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Locating Temporal Functional 
Dynamics of Visual Short-Term 
Memory Binding using Graph 
Modular Dirichlet Energy
Keith Smith1,2, Benjamin Ricaud3, Nauman Shahid3, Stephen Rhodes4, John M. Starr2, 
Augustin Ibáñez5,6,7,8,9, Mario A. Parra2,4,7,10, Javier Escudero1,* & Pierre Vandergheynst3,*

Visual short-term memory binding tasks are a promising early marker for Alzheimer’s disease (AD). To 
uncover functional deficits of AD in these tasks it is meaningful to first study unimpaired brain function. 
Electroencephalogram recordings were obtained from encoding and maintenance periods of tasks 
performed by healthy young volunteers. We probe the task’s transient physiological underpinnings 
by contrasting shape only (Shape) and shape-colour binding (Bind) conditions, displayed in the left 
and right sides of the screen, separately. Particularly, we introduce and implement a novel technique 
named Modular Dirichlet Energy (MDE) which allows robust and flexible analysis of the functional 
network with unprecedented temporal precision. We find that connectivity in the Bind condition is less 
integrated with the global network than in the Shape condition in occipital and frontal modules during 
the encoding period of the right screen condition. Using MDE we are able to discern driving effects in 
the occipital module between 100–140 ms, coinciding with the P100 visually evoked potential, followed 
by a driving effect in the frontal module between 140–180 ms, suggesting that the differences found 
constitute an information processing difference between these modules. This provides temporally 
precise information over a heterogeneous population in promising tasks for the detection of AD.

Visual Short-Term Memory (VSTM) tasks prove promising in the early detection of Alzheimer’s Disease (AD). 
A useful paradigm lies in tasks which are specifically designed to test the ability of participants to store informa-
tion of either shapes alone (Shape) or shapes with associated colours (Bind) for short-term memory recognition. 
In this instance it is found that patients are particularly impaired in the Bind condition1–3. This VSTM task has 
been found to be both sensitive and specific to early AD3 making it promising in the detection of preclinical 
disease1,2,4. Our understanding of brain function relating to these tasks is incomplete due to technical limitations 
in analysis of brain recordings and neuroscientific limitations in understanding. It is clear that overcoming the 
former can guide the advancement of the latter. Thus, we set out to apply a novel signal processing approach to 
healthy brain functioning in order to uncover unimpaired brain processes which can help to guide future studies 
in the clinical setting. To this end, we contrast Shape and Bind conditions across healthy young subjects wearing 
an Electroencephalogram (EEG) to probe working memory integrative function at a high temporal resolution. 
In this study, we look at a set of VSTM cognitive tasks distinguished by two sets of binary conditions- Shape or 
Bind objects displayed in the left or right side of the screen (hemifield), performed by healthy young volunteers, 
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see Fig. 1. The Shape or Bind conditions allows the probing of the working memory integrative function whilst 
the hemifield condition allows the exploration of contralateral sensitivities in brain activity to task performance.

The evidence gathered to date with the VSTM binding test comes from behavioural1,2,3,5 and neuroimaging 
studies6. Only one study has used EEG to investigate the early impact of AD on the mechanisms supporting this 
memory function7. None of these studies have addressed the issue of network organization and brain connectivity 
as the likely mechanisms sub-serving this memory function in intact brains. Should the brain network approach 
developed here prove informative with regard to unimpaired binding functions carried out in VSTM, this will 
create new opportunities to further investigate the impact of AD on memory. This is particularly relevant if we 
consider that AD causes severe brain disconnection from its very early stages8,9. Several studies5,10,11 have demon-
strated that there is no impairment in VSTM task performance due to healthy ageing so we do not expect the 
functionality of the brain to be different in these tasks for healthy old people and healthy young people. Thus, the 
information provided in this study should not pose age-translational problems to future research in the clinical 
setting.

EEG recordings provide a unique opportunity to deepen our understanding of human brain function across 
a healthy lifespan and in diseases of the nervous system12. In the clinical context, the low cost and portability of 
the EEG offers a strong feasibility for screening purposes. Pertinently, it can aid in the early detection of brain 
dysfunction associated to diseases which have an impact on the worldwide population, such as dementia13–15. In a 
broader context, the high temporal resolution of the EEG presents a great opportunity to study the rapid interde-
pendent processes which underlie cognition12. Thus, the EEG provides an unparalleled matching of practicality 
and data richness for neurological diagnostics.

In order to analyse the EEG recordings of these cognitive tasks, which generally require dynamic interactions 
between different brain areas, we focus on functional connectivity estimated by network modelling (functional 
networks)16,17. Functional networks derive from network science which is a broadly applicable framework for 
understanding systems of interdependently acting agents. It is increasingly used in studies of brain function 
where bivariate connectivity methods applied to pairs of channels permits the construction of graphs which, in 
turn, leads to the identification of functional networks17–19. Such an approach is unveiling the functional architec-
ture of the human brain, helping us to understand its vulnerability to brain diseases16,20. In our setting, each node 
of the graph corresponds to an electrode placed on the scalp and the connection strength is the correlation of the 
time-series21–23 recorded at the electrodes.

Because EEG channels pick up weak electromagnetic activity propagated through many layers of tissue and 
bone, the reproducibility of EEG activity over a heterogeneous population is difficult to ascertain. To address this, 
we choose to analyse modules of the network defined by several channels placed over localised spatial regions 
of the scalp. In this way the exact placements of EEG channels with respect to the underlying subject physiology 
becomes less relevant and so by focusing on these modules a better sensitivity to consistent effects over many 
subjects can be expected.

Exploiting the temporal resolution of EEG recordings in functional brain networks is an open problem ripe 
for exploration which, importantly, requires theoretical solutions and advancements24–26. Because the reliability 
of connectivity information is dependent on the number of time samples used, constructing networks over very 
short time epochs is implausible, which has heretofore restricted the ability to study rapid functional dynamics. 
To overcome this problem we introduce Modular Dirichlet Energy (MDE), a novel methodology based on graph 
signal processing27.

Graph signal processing is a new theoretical branch which combines graph theory and signal processing27,28. 
In this setup, each node is intrinsically associated with some measurement or value regarded as a sample of a 
graph signal. This signal is not temporal but topological, so that the graph edges correspond to the topology over 
which the signal is supported27. The applicability of such methodology to the EEG is obvious since, during its 

Figure 1.  Chronology and design of the Visual Short Term Memory tasks. Arrow cues indicate to the 
participant the hemifield being tested before stimulus.
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recording, numerous channels are simultaneously sampled over the scalp. A weighted graph is generated using 
connectivity analysis between signals and we take the graph signal as the EEG recording at each electrode, i.e. the 
time-series recorded at the electrode is associated to the corresponding node. This allows two levels of analysis. 
The connectivity information encodes stable signal dependencies over long windows. This information then acts 
as a filter for temporal analysis provided by the graph signals over a short window, i.e. a retrospective temporal 
analysis of important connectivity. To study graph signals for specific modules, we set out the theory for MDE 
which combines Dirichlet energy, a measure of variability for functions, as it relates to graph signal processing27 
with the concept of modules from network science29.

Based on recent fMRI6 and EEG7 studies we predict significant involvement of modules which map onto the 
functional network of working memory. Posterior regions (parietal-occipital) have been reported as important 
nodes of the network supporting VSTM binding tasks6. Additionally, Pietto et al.7 recently reported involve-
ment of frontal regions previously unnoticed by fMRI but known to be relevant to binding functions carried 
out in working memory30. These authors argued that due to the high temporal resolution of the EEG, transient 
brain activity occurring in short time windows may be better detected by electrophysiological rather than fMRI 
techniques. Regarding laterality Parra et al.6 showed left hemisphere lateralisation in fMRI. Our methodological 
approach thus aims to unveil the network organisation that underpins such discrepancies by analysing transient 
dynamics of frontal and occipital modules. Furthermore we hypothesise that these regional activities are parts of 
an interdependent functional process and so we predict a specific difference in the activity between these modules 
which we analyse with Between MDE (BMDE).

Methods
Our methodological approach contrasts network analysis of Shape and Bind conditions at two levels- modular 
weights of long-term task-related epochs and MDE of short-term windows. The first level uses a standard anal-
ysis of connectivity weights in order to discern which epochs (encoding and maintenance), conditions (Left and 
Right) and modules (Frontal and Occipital) reveal sensitive functional differences between Shape and Bind tasks. 
We then probe those discoveries for transient temporal dynamics by implementing the novel MDE analysis over 
20 ms windows. This ensures a rigorous process of discovery which can be easily replicated for other research 
questions. Figure 2A outlines the main methodological steps of this study.

Visual Short-Term Memory Tasks and Data Acquisition.  Stimuli.  The stimuli were non-nameable 
shapes and non-primary colours known to be difficult to rehearse verbally1,6.

Procedure.  Two arrays of three items each were presented to the left and to the right of a fixation cross centred 
on the screen on a grey background (Fig. 1)11. Each array was presented in a virtual 3 ×​ 3 grid, 4° horizontally cen-
tred, 8° vertically centred and 3° to the left and right from fixation. Each item took up 1° and the distance between 
items was never less than 2°. Items for the study display were randomly selected from a set of eight polygons and 
eight colours1 and randomly allocated to 3 of the 9 positions within the grid. For the test display the items were 
randomly shuffled within the same locations used in the study display. Hence, items were never presented in the 
same locations across study and test displays, rendering location uninformative.

Trials were self-initiated. A fixation cross appeared in the centre of the screen and remained on throughout the 
trial. After a button press, 500 ms lapsed before the arrow clues were presented. Two arrows appeared for 200 ms 
one above and one below fixation which indicated which of the two visual arrays (left or right) the participants 
were to attend. An interval of random duration selected from 400, 500 or 600 ms followed the cues. The study 
display was then shown for 200 ms. After an unfilled retention interval of 900 ms the test display appeared and 
remained visible until the participant responded.

In the Shape condition each array of the study display presented three black shapes. The test display also 
showed three shapes. In 50% of the trials the content of the test display matched the content of the study display 
(“same trial”). The test display for the “different trials” showed two new shapes. In the Bind condition each visual 
array consisted of three shapes in different colours. In the test display for the “different trials” two coloured shapes 
swapped their colours. The participants responded “same” or “different” by pressing two keys previously allocated 

Figure 2.  (A) An outline of the main principles of the methodology. Circles represent electrodes and lines are 
the connections computed for the global time correlation. (B) Example of modules for the Modular Dirichlet 
Energy (MDE). A set of electrodes are grouped together in modules (M1, M2, M3) within the network. The 
colored nodes and edges are the ones belonging to a specific module. The Between MDE of M1 (in red) and M3 
(in green) is computed from the nodes connected by the dashed red edges. The Between MDE of M1 and M2 is 
zero since no edge connect these two modules.
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with both hands. The participants completed 8 practice trials before undergoing 170 test trials for each of the 
conditions.

Each participant undertook four different conditions of the VSTM task which are distinguished by two differ-
ent binary manipulations:

1.	 Shape or Bind: the test items consist of black shapes (shapes only) or shapes with colours (shape-colour 
binding).

2.	 Left or Right: the test items are shown on the left side or the right side of the screen (or hemifield) to which 
the participant is prompted before stimulus onset.

The task was to detect whether or not a change occurred across two sequential arrays shown on an initial study 
display and a subsequent test display.

EEG signals were recorded for 23 healthy young volunteers while they performed these VSTM tasks. Five of 
the volunteers were left-handed and eight were women. The mean and standard deviation (M ±​ SD) of the age 
of participants and number of years of education is 23.0 ±​ 4.3 and 17.1 ±​ 2.8, respectively. Informed consent was 
obtained from all subjects. The study was approved by the Psychology Research Ethics Committee, University of 
Edinburgh, and methods in data collection were carried out in accordance with their guidelines.

The EEG data was collected using NeuroScan version 4.3. The EEG was sampled at 250 Hz. A bandpass filter 
of 0.01–40 Hz was used. Thirty EEG channels, corrected for ocular artefacts using ICA, were recorded relying on 
the 10/20 international system. Figure 3 shows the electrodes used in the analysis.

Further artefact rejection was conducted, rejecting trials which contained magnitudes of voltage fluctuations 
above 200 microvolts, transients above 100 microvolts and electro-oculogram activity above 70 microvolts. Only 
the trials with correct responses were kept as incorrect responses do not inform on working memory load in 
task comparisons. It is important to emphasise the distinction between a study of healthy brain function of task 
performance, as conducted here, for which the number of correct trials is not indicative, and a study of the per-
formance of tasks by healthy people, for which the number of correct trials is indicative. In a few cases, no useful 
data was available for a volunteer performing one of the conditions resulting in an unequal number of volunteers 
per condition.

To keep comparisons straightforward, we chose only to look at those 19 participants of the original 23 for 
whom data on all of the conditions was available. We focused on the encoding (i.e., study display) and main-
tenance (delay) periods of VSTM, since these seem to be the stages of memory informing about the functional 
principles of organisation with regard to capacity and format of representation (Shape vs Bind)6.

The mean ±​ standard deviation over participants for the number of kept trials for each condition were 
as follows: Shape, Left hemifield- 69.74 ±​ 6.67; Bind, Left hemifield- 63.79 ±​ 8.72; Shape, Right hemifield- 
66.32 ±​ 15.06; Bind, Right hemifield- 63.58 ±​ 16.26.

Modular Dirichlet Energy.  Modular Dirichlet Energy, as we present it in this paper, is concerned with 
uncovering temporal dynamics of EEG channels associated with significant functional connectivity in an unprec-
edented and robust way. The technique considers the differences in amplitude recorded at EEG channels and 
weights them by the correlation between those channels leading to a metric that accounts for the contrast of 
amplitude and topological connectivity of brain activity. In a more intuitive sense, we can relate the graph con-
nectivity as a filter to explore important areas for temporal dynamics in the signals.

Figure 3.  The frontal and occipital modules defined for network analysis. Labelled electrodes follow the 
10-20 system.
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Let V E=G f W( , , , ) be the mathematical representation of an undirected, labeled graph where  = … n{1, , } 
is the vertex set of the graph, f =​ {f1, f2, …​, fn} is the graph signal, or vertex amplitudes, indexed by  , 
 = . .i j i j{( , )s t is adjacent to  for ∈i j, }  is the edge set with  = m2  and


=





∈w i jW ( , )
0 otherwise

ij

is the weighted adjacency matrix of edge weights indexed by  , where wij is a measure of strength of relationship 
between nodes i and j.

A module of a graph is defined by a subset of nodes and all adjacent edges to those nodes, i.e. V E( , )X X  where 
⊂X   and = ∈ ∈i j i j{( , ): , }X XE V V . Likewise, the modular weights constitute the set ∈ ∈w i j{ : , }ij X   

and we define the total modular weight, w
X
, as


 
∑∑= | |
∈ ∈

w w ,
(1)i j

ijx
x

for module x , where the modulus indicates the strength of correlation relevant to our study. This allows us to 
probe the weighted connectivity information of the modules of relevant brain regions in the context of the whole 
network. For correlation, the higher the connectivity of the module, the more similarly the activity recorded at the 
modules signals are behaving with the entire graph and vice versa. We use this measure in the first level of our 
analysis.

An example of a graph with modules and a graph signal is shown in Fig. 2B. The circles represent the nodes of 
the network and the lines connecting them represent the edges. The graph signal is composed of the node ampli-
tudes which are represented in Fig. 2B by the EEG activity at the nodes. The full mathematical formulation of 
MDE and derivation of the formula for its computation is given in the Supplementary material (section 1). What 
follows is aimed to provide a more practical explanation.

Suppose we have task-related activity in the brain with activity associated with module M1 and then transfer-
ring to module M3 over time. How do we analyse this activity in a way which can reveal the underlying chrono-
logical dependence of these two modules ? After computing the connectivity of the signals over a suitable epoch, 
we are provided with two sets of information: the original high temporal resolution signals and the connectivity 
weights. The question we are then confronted with is how to use the high temporal resolution signals to explore 
temporal dynamics of the connectivity information. Graph Signal Processing provides the framework to answer-
ing this question.

We consider the relation

−w f f( ) (2)ij i j
2

where wij is the correlation between signals i and j over epoch T and fk is the signal k at time t in T. When corre-
lation between signals is low, the magnitude of (2) is small and we cannot infer much from the signals. Now we 
consider when the magnitude of the correlation is large. There are four cases to consider. i) wij <​ 0 and (fi −​ fj) is 
large; ii) wij >​ 0 and (fi −​ fj) is small; iii) wij <​ 0 and (fi −​ fj) is large; iv) wij <​ 0 and (fi −​ fj) is small.

The first case says there is a strong positive correlation, wij, between signals i and j and fi and fj at time point t 
are dissimilar. Since high positive correlation denotes that the signal amplitudes behave similarly, this large posi-
tive value indicates a likely discrepancy between the connectivity information over the epoch T and the behaviour 
of the signals at time point t. Here the output is positive and large. The second case, on the other hand says that 
there is a strong positive correlation between the signals i and j and the signals are similar at t. This, in contrast to 
the first case, gives two agreeing components and the output is positive and small. The third case says there is a 
strong negative correlation, wij, between signals i and j and the magnitude of (fi −​ fj) is large. Since high negative 
correlation denotes that the signal amplitudes behave dissimilarly, this large positive value indicates agreement 
between the connectivity information over the epoch T and the behaviour of the signals at time point t. The 
output is negative and large. The fourth case, on the other hand, says that there is a strong negative correlation 
between the signals i and j and the signals are similar at t. This, in contrast to the third case, gives two disagreeing 
components and the output is negative and small.

Consider summing a variety of these components, as in (3). If the result is large and positive, we can say that 
the activity of the signals at time t is mostly in disagreement with the connectivity over T. On the other hand, if 
the output is large and negative, we can say that the activity of the signals at time t is mostly in agreement with the 
connectivity over T. It follows that a value near 0 indicates activity which neither strongly agrees nor disagrees 
with the connectivity information.

Suppose now that wij is significantly larger in condition R (e.g. shape only) than in condition S (e.g. shape- 
colour binding). Over a given population, we can generally expect that wij(R)(fi(R) −​ fj(R))2 >​ wij(S)(fi(S) −​ fj(S))2. 
However, where this is most apparent will be where there is abnormal activity occurring in one of the conditions 
over the signal, thus indicative of a ‘driving effect’ for the correlation of a point in time in which the connectivity 
combined with the signal amplitudes is particularly important. We can extrapolate on this effect from the shape 
of the MDE throughout the duration of the connectivity window. If the driving effect occurs at a point where 
the MDE of one of the conditions undergoes a considerable change, i.e. the curve over time of the MDE is less 
smooth, we can infer that that condition shows a change in effect not noted in the other condition. If both con-
ditions show contrasting changes, i.e. both curves are less smooth in contrasting directions, we can infer that the 
conditions take contrasting responses at that time.
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It is important to emphasise that if we analyse a sum of weights, ∑​i,jwij, the initial connectivity analysis should 
consider absolute values of correlation, where we are interested only in whether the correlation is strong (large 
magnitude) or weak (small magnitude), whereas the graph signal approach is most physiologically interpretable 
by considering the signs of the correlations, as above.

Now, the Dirichlet energy of the graph G is defined as

∑= −
=

E G w f f( ) ( ) ,
(3)i j

n

ij i j
, 1

2

which is an inverse measure of the smoothness of the graph signal f over G27. Particularly, the node gradient at 
node i is an important measure of the smoothness of the graph signal at node i and is defined as

∑= − .
=

E i w f f( ) ( )
(4)j

n

ij i j
1

2

If we consider this in our application, we see that the node gradient gives a local measure of the differences in 
the node’s amplitude with respect to the rest of the electrode array ‘filtered’ by the strength of connectivity. For 
seeking well chosen modules, comparability of node gradient values can thus be utilised.

Note that the elements in the sum of (3) have a one to one mapping to the edge set,  , of G. It follows that there 
is a natural decomposition of the Dirichlet energy in (3), corresponding to any disjoint composition of the under-
lying graph into modules, such that

 
∑ ∑ ∑= −
= ∈ ∈

E G w f f( ) ( ) ,
x

M

i j
ij i j

1

2

x

and we define the Modular Dirichlet Energy (MDE) of x  to be

∑ ∑= − .
∈ ∈

MDE w f f( ) ( )
(5)

x
i j

ij i j
2

x

G
V V

The red lines in Fig. 2B represent all the edges, and corresponding Dirichlet energy components, of the mod-
ule M1. Further, we can define the between module Dirichlet energy (BMDE) as

G G
V V
∑ ∑= −
∈ ∈

BMDE w f f( , ) ( ) ,
(6)

x y
i j

ij i j
2

x y

for two disjoint modules x and y . In Fig. 2B, the dashed red lines represent the between module edges and 
energy components of modules M1 and M3.

For graph signals which also have a temporal dimension, i.e. F =​ [f0, f1, …​, fY], an n ×​ Y matrix of chronolog-
ically ordered graph signals = …f f ff { , , , }i i i

n
i

1 2 , the Dirichlet energy of the signal during time period [t0, t] is 
just the sum of the individual Dirichlet energies at each point in time. Thanks to linearity, this extends straight-
forwardly to all definitions above. By looking at short intervals of graph signals, [t0, t], we can thus probe the 
connectivity information for dynamic behaviour within the epoch on which the graphs are constructed.

MDE analyses temporal brain networks from a completely different angle to other state-of-the-art methods 
such as temporal networks31 or time series analysis of network metrics32. Rather than being based on the con-
struction of different networks indexed by chronology, MDE constructs just one network of general connectivity 
patterns over a larger epoch and uses this network as the support for localised time-series analysis of shorter 
windows. The activity is encoded in the graph signal rather than in the edge weights of a time-varying graph. This 
allows for contrasting the volatile behaviour of the EEG in a very short window (the graph signals) against the 
more stable activity computed over the long window (the weights of the graph edges), thus drawing out the tem-
poral locations of driving effects of the connectivity differences whilst remaining robust to noise. This is arguably 
more elegant and directly comparable for transient dynamics than probing relations of several different networks 
corresponding to staggered time windows. Further, MDE works on weighted networks, as are ubiquitously gen-
erated by functional connectivity analysis, as well as binary networks, whereas multi-layer network approaches 
rely minimally on some threshold criteria of the edge weights.

Given that the components of the total modular weight are exactly those weights corresponding to the MDE 
of a given module, that the MDE is dependent on the underlying long-term modular edge weights and that the 
windows chosen for MDE are arbitrary, we recommend a two-level analysis approach. In the first level the data is 
probed over a long-term window using total modular weights. In the second level, analysis of short-term windows 
using MDE is implemented, see Fig. 2A. We demonstrate this approach in this study.

Pre-processing and module selection.  The 30 channels were re-referenced to the average EEG activity. 
From the continuous EEG, we extracted epochs of 1.2 seconds starting at −​200 ms pre-stimulus onset (baseline). 
These epochs contained activity associated with the encoding and maintenance periods of the VSTM tasks. To 
further remove artefacts, channels with activity of a mean amplitude greater than 30 V (2 SD) were rejected. We 
then computed the average ERP signal over correct trials (number of correct trials per participants, per condi-
tion: mean- 65.7, SD- 9.27) for each VSTM condition performed by each participant resulting in a set of 4 ×​ 19 
thirty-channel EEG signals.



www.nature.com/scientificreports/

7Scientific Reports | 7:42013 | DOI: 10.1038/srep42013

We focused on activity in two time windows, one reflecting the encoding period (0–200 ms) and one the 
maintenance period (200–1000 ms). For each of the set of mean 30 channel signals, a graph was created for both 
time windows where the electrodes were mapped one to one with nodes and the edge weights were defined as 
the absolute value of correlation coefficient21–23 between the pairwise channels for the broadband of frequencies 
(0.01–40 Hz). The correlation co-efficient is chosen, rather than phase-dependent connectivity, in order to analyse 
amplitude related effects from ERPs widely recognised as important in cognitive tasks. The broadband was consid-
ered to reflect the real-time amplitudes important to our novel analysis and in keeping with our processing-light 
approach. Further, a previous study of ERP broadband analysis on these tasks gave promising results7. For transpar-
ency, analysis of Theta, Alpha and Beta frequency bands can be found in the Supplementary material (section 2).  
We also set the node amplitudes as the signals zero averaged over the channel space for each time sample.

In order to find differences in cognitive task conditions that are representative of the sampled population 
(e.g., controlling for sources of individual variability such as head size, small electrode displacements, etc.), we 
considered activity over broader regions involving several electrodes (mapping to modules in graph theory). To 
this aim, we defined two modules on the graphs using well known brain regions (see Fig. 3) which are relevant 
to working memory processing33 and previously reported to be involved in the task investigated6,34. These are the 
frontal module (F3, Fz, F4, FC3, FCz and FC4) and the occipital module (O1, Oz, O2, PO1 and PO2). To avoid 
combinatoric issues, these modules were chosen on physiological principles to be symmetric, of comparable size 
and with considerations of locality and generality in mind. This method is distinct from the algorithmic methods 
of finding modules based on the maximisation of the modularity metric29. Such a method constructs modules 
from the information of connectivity inside the signal with which one would instead seek to compare the compo-
sition of the found modules. Brain activity is dynamic and changes over time and space, thus such modules also 
change over time and space. Instead, defining a-priori modules on the graph is a way to combine physiological 
hypotheses with the information inside the signal, creating a topology of potential similarity between electrodes. 
The purpose of which is to provide a straightforward method to extract the dynamic information contained in 
the signal, as illustrated in Fig. 2A.

The composition of the modules (i.e., electrodes chosen) was constructed after considering the node gradient 
(4) computed for each node of the graph during the entire encoding and maintenance period to determine their 
suitability for the modules (i.e., using energy to identify outliers). The occipital module was chosen considering 
all those electrodes in the occipital region. This choice is evidentially justified by the node gradients where there is 
clearly far larger magnitude gradients than in the rest of the electrode array (see Table 1, column 5). In choosing 
the frontal module we wish to consider a comparable size of module to the occipital. If we consider the suitability 
of electrodes FP1 and FP2 for the frontal module, we see these electrodes have node gradients over 2 SD above 
the mean drawn from the rest of the electrode array excluding the occipital electrodes which exhibit obviously 
stronger values (−​18.56 ±​ 5.97 mean ±​ SD) thus we excluded them to avoid their overpowering influence since 
this highlights a strong contrast in activity. We then seek to form a symmetric module of comparable size to the 
occipital region, which leaves {F3, Fz, F4, FC3, FCz and FC4} as the physiologically feasible choice (Fig. 3). In the 
Supplementary material, we provide an analysis of the specific and sensitive nature of this choice. Normalisation 
to correct for such influences is neither obvious nor advisable since each edge in a graph corresponds to two 
nodes and any such process would act to negate the scale-free nature of the underlying EEG network topologies35.

We investigated differences in the encoding period (0–200 ms) and the maintenance period (200–1000 ms) of 
the tasks by analysing the total modular weight, w

x
(1), of the specified modules.

We contrast these values for Shape vs Bind conditions in the left hemifield and in the right hemifield using 
paired t-tests. Implementing the novel MDE (5) concepts, where the graph signal is implemented over a reduced 
number of samples within the epochs, the second level of analysis aims to discover particular parts of the original 
epochs which drive the discovered effects. Given the clear hierarchical structure of the hypotheses, it is necessary 
to use hierarchical False Discovery Rate (FDR)36 to control for Type-I errors. Hierarchical FDR follows a level 
by level procedure of false discovery detection where a parent-child relationship is evident between these levels. 
Only those hypotheses whose parents were accepted as true discoveries are considered in the next level. In our 
study, the parent hypotheses relate to the total modular weights and the child hypotheses relate to the MDE anal-
ysis. Figure 4 shows a model of a hypothesis hierarchy and the principles of rejection and acceptance of discovery 
through the FDR corrective procedure. We implemented a strict FDR with q =​ 0.05 throughout the procedure36.

From the effects found in the edge weight testing, we compute the MDE for the frontal and occipital modules 
and the BMDE between the frontal and occipital modules. Note that BMDE   ⊂( , )x y MDE( )x , so that we 
probe the modules specifically for the interaction of the frontal and occipital modules.

FP1 −​32.45 F8 −​19.33 T3 −​11.74 CP3 −​10.27 P4 −​30.00

FP2 −​32.07 FT7 −​15.5 C3 −​10.36 CPz −​13.60 O1 −​59.71

F7 −​23.67 FC3 −​17.66 Cz −​14.00 CP4 −​16.01 Oz −​54.68

F3 −​23.96 FCz −​20.21 C4 −​12.81 TP8 −​26.07 O2 −​55.89

Fz −​28.09 FC4 −​16.09 T4 −​14.75 P3 −​25.70 PO1 −​56.29

F4 −​20.32 FT8 −​13.45 TP7 −​17.45 Pz −​26.32 PO2 −​46.65

Table 1.  Average node gradient (4) over task conditions and participants for each electrode.
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Results
We contrast Shape and Bind values throughout, therefore measures are usefully presented as ‘Shape−​Bind’ which 
implies the difference of the given metric values between the Shape and Bind condition. For this reason, we pres-
ent boxplots indicating where the 0 line is for the Modular weights in the frontal and occipital modules (Fig. 5, top 
left), and the MDE and BMDE of respective modules (Fig. 5, bottom row). A summary of the results at two levels 
of analysis is presented in Tables 2 and 3. Paired t-tests were performed over participants for the measurements 
obtained for Shape and Bind conditions. The paired t-test is a one-sample t-test with mean 0 on the values (X −​ Y) 
for paired observations X and Y across subjects. With respect to our study, X is a network metric of Shape task 
activity and Y of Bind task activity. Therefore the null hypothesis is that Shape and Bind values come from the 
same normal distribution, i.e. mean(X −​ Y) =​ 0. The alternative hypothesis is that Shape and Bind values come 
from normal distributions with different means, i.e. mean(X −​ Y) ≠​ 0. The normality of the distributions were 
tested for each paired t-test using the one-sample Kolmogorov-Smirnov test. No significant deviations from the 

Figure 4.  Example of hierarchical hypothesis tree for hierarchical false discovery rate procedure. ‘LiHj’ 
indicates the jth comparison in the ith level of the hierarchy. Red indicates no discovery, green indicates valid 
discovery, grey indicates exclusion from correction procedure due to false or no discovery made.
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occipital modules in the right hemifield condition. Top Center and right: Mean over subjects of Modular 
Dirichlet Energy (MDE) of shape only (solid) and shape-colour binding (dashed) in the right hemifield during 
the encoding period for the occipital module (center) and the frontal module (right) calculated over non-
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displaying significant differences in activity. Bottom: Boxplots of MDE for each epoch for occipital (Left), 
frontal (Center) and the BMDE of Frontal and Occipital modules (Right), where ‘Epoch’ refers to the 20 ms 
windows, labeled consecutively ‘1’ to ‘10’.
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normal distribution were found at the 5% level. Thus, the normality assumption underlying the paired t-tests 
is reasonable. The subsequent p-values were controlled using hierarchical FDR36, allowing powerful probing of 
shorter time epochs of the discoveries found. We report the following.

Level 1.  In the first level, the total modular edge weights (1) computed from the absolute values of correlation 
are analysed for the conditions to be contrasted. These contrast are Left Shape vs Left Bind and Right Shape vs 
Right Bind in both frontal and occipital modules during both encoding and maintenance periods. Results found 
here thus inform on which periods, modules and task related hemifields are important in Bind tasks. From the 
paired t-tests, after FDR correction, significant differences were found for the contrast involving Shape vs. Bind 
conditions in the right hemifield (left hemisphere stimulation) for both frontal and occipital modules during the 
encoding period (see Table 2). These showed that the Bind condition weights were less than those of the corre-
sponding Shape conditions (Fig. 5), top left. No differences were found in the maintenance period and, further, no 
differences were discovered when contrasting Shape vs Bind conditions in the Left hemifield for either encoding 
or maintenance periods. The Supplementary material (section 3) provides a parallel analysis for modules chosen 
for different scalp areas, showing that we do not miss out on important activity happening elsewhere in the EEG 
signal correlates and further highlights the anatomical specificity of the activity elicited during this memory 
paradigm. We further consider an analysis of the sensitivity of electrode selection for our modules by removing 
and adding electrodes to the module to see how this effects the results. The results shows that our methodological 
approach is robust to small modifications in electrode choice, demonstrating that the physiological considera-
tions made for module choice do not substantially influence the results of the study.

Level 2.  In the second level of analysis we compute MDE (5) over non-overlapping 20 ms (5 time samples) 
windows over the modular weights (signed correlations) in Level 1. Due to the dependencies stated in the meth-
ods section, our analysis now focuses only on those hypotheses from which their parent hypothesis in the first 
level were seen as ‘true discoveries’. Thus, we present results of the MDE for frontal and occipital modules during 
the encoding period of Shape vs Bind condition contrasts displayed in the right hemifield. An extended table of 
results including those for the left hemifield can be found in the Supplementary material (section 4). These results 
demonstrate the reliability of our analysis. No significant p-values are found for the left hemifield condition for 
MDE. Further, we study the BMDE (6) of frontal and occipital modules to discover if there are epochs where 
dependencies occurring between these regions show strong effects.

After FDR correction, effects are found in the MDE of the occipital module in the epochs between 100–120 ms 
and 120–140 ms, showing a larger negative MDE in the Shape task. In the frontal module, an effect is found 
straight after this, between 140–160 ms and 160–180 ms, again showing a larger negative MDE in the Shape task. 
Further, the BMDE of occipital and frontal modules shows an effect in the epochs of 100–120 ms and 120–140 ms 
(see Table 3). Notably, all the MDE values in this study were strong negative values indicating generally matching 
information between the signals and the connectivity weights, as explained in the methods. This is exactly as is 
expected, since the signals are those from which the connectivity information is taken.

Discussion
Agreeing with our hypotheses, we found evidence that the contrasting brain function of Shape vs Bind condi-
tions occurs during the encoding period in both the frontal and occipital modules, which are regions classically 

O.E.L O.M.L O.E.R O.M.R F.E.L F.M.L F.E.R F.M.R

0.1873 0.8709 0.0102 0.4514 0.2119 0.9040 0.0044 0.4806

Table 2.  p-values for paired t-tests of modular sum of edge weights in Shape vs. Shape-colour binding 
conditions. O =​ occipital module, F =​ frontal module, E =​ encoding period, M =​ maintenance period, L =​ left 
hemifield condition, R =​ right hemifield condition. Bold = true discovery, italics = false discovery, standard text 
= hypothesis not rejected at the 5% level.

Time (ms) MDE - O.E.R MDE - F.E.R BMDE - F.O.E.R

0–20 0.2036 0.4088 0.0942

20–40 0.0909 0.3891 0.0957

40–60 0.0432 0.1380 0.1408

60–80 0.0718 0.8074 0.1805

80–100 0.0254 0.1918 0.0412

100–120 0.0038 0.0465 0.0073

120–140 0.0010 0.0851 0.0028

140–160 0.0278 0.0070 0.0120

160–180 0.0919 0.0059 0.0167

180–200 0.6661 0.5464 0.9644

Table 3.  p-values for paired t-tests of Modular Dirichlet Energy (MDE) and Between MDE (BMDE) in 
Shape vs. Shape-colour binding conditions. Legend as in Table 1.
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associated with task performance and visual attention. Particularly, this supports the evidence found in Pietto et al.7  
that these tasks involve rapid functional activity in the frontal module which is picked up by the EEG. The modu-
lar weights being generally stronger in the Shape task than the Bind task suggest that the activity in these regions 
is more in agreement with the rest of the network in the Shape task. The modular correlates being weaker in the 
Bind task indicates a greater contrast in activity between these regions and the rest of the network and thus is 
suggestive of this task placing a greater work load on these regions, in keeping with our expectations.

Importantly, we found that this activity was clearly evident in the right hemifield condition but not so in 
the left hemifield condition, providing evidence to suggest that there is better sensitivity of EEG activity in tests 
designed for the right hemifield. Right hemifield implies stimulation of the left brain hemisphere which is clas-
sically the more task-oriented half of the brain. From this we conjecture that a more direct route, and so less 
convoluted connectivity, is provided by left brain stimulation for task related activity. It follows that, for the most 
clinically relevant biomarker for AD by using these tasks in conjunction with the EEG, performance of tasks pre-
sented in the right hemifield may provide more rich information and thus greater sensitivity to impaired activity 
than those presented elsewhere on the screen.

From the MDE, we note that the effects reported in the occipital module appear to be driven by amplitude 
based activity between 100–140 ms into the encoding phase of the task. This coincides with the P100 of visual 
evoked potentials and shows that with our methodology we are able to pick up on event related potential (ERP) 
activity over the network, which was previously impossible in functional brain network studies because of con-
nectivity values being necessarily computed from information over longer epochs. During P100, then, the Shape 
condition exhibited a noticeable dip in MDE which was much less apparent in the Bind case (Fig. 5, top center). 
It is reasonable to suggest that this is caused by the greater work load in the Bind condition. The involvements 
of visual association cortices in regions of the occipital lobe during short-term memory binding has been doc-
umented previously6. This appears to be a key area of the visual integrative functions. Recent studies using EEG 
based methods have confirmed the involvement of these regions in the poor performance found in patients at 
risk of AD7.

Recent electro-physiological studies indicate that frontal nodes may be contributing both specific (i.e. bind-
ing) and more general resources during working memory processing. The effect seen here between the frontal and 
occipital modules from 100–140 ms and that seen in the frontal module between 140–180 ms concurs with this, 
suggesting that a contrast exists in the functional dependency between these regions for Shape vs Bind conditions 
shortly after the onset of P100 activity. Further the activity occurring in the Frontal module indicates a difference 
in higher function post-visual processing. Here, the Bind and Shape conditions show contrasting MDE activity in 
these epochs where the dip in the Shape condition is contrasted by the flattening in the Bind condition (Fig. 5, top 
right). It is reasonable to expect that this activity again relates to increased load of shape-colour binding, pointing 
reasonably to an inverse dependency of information load with functional efficiency. This information may inform 
us on the deficits found in the clinical setting. Alzheimer’s disease is characterised by both deficits in new learning 
(which relates to the encoding period) and rapid forgetting, so that pinpointing spatio-temporal abnormalities in 
the biological substrates that underpin these deficits is essential both to understand key disease processes and as a 
step towards defining a useful biomarker of preclinical AD. On this basis, we conjecture that this occipital-frontal 
dependency is weakened in AD patients. It is reasonable to predict that this functional processing effect will be 
noticeable in future clinical studies and thus could eventually prove useful in providing an indicator for a sensitive 
biomarker.
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Figure 6.  The p-values for shape only vs. shape-colour binding contrasts in the right hemifield during the 
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calculated over non-overlapping 20 ms (5 time sample) windows. The y-axis is on a logarithmic scale.



www.nature.com/scientificreports/

1 1Scientific Reports | 7:42013 | DOI: 10.1038/srep42013

The results suggest a focused prolonged functional difference between Shape and Bind conditions begin-
ning in the occipital area at around 100 ms, with a dependency between occipital and frontal areas from 100 ms 
to 140 ms and then shifting towards the frontal area between 140–180 ms, see Fig. 6. The strong chronological 
dependency of p-values over non-overlapping epochs is remarkable. Additionally, it is noticeable that all these 
effects have entirely vanished by the 180-200ms epoch, which is in accordance with the lack of findings found for 
the maintenance period. The analysis based on classical spectral bands in the Supplementary material (section 2)  
appears to dilute the findings in the broadband analysis, suggesting either that this is a broadband effect or possi-
bly that the frequency filtering distorts the activity.

In application, the MDE proves to be a sensitive and highly flexible methodology for EEG analysis, both 
topologically and temporally, providing a unique platform to study EEG activity, such as ERPs, as they apply to 
functional brain networks. In fact, we showed that not only can MDE pick up on well documented EEG activity, 
but it can extend our understanding of that activity as a dynamic interdependent activity between different brain 
areas, progressing our understanding beyond singular channel effects.

Technically, implementation of MDE and its related components could narrow to the level of single time 
samples, although in practice this would be difficult to justify for EEG recordings. However, as EEG technology 
improves and knowledge of brain function deepens, as shown here, this method has the potential for pinpointing 
shifts in functional brain dynamics to the millisecond. As with any such generalisable technique, the flexibility of 
this methodology means that the potential number of tests which can be carried out is huge. It is important then, 
as demonstrated here, to make a rigorous set of hypotheses before implementation.
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