrochloride in ethanolic potassium hydroxide
gave the corresponding isoxazoline (9). The 1H NMR spectrum of
compound 9 was characterised by the disappearance of the ole-
finic protons with the appearance of isoxazoline protons at
6.80–6.70 and 3.90–3.80 ppm. Reaction of the a,b-unsaturated
ketone 4b with ethylcyanoacetate or malononitrile in ethanol in
the presence of ammonium acetate yielded the cyanopyridine
derivatives 10 and 11, respectively. IR spectra of compounds 10
and 11 were used to verify their structures through the appear-
ance of characteristic absorption bands due to nitrile groups at
2215 and 2212 cm�1, respectively. In addition, a singlet peak at
8.07 ppm corresponding to the NH proton appeared in the 1H
NMR spectrum of compound 10, while a singlet peak at 8.10 ppm
was assignable to the NH2 group in compound 11, and both were
deuterium oxide (D2O) exchangeable. Quinoline-4-carboxylic acid
derivatives 12a,b were prepared by condensation of 4-(4-(cyclo-
pentyloxy)phenyl)but-3-en-2-one (4a) and isatin derivatives in
ethanolic potassium hydroxide71. The IR spectrum of compound
12b was characterised by the presence of absorption bands at
3421 cm�1 and 1690 cm�1, representing hydroxy (OH) and car-
bonyl (C¼O) groups, respectively. Moreover, a broad singlet at
11.40 ppm assignable to the exchangeable OH group was seen in
the 1H NMR spectrum, and the 13C NMR spectrum showed the
presence of a signal for the carbonyl group at 183.20 ppm.

Biological evaluation

Antitumour evaluation using MTT assay
The designed compounds were evaluated for their in vitro antitu-
mour effects via the standard 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) method against a panel of
four human tumour cell lines; namely, hepatocellular carcinoma

Scheme 2. Synthesis of the designed pyrazoline, isoxazoline, cyanopyridine, and quinoline-4-carboxylic acid derivatives.
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cell line (HepG2), breast cancer cell line (MCF-7), human cervical
cancer cell line (HeLa), and prostate cancer cell line (PC-3)62,63,72.
The antitumour activities of the designed compounds 4–12,
along with that of the reference drugs 5-FU and afatinib
are shown in Table 1. The a,b-unsaturated ketone 4a showed
moderate antitumour activity against the investigated cell lines
(IC50 ffi 21.8–40.9mM), while replacement of the methyl moiety in
a,b-unsaturated ketone 4a with the 4-tolyl fragment in
a,b-unsaturated ketone 4b resulted in slightly increase in antitu-
mour activity against HepG2, MCF-7, HeLa, and PC-3 cell lines,
with IC50 values at 20.0, 36.4, 18.8, and 17.1mM, respectively. Weak
antitumour activity was demonstrated by the 2-arylidene cyclic
ketones 5a–c as shown by their IC50 values (30.1 to >100mM).
Interestingly, the 3-arylidene derivatives of piperidone 6a and 6b
exhibited the greatest antitumour activities among the designed
a,b-unsaturated ketone derivatives. For example, compound 6b
displayed very strong antitumour effects against HeLa and PC-3
cell lines, as expressed by IC50 values of 6.7 and 9.1mM, respect-
ively. Moreover, compound 6b exhibited a strong inhibitory effect
on the growth of HepG2 and MCF-7 cell lines, with IC50 values at
13.0 and 13.7mM, respectively.

More interestingly, compound 7, which contained a 4-H pyran
core, exerted good activities against HepG2 (IC50¼ 8.0mM), MCF-7
(IC50¼ 7.5mM), HeLa (IC50¼ 10.3mM), and PC-3 (IC50¼ 13.3mM)
cancer cell lines. Moreover, N-phenylpyrazoline 8b showed a sharp
increase in antitumour activity when compared with
a,b-unsaturated ketone analogue 4b. IC50 values of compound 8b
against HepG2, MCF-7, HeLa, and PC-3 cell lines were 7.2, 5.6, 5.5,
and 7.8mM, respectively, in comparison with IC50 values of the ref-
erence drugs 5-FU (7.9, 5.4, 4.8, and 8.3 mM, respectively) and afati-
nib (5.4, 7.1, 6.2, and 7.6 mM, respectively). In addition,
replacement of the phenyl ring in compound 8b with the hydro-
gen atom in pyrazoline 8a led to a decrease in antitumour activity
against the MCF-7 cell line (IC50¼ 29.3 mM), HepG2 (IC50¼ 18.9mM),
HeLa (IC50¼ 16.2 mM), and PC-3 (IC50¼ 12.7mM) cell lines. However,
cyclisation of compounds 4a,b to isoxazoline 9; pyridines 10–11;

and quinolines 12a,b analogues produced moderate to weak anti-
tumour activity with IC50 values in the range of 30.8–97.3 mM.

Antioxidant activity using ABTS�þ radical-scavenging assay
The assay is based on measuring the ability of the tested com-
pounds to scavenge the long-life radical cation of ABTS22,43,64,65.
In this study, all the newly synthesized compounds 4–12 and L-
ascorbic acid, as a positive control, were evaluated and showed
considerable free radical-scavenging activities. The reduction in
colour intensity was expressed as inhibition percentage of the
ABTS�þ as shown in Table 2. From the listed results, we concluded
that all tested compounds exhibited more than 50% inhibition of
the ABTS radical cation except derivatives 5a, 10, 11, and 12a. It
is clear that the conversion of a,b-unsaturated ketones 4a,b (%
inhibition ¼52%) to the corresponding heterocyclic molecules
generally led to sharp increases in antioxidant effects. Among
them, the N-phenylpyrazoline derivative 8b displayed the highest
free radical-trapping properties, with 88.5% inhibition, which was
comparable to L-ascorbic acid at 90.0%. Moreover, 4-H pyran 7
and isoxazoline 9 derivatives showed inhibition of 75.8% and
60.0%, respectively. Conversion of the acyclic a,b-unsaturated
ketones 4a,b (52% inhibition) into their corresponding cyclic
a,b-unsaturated ketones 5a–c (51% inhibition) and 6a,b (54–55%
inhibition) showed no change in activity. However, we concluded
that compounds characterised by having pyrane 7, pyrazoline 8b,
and isoxazoline 9 ring systems were among the most active com-
pounds (60–88.5% inhibition), indicating that these core structures
may play a role in trapping ABTS free radicals.

Correlations between antioxidant and antitumour activities
The correlation between the antioxidant and the antitumour activ-
ities was investigated using SigmaPlot software (London, UK)73.
The overall correlation between the antioxidant and antitumour
activities of the synthesized compounds against individual cancer
cell lines is shown in Figure 2. Most of the synthesized compounds
showed moderate correlation (a moderate uphill relationship)
between antioxidant and antitumour activities, as indicated by
their coefficients of determination (R2). These R2 values were 0.573
(HepG2 cancer cell), 0.653 (MCF-7 cancer cell), 0.547 (HeLa cancer
cell), and 0.480 (PC-3 cancer cell). The results indicate only a mod-
erate linear relationship between the antioxidant and antitumour

Table 1. In vitro antitumour activity of 5-fluorouracil, afatinib, and the tested
compounds.

IC50 (lM)
a

Compd no. HepG2b MCF-7c HeLad PC-3e

5-FU 7.9 ± 0.17 5.4 ± 0.20 4.8 ± 0.21 8.3 ± 0.35
Afatinib 5.4 ± 0.25 7.1 ± 0.49 6.2 ± 0.67 7.7 ± 0.57
4a 27.3 ± 1.96 40.9 ± 2.79 25.7 ± 1.97 21.8 ± 1.68
4b 20.0 ± 1.11 36.4 ± 2.60 18.8 ± 1.57 17.1 ± 1.58
5a >100 >100 77.8 ± 4.41 94.1 ± 5.82
5b 55.4 ± 3.95 49.4 ± 3.16 30.1 ± 2.24 71.1 ± 4.93
5c 71.3 ± 4.53 64.7 ± 4.27 37.5 ± 2.81 26.9 ± 1.89
6a 15.9 ± 1.02 18.1 ± 1.58 9.4 ± 0.98 10.5 ± 0.97
6b 13.0 ± 0.87 13.7 ± 1.35 6.7 ± 0.67 9.1 ± 0.88
7 8.0 ± 0.38 7.5 ± 0.54 10.3 ± 1.13 13.3 ± 1.26
8a 18.9 ± 1.35 29.3 ± 1.97 16.2 ± 1.36 12.7 ± 1.13
8b 7.2 ± 0.24 5.6 ± 0.36 5.5 ± 0.45 7.8 ± 0.56
9 62.3 ± 4.10 58.4 ± 4.50 46.2 ± 3.30 50.1 ± 3.55
10 80.9 ± 5.34 70.9 ± 4.98 51.2 ± 3.82 41.9 ± 2.87
11 92.9 ± 5.82 97.3 ± 5.51 62.4 ± 3.80 87.7 ± 5.41
12a 85.4 ± 5.31 87.1 ± 5.24 89.4 ± 4.89 >100
12b 30.8 ± 2.07 48.1 ± 3.25 66.8 ± 4.07 69.4 ± 4.32
aIC50, compound concentration required to inhibit tumour cell proliferation by
50% (mean ± SD, n¼ 3).
bHuman hepato-cellular carcinoma cell line (HepG2).
cHuman breast adenocarcinoma cell line (MCF-7).
dHuman cervical epithelioid carcinoma cell line (HeLa).
eHuman prostate cancer cell line (PC-3).
IC50, (lM): 1–10 (very strong), 11–25 (strong), 26–50 (moderate), 51–100 (weak),
above 100 (non-cytotoxic).

Table 2. The percentage inhibition of the ABTS radical cation by
L-ascorbic acid and the tested compounds.

Compound no Absorbance %Inhibition

Control of ABTS 0.512 0
Ascorbic acid 0.051 90.0
4a 0.245 52.0
4b 0.243 52.6
5a 0.281 45.0
5b 0.249 51.4
5c 0.251 51.0
6a 0.234 54.3
6b 0.229 55.1
7 0.124 75.8
8a 0.240 53.0
8b 0.058 88.5
9 0.204 60.0
10 0.270 47.3
11 0.279 45.5
12a 0.275 46.3
12b 0.256 50.0
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activities, which lead to the conclusion that antioxidant activity is
not the only mechanism responsible for antitumour activity.

EGFR inhibitory activity
The antitumour activity results of compounds 6a, 6b, 7, and 8b
encourage us to study the mechanism of antitumour activity using
ELISA-based EGFR-TK assay with sorafenib as the reference drug66.
The % inhibition and IC50 values of the tested compounds were
calculated and are listed in Table 3. Compound 6b and 7 revealed
worthy EGFR inhibition activity with IC50 value of 0.56 and 1.6mM,
respectively, while compound 8b showed good inhibitory activity
against EGFR with IC50 value of 2.16mM, compared to sorafenib
reference drug (IC50¼ 1.28 mM). On the other hand, compounds 6a

showed moderate inhibitory activity against EGFR with IC50 value
of 4.66mM, comparable to those of sorafenib (IC50¼ 1.28mM). We
concluded, based on these results, that the designed compounds
such as 6a, 6b, 7, and 8b are EGFR inhibitors which could be a
new scaffold for the design of future analogues.

Molecular docking results

The preceding results encouraged us to study the molecular dock-
ing of the most active compounds 6b, 7, and 8b using EGFR,
which are overexpressed in numerous tumours such as prostate
(PC-3), breast (MCF-7), hepatocellular carcinoma (HepG2), and
human cervical (HeLa) cancer cell lines24–32. All docking calcula-
tions were performed using MOE 2008.10 software67.

The docked compounds 6b, 7, 8b, and the reference inhibitor
erlotinib (Protein Data Bank [PDB] code 1M17)33 into the putative
active site of EGFR are shown in Figure 3. The molecular modelling
results of the compound, 6b, demonstrated an approximate orien-
tation of the molecule in comparison with erlotinib inside the
putative binding site of receptor pocket with some additional
hydrogen bond interactions with surrounding amino acids. These
docking results showed three classical and five non-classical
hydrogen bonds, where the distinctive residue Thr766 formed
bifurcated hydrogen bonds with oxygen and carbon atoms of the
piperidin-4-one ring system (Figure 3, middle left panel). In add-
ition, the amino acid residue Thr830 formed bifurcated hydrogen

Figure 2. The overall correlation between the antioxidant activity (%Inhibition) and the antitumour activity of the synthesized compounds against cancer cell lines
(HepG2, MCF-7, HeLa, and PC-3 cells).

Table 3. In vitro IC50 values of the designed compounds towards EGFR kinase
enzyme.

% Inhibition

Compd no. 10.0a 5.0a 2.5a 1.25a 0.625a 0.31a 0.15a EGFR IC50 (lM)

6a 57.65 50.34 44.35 34.55 26.84 18.16 6.67 4.66
6b 83.66 76.71 64.44 61.23 55.33 48.95 26.52 0.56
7 72.78 65.98 52.86 49.65 43.27 31.78 8.22 1.6
8b 64.88 60.72 50.51 47.28 43.85 26.25 6.96 2.16
Sorafenib 80.88 71.63 56.72 49.48 43.27 33.92 10.82 1.28
aConcentarion in lM.
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bonds through NH–aliphatic-CH and NH–N interactions of N-ethyl-
piperidin-4-one, while the amino acid Asp831 showed another
hydrogen bond with N-ethyl group of piperidin-4-one core
through the C¼O–aliphatic–CH interaction. Additionally, the

surrounding amino acids Met769, and Gly772 showed another three
interactions with aromatic ring and pentyloxy moiety through
C¼O–Aromatic-CH, O–aliphatic-CH and O–NH bonds (Figure 3,
middle left panel).

Figure 3. Three-dimensional (3D) interactions of erlotinib (upper panel), compounds 6b (middle left panel), 7 (middle right panel), and 8b (lower panel) with the recep-
tor pocket of EGFR kinase. Hydrogen bonds are shown as green lines and CH–p interactions as dotted lines.
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Similarly, compound 7 binds into the putative active site of
EGFR with three classical and one non-classical hydrogen bond. It
was found that the amino acid Thr766 formed bifurcated classical
hydrogen bonds with the 2-amino moiety and the oxygen atom
of the 4-H pyran ring system (Figure 3, middle right panel).
Moreover, the distinctive amino acid residue Met769 was involved
in two hydrogen bonds: with the oxygen atom and with alkyl moi-
eties of the ester group.

Moreover, compound, 8b, demonstrated similar results as com-
pounds 6b and 7 inside the putative binding site of receptor
pocket. These docking results showed two classical hydrogen
bonds, where the distinctive residue Thr766 formed bifurcated clas-
sical hydrogen bonds with nitrogen atoms of the pyrazoline ring
system (Figure 3, lower panel). In addition, three non-classical
hydrogen bonds formed with surrounding amino acids, as shown
in Figure 3 (lower panel). The amino acid residue Leu768 formed
bifurcated hydrogen bonds through NH—Ar-CH interaction and
one with the methyl group of the 4-tolyl moiety (NH—aliphatic-
CH), while the third non-classical hydrogen bond was observed
between the amino acid Thr830 and an aromatic ring through the
OH—Ar-CH interaction. Additionally, the surrounding amino acids
Leu768, Leu820, and Thr766 showed hydrophobic interactions with
aromatic rings through CH—p and OH—p (Figure 3, lower panel).

Conclusions

Novel a,b-unsaturated ketone 4–6a,b, 4-H pyran 7, pyrazoline
8a,b, isoxazoline 9, pyridine 10–11, and quinoline-4-carboxylic
acid 12a,b derivatives have been synthesized, and the antitumour,
antioxidant, and EGFR kinase inhibition activities have been eval-
uated. It is clear that most of the synthesized compounds exert
significant antitumour activities. Among the tested derivatives, 6a,
6b, 7, and 8b showed potent IC50 values ffi 5.5–18.1mM, which
were comparable to that of 5-FU (IC50 ffi 4.8–8.3mM) and afatinib
(IC50 ffi 5.4–7.6mM). Moreover, compound 8b has been shown
promising, broad spectrum antitumour activity against the tested
cell lines with an IC50 range of 5.5–7.8mM. Additionally, com-
pounds 6a, 6b, 7, 8b, and 9 exhibited the highest antioxidant
effects using the ABTS radical-scavenging assay. Moreover, we
observed a moderate relationship between the antitumour activity
and the antioxidant effects of the tested compounds, which sug-
gested that antioxidant effect is not the major role in the antitu-
mour activity. Additionally, compounds 6b, and 7 exhibited
excellent inhibition towards EGFR kinase enzyme with IC50 values
range of 0.56–1.6mM, respectively, while compounds 6a and 8b
have good activity with IC50¼ 4.66 and 2.16mM, respectively, com-
pared with the reference drug sorafenib (IC50¼ 1.28mM). Molecular
docking studies were conducted for compounds 6b, 7, and 8b
into putative binding sites of EGFR kinase enzyme, which showed
similar binding modes to erlotinib (EGFR kinase inhibitor).
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