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Abstract

Analyses of imperfectly assessed time to event outcomes give rise to biased hazard ratio

estimates. This bias is a common challenge for studies of Alzheimer’s Disease (AD)

because AD neuropathology can only be identified through brain autopsy and is therefore

not available for most study participants. Clinical AD diagnosis, although more widely avail-

able, has imperfect sensitivity and specificity relative to AD neuropathology. In this study we

present a sensitivity analysis approach using a bias-adjusted discrete proportional hazards

model to quantify robustness of results to misclassification of a time to event outcome and

apply this method to data from a longitudinal panel study of AD. Using data on 1,955 partici-

pants from the Adult Changes in Thought study we analyzed the association between aver-

age glucose level and AD neuropathology and conducted sensitivity analyses to explore

how estimated hazard ratios varied according to AD classification accuracy. Unadjusted

hazard ratios were closer to the null than estimates obtained under most scenarios for mis-

classification investigated. Confidence interval estimates from the unadjusted model were

substantially underestimated compared to adjusted estimates. This study demonstrates the

importance of exploring outcome misclassification in time to event analyses and provides an

approach that can be undertaken without requiring validation data.

Introduction

Estimates of the relationship between time to event outcomes and exposures are biased in

the presence of imperfect ascertainment of the outcome of interest. When misclassification in

the outcome is small and independent of predictor variables, the effect of misclassification on

the measure of association is correspondingly small and towards the null. However, when
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misclassification is differential, estimates of association that do not account for misclassifica-

tion may be attenuated towards or away from the null [1, 2]. Past work has demonstrated that

by incorporating the sensitivity and specificity of the imperfect outcome into the analysis, the

true association can be recovered and unbiased estimates of the association between disease

and risk factors can be obtained [1–4]. Bias-corrected estimators have been developed using

discrete proportional hazards models [5, 6], a particularly appealing approach for studies

under longitudinal panel observation because it addresses the interval censored nature of the

outcome [7] and the structure of the analytic model mirrors the structure of outcome assess-

ment which occurs at equally distributed discrete time-points. Discrete time models have been

developed to address interval censored outcomes in a variety of contexts (e.g., [8–10]).

Studies that investigate risk factors for development of Alzheimer’s disease (AD) neuropa-

thology using clinical diagnoses of AD provide an example of a context in which outcome mis-

classification is common. Accounting for outcome misclassification in the context of AD

neuropathology is particularly challenging due to the complex relationship between the clini-

cally observable phenotype and the underlying pathophysiology. While many research studies

use the National Institute of Neurological Disorders and Stroke-Alzheimer Disease and

Related Disorders (NINCDS-ADRDA) criteria [11] for clinical diagnosis of AD, more recent

diagnostic criteria have emphasized the distinction between the clinical disease and the under-

lying AD neuropathology [12–14]. Patients with biomarkers indicative of AD neuropathology

may be asymptomatic while those with cognitive impairment or dementia may have one of

numerous other conditions that manifest in memory deficits. Thus even sensitivity and speci-

ficity of diagnostic criteria based on symptoms and biomarkers are imperfect with respect to

the underlying pathology.

The objective of this study was to demonstrate how existing statistical approaches account-

ing for outcome misclassification in the context of a time to event analysis can be used to eval-

uate robustness of study results to misclassification, even in the absence of a validation sub-

sample. To exemplify this sensitivity analysis approach, we used data from the Adult Changes

in Thought (ACT) study, a longitudinal panel study of older adults with serial assessment of

cognitive functioning and AD risk factors. Data from this study previously were used to iden-

tify a statistically significant positive association between average glucose levels and dementia

risk in individuals with and without diabetes [15]. Using this same cohort, we investigated the

association between average glucose levels and AD neuropathology, demonstrating the effect

of outcome misclassification resulting from the use of clinical diagnosis data to make inference

about risk factors for underlying neuropathologic changes.

Materials and methods

Overview of time to event outcomes under panel observation

A panel study is a longitudinal study featuring repeated assessment of a cohort of subjects at a

pre-defined sequence of time points often referred to as study waves. This common epidemio-

logical study design has been used frequently to investigate risk factors associated with AD

[16–19]. In this study design, a cohort of participants is followed longitudinally with periodic

assessment of outcomes at discrete time-points. For instance, in the context of AD, partici-

pants may receive annual or biennial study visits at which cognitive testing is carried out to

determine AD status. Such studies give rise to survival data of the form {ti, di} where ti is the

earlier of the time of the event of interest or a censoring time if the study ends or the partici-

pant is lost to follow-up and di is a binary indicator taking the value 1 if the participant experi-

enced an event and 0 otherwise. Survival data of this form are often analyzed using the Cox

proportional hazards model. This approach allows for right censoring of time to event data.
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However, in its standard form it does not address interval censoring arising because AD status

is only available at discrete study follow-up visits, although the true onset time of clinical AD

lies somewhere in the interval between visits. Applying the standard Cox proportional hazards

model without accounting for interval censoring can lead to erroneous inference [20]. Addi-

tional modification of the standard approach is also needed if the assessment for the outcome

of interest is imperfect. In the case of AD, clinical AD diagnosis corresponds imperfectly with

the presence of AD neuropathology. Thus hazard ratio estimates based on clinical AD diagno-

sis will be biased for hazard ratios describing the association between exposures and underly-

ing AD neuropathology.

Below we discuss the discrete proportional hazards model as one approach to address the

interval censored nature of longitudinal cohort data under panel observation [7–9] and an

extension of this approach developed by Meier et al. [6] to further accommodate outcome mis-

classification. We then illustrate how this approach can be used to explore sensitivity of results

to outcome misclassification when validation data may or may not be available for a subset of

participants.

Discrete proportional hazards model

The discrete proportional hazards model [21] is appropriate for outcomes that are assessed

at periodic study visits separated by equal length time intervals such as those encountered

in studies under panel observation and has been widely used to analyze interval-censored

data in aging and dementia studies [22–25]. In this model, the baseline hazards are given by

λ0 = (λ01, λ02, . . ., λ0T)T at time 1 to T. The hazard for the ith subject at time j with covariates

Xi is 1 � ð1 � l0jÞ
eX
0
ib

, and we can write the likelihood for the ith subject as

f ðti; di;Xi; b;λ0Þ ¼
Yti � 1

j¼1

ð1 � l0jÞ
eðX
0
ibÞ

( )

� f1 � ð1 � l0ti
Þ

eðX
0
ibÞ

g
di

� fð1 � l0ti
Þ

eðX
0
ibÞ

g
ð1� diÞ

: ð1Þ

In this likelihood, the first term denotes the probability that no event occurs at study visits 1

to ti − 1, the second term represents the likelihood contribution if an event occurred at the

final study visit, and the final term denotes the likelihood contribution for censored partici-

pants where no event occurred at the final study visit. We can estimate regression parameters

β and baseline hazards λ0 using standard software for generalized linear models for binomial

family data with complementary log-log link [26]. When λ0 is small, eβ approximates the famil-

iar hazard ratio from the Cox proportional hazards model.

Adjusted discrete proportional hazards model

The adjusted discrete proportional hazards model extends the above approach to account for

outcome misclassification by incorporating sensitivity (θ) and specificity (ϕ) of diagnostic tests

[6]. Let θ and ϕ denote the sensitivity and specificity, respectively, of an imperfect outcome,

such as a clinical AD diagnosis relative to the underlying neuropathology, which we assume is

performed repeatedly over the course of longitudinal follow-up. Assume ti is the true event

time and to
i is the observed event time. We further assume that once a subject is observed to

have experienced an event, follow-up ends. The true event status, di, is not observed. Instead

do
i , an imperfect event status indicator, is available and takes the value 1 if the imperfect out-

come occurs before the end of study follow-up and 0 otherwise.
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Below we illustrate a sample observation pattern for a participant in a study of AD who

developed AD neuropathology at time ti and a clinical diagnosis of AD at time to
i .

1; 2; � � � ; ti � 1;
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ti� 1 true negatives

ti

z}|{
AD
onset

; � � � ; to
i � 1;

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
to
i � ti false negatives

to
i

z}|{

AD
diagnosis

We can express the probability of the observed event time and status conditional on the

true underlying event time, ti by noting that this pattern of observations corresponds to ti − 1

true negative observations followed by to
i � ti false negatives and a single true positive observa-

tion at time to
i . In terms of the sensitivity and specificity of clinical diagnosis relative to the

underlying pathology, the probability of this pattern of observations can be expressed as

�
ti� 1
ð1 � yÞ

to
i � ti y.

We denote the probability of the observed imperfect event time and event status indicator

conditional on the underlying true event time using Γi and Δi, where

f ðto
i ; d

o
i jti ¼ to

i ; di ¼ 0; y; �Þ ¼ �
to
i � 1
�

1� do
i ð1 � �Þ

do
i ¼
:

Gi; ð2Þ
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As shown by Meier et al. [6], we can express the likelihood for subject i accounting for mis-

classification by averaging over the distribution of unobserved true event times and event sta-

tus,

f ðto
i ; d

o
i ;Xi; b;λ0; y; �Þ ¼

Yto
i
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eðX
0
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We obtain outcome misclassification-adjusted estimates of β by numerically maximizing

the likelihood function over {β, λ0}.

Extensions to the case of a single gold-standard assessment

The misclassification adjusted discrete proportional hazards model assumes that study visit-

level sensitivity and specificity, θ and ϕ, are available. However, in many studies under panel

observation only a single assessment of the gold-standard outcome is possible. In this case, val-

idation data on agreement between the proxy and gold standard outcome are only available

aggregated across study follow-up, not at the level of the individual follow-up visit. For

instance, in studies of AD, it is possible to conduct autopsies of deceased participants and

ascertain agreement between AD neuropathology and a clinical diagnosis of AD prior to

death. However, it is not possible to estimate the probability of a clinical AD diagnosis at each

individual study visit conditional on the presence of underlying AD neuropathology at that

study visit. Such information cannot be obtained because it is only possible to make a single

determination of presence or absence of AD neuropathology on the basis of autopsy. Since the

precise timing of the development of AD neuropathology is unknown, it is also unknown

whether any individual study visit resulted in a correct or incorrect diagnosis. This challenge

exists for studies of any disease where outcome validation can only be performed once at the

end of study follow-up.

Assessing robustness of hazard ratio estimates to outcome misclassification
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Using information on concordance between a single validated outcome at the end of study

follow-up and the imperfect assessment of the event of interest during study follow-up, do
i , we

can obtain estimates of θ and ϕ by assuming constant sensitivity and specificity of the imper-

fect assessment across follow-up. Specifically, for an individual who truly experienced the

event of interest, we can write the likelihood for θ and ϕ, the visit-level sensitivity and specific-

ity as

Lið�; yÞ ¼
1

to
i

Xto
i

j¼1

�
j� 1
ð1 � yÞ

to
i � j

y
do

i ð1 � yÞ
1� do

i : ð5Þ

Note that this expression makes use of the simplifying assumption that true event occur-

rence was equally likely at any study visit prior to death. While this assumption is unlikely to

hold in general, in the absence of data to support proposed alternative functional forms for the

relationship between time and classification accuracy, it provides a convenient baseline model

from which to begin exploring misclassification. In cases where data or proposed biologic

mechanisms support alternative relationships, the above model can be modified to accommo-

date alternative specifications by replacing ϕ and θ with functions of time.

For an individual who truly did not experience the event of interest, the likelihood takes the

form Lið�; yÞ ¼ �
to
i � 1
ð1 � �Þ

do
i �

1� do
i ¼ �

to
i � do

i ð1 � �Þ
do

i . We can thus express the likelihood for

the complete validation sub-sample as
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This likelihood can be maximized to obtain estimates for ϕ and θ.

Sensitivity to outcome misclassification

Estimates for the hazard ratio based on numerical maximization of eq 4 are conditional on

assumed values for assessment-level sensitivity and specificity. If sensitivity and specificity are

known then these can be incorporated into estimation and adjusted hazard ratio estimates can

be obtained. In many cases no validation data or only a small validation sub-sample may be

available in which case it is preferable to investigate hazard ratio estimates under a range of val-

ues for sensitivity and specificity. By specifying a plausible range for sensitivity and a plausible

range for specificity we can construct a grid of sensitivity and specificity values and obtain haz-

ard ratio estimates at each point in the grid. By examining variation in hazard ratio estimates

across values for sensitivity and specificity we can explore robustness of estimates to imperfect

outcome ascertainment. Additionally, confidence interval widths from the misclassification

adjusted model can be compared to unadjusted confidence intervals to quantify the degree to

which precision has been overestimated by ignoring outcome misclassification. The width of

confidence intervals from the adjusted models is expected to be slightly smaller than the nomi-

nal level due to uncertainty in the estimated sensitivity and specificity. Comparison of adjusted

and unadjusted confidence interval widths thus represents a lower bound for the overestima-

tion of precision of the unadjusted approach.

ACT study

The Adult Changes in Thought (ACT) study is an ongoing, longitudinal study of incident

dementia. Participants were dementia-free, at least 65 years old at the time of enrollment,

and randomly selected from Kaiser Permanente Washington (formerly Group Health), an
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integrated health care system in Washington-state. Study procedures have been previously

described [27]. The study enrolled 2,581 participants between 1994 and 1996 [27], and an

additional 811 participants were enrolled from 2000 through 2002 [15]. The ACT study fol-

lowed the Helsinki declaration and was reviewed and approved by the Kaiser Permanente

Washington and University of Washington institutional review boards. Written informed

consent was obtained from all participants. Our analysis was based on a de-identified subset

consisting of 1,955 participants who met the same inclusion criteria as a prior study of glucose

and dementia [15] and were censored at age 89 years in order to satisfy HIPAA requirements

for data de-identification.

Serial cognitive testing was performed every two years for the purpose of clinical diagnosis

of dementia. The Cognitive Abilities Screening Instrument was used, where the score ranges

from 0 to 100 and a higher score indicates better cognitive function [28]. Participants who had

scores of 85 or below received further clinical and psychometric tests and the results of all eval-

uation, laboratory results, and image records were combined to reach a clinical diagnosis of

possible or probable AD based on research criteria [11].

About one quarter of the cohort who died underwent brain autopsy and extensive patho-

logical evaluation. We defined a binary indicator of the presence of AD neuropathology using

a modified version of the National Institute on Aging-Reagan Institute criteria [12]. An indi-

vidual was defined as having AD neuropathology if they had autopsy findings of Braak Stages

V-VI and CERAD neuritic plaque frequency of “moderate” and “frequent”.

A variety of demographic and other exposure measures are available in the ACT data. To

illustrate the use of the adjusted discrete proportional hazards model, we investigated the asso-

ciation between glucose levels and development of AD neuropathology. Time-varying glucose

levels were determined by combining clinical measurements of glucose levels, glycated hemo-

globin levels, and hemoglobin A1c levels, as previously described [15]. Average glucose levels

were computed for each participant at study baseline and in 5-year rolling windows. Potential

confounders of the relationship between incident AD neuropathology and glucose levels were

captured using the ACT study and Kaiser Permanente Washington data sources. Blood pres-

sures were averaged over two measurements separated by a five-minute rest period. Kaiser

Permanente Washington pharmacy data were used to assess treatment for hypertension and

diabetes.

Statistical analysis

We first fit a discrete proportional hazards model to investigate the association between clini-

cal diagnosis of possible or probable AD and quartiles of average glucose in participants with

and without diabetes, including covariates ACT cohort, age at baseline, sex, treated hyperten-

sion status, and education level (at least a college education versus otherwise). We included an

interaction term between average glucose and diabetes status to facilitate separate estimation

of glucose hazard ratios for individuals with and without diabetes. In this model, we directly

used clinical AD diagnosis of possible or probable AD to define the outcome of interest and

did not account for misclassification of this outcome with respect to AD neuropathology, the

target of inference. We then applied the adjusted discrete proportional hazards model to

account for outcome misclassification by incorporating the sensitivity (θ) and specificity (ϕ) of

clinical AD diagnosis relative to presence of AD neuropathology at autopsy. We estimated

sensitivity and specificity of clinical diagnosis at each study visit using the likelihood-based

procedure described above. We calculated Γi for each subject and Δij for each subject at each

time point. In order to investigate the impact of outcome misclassification, quantified by sensi-

tivity (θ) and specificity (ϕ), on the estimates of the association between development of AD

Assessing robustness of hazard ratio estimates to outcome misclassification
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neuropathology and the average glucose level using the adjusted approach, we conducted sen-

sitivity analyses varying sensitivity and specificity across plausible ranges suggested by analysis

of data from the autopsy cohort and present the estimated hazard ratios across these ranges.

We considered values for θ ranging from 0.3 to 0.5 with ϕ fixed at 0.97, and varied ϕ from 0.97

to 0.99 with θ fixed at 0.35. These ranges were selected based on results of analyses of the

autopsy sub-sample.

Results

Clinical and demographic characteristics of the ACT study sample at last clinical assessment,

overall and stratified by the availability of autopsy data, are presented in Table 1. Among 1,955

Table 1. Demographic and clinical characteristics of ACT study participants at last clinical assessment stratified by availability of autopsy data.

Overall (N = 1,955) Autopsied (N = 148) Non-autopsied (N = 1,807)

Original study cohort, N (%) a

No 524 (26.8) 31 (20.9) 493 (27.3)

Yes 1,431 (73.2) 117 (79.1) 1,314 (72.7)

Age at baseline, median (IQR) b 75 (71, 80) 76 (73, 79) 74 (70, 80)

Female, N (%)

No 810 (41.4) 65 (43.9) 745 (41.2)

Yes 1,145 (58.6) 83 (56.1) 1,062 (58.8)

Non-white, N (%)

No 1,757 (89.9) 143 (96.6) 1,614 (89.3)

Yes 198 (10.1) 5 (3.4) 193 (10.7)

College education, N (%)

No 780 (39.9) 58 (39.2) 722 (40.0)

Yes 1,175 (60.1) 90 (60.8) 1,085 (60.0)

APOE�4+, N (%)

No 1,288 (74.8) 95 (69.9) 1,193 (75.2)

Yes 434 (25.2) 41 (30.1) 393 (24.8)

Missing 233 12 221

Average systolic BP, median (IQR) 137 (123, 151) 130 (118, 143) 138 (123, 151)

Average diastolic BP, median (IQR) 70 (63, 79) 70 (62, 75) 70 (63, 79)

Treated hypertension, N (%)

No 307 (15.7) 23 (15.5) 284 (15.7)

Yes 1,648 (84.3) 125 (84.5) 1,523 (84.3)

Glucose, median (IQR)

Diabetes 164.3 (147.5, 186) 159.2 (141.7, 190.1) 164.5 (147.9, 185.2)

No Diabetes 101.7 (96.7, 108.4) 102.4 (97.1, 110.0) 101.6 (96.7, 108.0)

Clinical dementia, N (%)

No 1,557 (79.6) 103 (69.6) 1,454 (80.5)

Yes 398 (20.4) 45 (30.4) 353 (19.5)

Clinical possible/probable AD, N (%)

No 1,657 (84.8) 116 (78.4) 1,541 (85.3)

Yes 298 (15.2) 32 (21.6) 266 (14.7)

Abbreviations: AD, Alzheimer’s Disease; APOE�4+, presence of at least one �4 allele in the apolipoprotein E genotype; BP, blood pressure; IQR,

interquartile ranges.
a Counts and percentages are presented for categorical variables. Percentages are computed among all non-missing values.
b Medians and interquartile ranges (IQR) are presented for continuous variables.

https://doi.org/10.1371/journal.pone.0190107.t001
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participants, 148 were autopsied. The median glucose level (interquartile range, IQR) was

164.3 mg/dl (147.5-186.0 mg/dl) among participants with diabetes and 101.7 mg/dl (96.7-

108.4 mg/dl) among participants without diabetes. The median age was 75 years and 59% of

the cohort was female. The study sample was pre-dominantly white (89.9%), and 60% of par-

ticipants had at least a college education. Autopsied participants tended to be slightly older

than non-autopsied participants at baseline. A greater proportion of autopsied participants

were white and developed clinical dementia or a clinical diagnosis of possible or probable AD.

Among subjects with available autopsy data, 20 were classified as meeting neuropathologi-

cal criteria for AD and 128 did not meet criteria for AD. Sensitivity and specificity of a clinical

AD diagnosis relative to AD neuropathology were modest. Among those with AD neuropa-

thology, 55% (95% confidence interval [CI] 33.6, 74.7) had a clinical diagnosis of possible or

probable AD. Among autopsied participants without AD neuropathology, 83.6% (95% CI

76.1, 89.1) did not have a clinical diagnosis of possible or probable AD. Based on these sensitiv-

ity and specificity values which aggregate information across all study follow-up visits, we

computed the estimated assessment-level sensitivity (θ) and specificity (ϕ) to be 36.2% and

94.5% respectively.

Based on an unadjusted discrete proportional hazards analysis, the hazard of a clinical AD

diagnosis did not differ across quartiles of average glucose level in the prior five years for par-

ticipants with or without diabetes (Table 2). For participants without diabetes, hazard ratios

for each glucose quartile relative to the lowest quartile of glucose exposure were all greater

than one, indicating non-statistically significantly increased hazard of AD among participants

with higher glucose levels. For participants with diabetes, hazard ratios were less than one for

the second and third quartiles of glucose exposure relative to the lowest while the hazard ratio

for the fourth quartile was greater than one. These differences were also not statistically signifi-

cant. We next estimated hazard ratios using the adjusted discrete proportional hazards model

with values for θ and ϕ based on results from our autopsy sub-sample. Because the likelihood

became extremely flat as specificity decreased it was not possible to obtain maximum likeli-

hood estimates for values of ϕ< 0.97. We therefore report estimates at specificity of 0.97 as

this was closest to the point estimate of 0.945 obtained based on the autopsy cohort at which

Table 2. Hazard ratios and 95% confidence intervals for association between glucose level and AD diagnosis based on discrete proportional haz-

ards model.

Unadjusted HR a(95% CI) Adjusted HR b (95% CI) Difference in HR Relative CI width c

No diabetes

Q2 (95.9-100.9) 1.04 (0.72 1.50) 1.82 (0.80 4.17) 0.78 4.3

Q3 (100.9-107.8) 1.21 (0.85 1.73) 1.84 (0.72 4.72) 0.63 4.5

Q4 (>107.8) 1.28 (0.90 1.82) 2.13 (0.82 5.55) 0.85 5.1

Diabetes

Q2 (149.5-167.0) 0.86 (0.40 1.86) 0.30 (0.02 15.48) -0.56 3.7

Q3 (167-187.7) 0.59 (0.25 1.41) 0.68 (0.08 15.59) -0.09 4.8

Q4 (>186.7) 1.19 (0.54 2.62) 2.41 (0.42 13.76) -1.22 6.4

Abbreviations: AD, Alzheimer’s Disease; CI, confidence intervals; HR, hazard ratios; Q2, the second quartle; Q3, the third quartile; Q4, the fourth quartile
a Unadjusted estimates do not account for outcome misclassification. The model additionally include covariates ACT study cohort, age at baseline, sex,

college education, and treated hypertension.
b Adjusted estimates use assumed value of θ = 0.35 and ϕ = 0.97. The model additionally include covariates ACT study cohort, age at baseline, sex, college

education, and treated hypertension.
c Relative CI width is the ratio of the adjusted 95% CI width to the unadjusted width.

https://doi.org/10.1371/journal.pone.0190107.t002
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the numerical maximization algorithm converged. Compared to unadjusted estimates,

adjusted hazard ratio estimates assuming θ = 0.35 and ϕ = 0.97 were generally larger in magni-

tude, although far less precisely estimated (Table 2).

Fig 1 presents the adjusted hazard ratio estimates for the second to fourth quartiles of the

average glucose level in the prior 5 years relative to the first quartile of average glucose level,

when varying sensitivity from 0.3 to 0.5 with specificity fixed at 0.97. Relative to adjusted esti-

mates, the unadjusted hazard ratio estimates were attenuated towards the null across the range

of values for sensitivity investigated for all parameters except the hazard ratio for quartile 3 for

individuals with diabetes. Fig 2 shows the adjusted hazard ratio estimates for varying specific-

ity from 0.97 to 0.99 with sensitivity fixed at 0.35. All unadjusted hazard ratio estimates were

attenuated towards the null relative to the adjusted estimates except the hazard ratio for quar-

tile 3 for individuals with diabetes. The hazard ratio estimates were more robust to sensitivity

changes than specificity changes. Confidence interval widths increased dramatically as sensi-

tivity and specificity decreased. Compared to unadjusted estimates, adjusted hazard ratios esti-

mated at sensitivity of 0.35 and specificity of 0.97 had confidence interval widths that were

more than four times wider (Table 2).

Fig 1. Adjusted hazard ratios (HR, solid line) and 95% confidence intervals (CI, light gray) for glucose quartiles 2-4 (Q2-Q4) relative

to quartile 1 for varying sensitivities of clinical AD diagnosis (θ) with specificity (ϕ) fixed at 0.97. Dashed line represents unadjusted

hazard ratio estimate and dark grey band represents unadjusted 95% CI.

https://doi.org/10.1371/journal.pone.0190107.g001
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Discussion

Outcome misclassification is common in epidemiologic studies, particularly those where the

gold-standard diagnosis is difficult or expensive to obtain. AD neuropathologic change repre-

sents a particularly challenging outcome to assess since definitive diagnosis is only possible fol-

lowing death. We have demonstrated a method to account for outcome misclassification in

time-to-event studies that has particular relevance for longitudinal studies under panel obser-

vation in which an imperfect outcome is ascertained at pre-determined periodic clinic visits. If

participants are not assessed at common time points, for instance due to non-compliance with

the study protocol, alternative methods for interval censored data are required (e.g., Zhang

et al., 2010 [29]). In addition to extending the methods of Meier et al. [6] to the context where

operating characteristics of the imperfect assessment are not available for individual assess-

ments but only at the end of all study follow-up, we have also demonstrated how this approach

can be used to conduct sensitivity analyses to evaluate robustness of study results to possible

outcome misclassification. This approach addresses bias in studies with imperfect survival out-

comes and also facilitates exploration of the effect of misclassification on precision of hazard

ratio estimates.

Fig 2. Adjusted hazard ratios (HR, solid line) and 95% confidence intervals (CI, light gray) for glucose quartiles 2-4 (Q2-Q4) relative

to quartile 1 for varying specificities of clinical AD diagnosis (ϕ) with sensitivity (θ) fixed at 0.35. Dashed line represents unadjusted

hazard ratio estimate and dark grey band represents unadjusted 95% CI.

https://doi.org/10.1371/journal.pone.0190107.g002
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Many studies of AD use a clinical diagnosis of possible or probable AD as the outcome of

interest. This clinically assessed diagnosis is known to have imperfect sensitivity and specificity

relative to the underlying AD neuropathology, and ignoring these imperfect operating charac-

teristics introduces bias into estimated associations between risk factors and AD neuropathol-

ogy. It is important to note that if the target of inference is the effect of risk factors on clinical

diagnosis of AD or dementia then standard methods provide an unbiased estimate of these

relationships. However, because dementia is a complex clinical syndrome arising through mul-

tiple etiologic pathways, estimating relationships with underlying neuropathologic changes

may be more useful for elucidating biologic mechanisms. When associations with underlying

neuropathology are of interest, using clinical data provides access to a larger study sample than

analyses restricted to autopsied individuals but imperfect outcome assessment must be

addressed to avoid bias.

Data from the ACT study have been used previously to investigate the association between

glycemia and all-cause dementia. A prior study found that higher glucose levels were associ-

ated with increased hazard of dementia for individuals with and without diabetes [15]. A sec-

ond study using only data on individuals with available autopsy data and no diabetes diagnosis

found no association between glucose levels and extent of either neurofibrillary tangles or neu-

ritic plaques [30]. Our study which combines clinical and autopsy data by treating clinical AD

diagnosis as an imperfect proxy for underlying AD neuropathology similarly identified no sta-

tistically significant association between glucose level and AD neuropathology. Our analysis

extends the prior work by allowing us to investigate an outcome ascertained at autopsy while

incorporating information from both autopsied and non-autopsied participants. Sensitivity

analyses making use of the adjusted discrete proportional hazards model indicated that both

positive and negative effects were likely attenuated towards the null due to outcome misclassi-

fication. However, these results also indicate that the unadjusted analysis substantially overesti-

mates the precision of the hazard ratio estimates by ignoring uncertainty in the outcome.

Estimates based on assumed values for sensitivity and specificity derived from an autopsy sub-

sample indicated stronger effects but also had much broader confidence intervals.

Data from the ACT study allowed us to illustrate how sensitivity analyses can be used to

explore robustness of hazard ratio estimates and their standard errors to outcome misclassifi-

cation. However, our analysis has some limitations. The method proposed here for estimating

assessment level sensitivity and specificity based on sensitivity and specificity assessed at the

end of all follow-up assumes that accuracy of the evaluation does not change over time, which

may be unrealistic if, for instance, older subjects are more or less likely to be misclassified. This

assumption can be relaxed but results will be strongly dependent on the proposed functional

form of the relationship between time and accuracy. We have proposed a model using constant

accuracy which would be appropriate in the absence of strong evidence supporting any partic-

ular alternative functional form for the relationship. We have also demonstrated an existing

discrete-time approach which is appropriate for longitudinal studies under panel observation,

but ignores variation in the timing of study visits and provides discrete-time hazard ratio esti-

mates which correspond only approximately to the more familiar hazard ratios of the continu-

ous time Cox proportional hazards model. Additionally, characteristics of patients who

consent to autopsy and are deceased may differ from those of patients who are still alive [31].

This could affect estimates of sensitivity and specificity based on the autopsy sub-sample. We

have therefore explored a range of values for sensitivity and specificity around the estimated

values. Finally, we found that the likelihood was too flat to obtain maximum likelihood esti-

mates for values of ϕ less than 0.97. This reflects the substantial uncertainty arising due to

imperfect specificity. Sensitivity of results under outcome misclassification to imperfect speci-

ficity has been previously described [6]. Intuitively, for a rare event, even reasonably good
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specificity values can result in observed events consisting of more false-positives than true-pos-

itives, leading to severe uncertainty in estimated hazard ratios. Estimates of confidence interval

inflation based on ϕ = 0.97 are thus likely to be underestimates of the true inflation factor.

Conclusion

Outcome misclassification has the potential to substantially bias study results. The implica-

tions of misclassification for a given study can be explored through sensitivity analysis. Even in

the absence of empirical information on sensitivity and specificity of the imperfect outcome,

sensitivity analyses can be undertaken to quantify the robustness of results under a range of

plausible values. Such analyses aid appropriate interpretation of study results and should be

included as part of the standard analysis for imperfect time to event outcomes.
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