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ABSTRACT
Background. The purpose of this study was to determine the key microRNAs
(miRNAs) and their regulatory networks in clear cell renal cell carcinoma (ccRCC).
Methods. Five mRNA and three microRNA microarray datasets were downloaded
from the Gene Expression Omnibus database and used to screen the differentially
expressed miRNAs (DEMs) and differentially expressed genes (DEGs). Gene ontology
enrichment analysis and Kyoto Encyclopedia of Genes and Genomes pathway analysis
were performed with Metascape. A miRNA-mRNA network was mapped with the
Cytoscape tool. The results were validated with data from The Cancer Genome Atlas
(TCGA) and qRT-PCR. A nomogram model based on independent prognostic key
DEMs, stage and grade was constructed for further investigation.
Results. A total of 26 key DEMs and 307 DEGs were identified. Dysregulation of four
key DEMs (miR-21-5p, miR-142-3p, miR-155-5p and miR-342-5p) was identified to
correlate with overall survival. The results were validated with TCGA data and qRT-
PCR. The nomogram model showed high accuracy in predicting the prognosis of
patients with ccRCC.
Conclusion.We identified 26DEMs thatmay play vital roles in the regulatory networks
of ccRCC. FourmiRNAs (miR-21-5p,miR-142-3p,miR-155-5p andmiR-342-5p) were
considered as potential biomarkers in the prognosis of ccRCC, among which only miR-
21-5p was found to be an independent prognostic factor. A nomogrammodel was then
created on the basis of independent factors for better prediction of prognosis for patients
with ccRCC. Our results suggest a need for further experimental validation studies.

Subjects Bioinformatics, Oncology, Urology
Keywords MicroRNAs, Clear cell renal cell carcinoma, Regulatory network, Bioinformatics
methods

INTRODUCTION
Renal cell carcinoma is one of the most fatal cancers in the genitourinary system in adults
(Siegel, Miller & Jemal, 2018). Its most common subtype is clear cell renal cell carcinoma
(ccRCC) (Cheville et al., 2003). Owing to this malignancy’s recurrence and resistance to
chemotherapy, the mortality among patients with ccRCC remains high(Lane & Kattan,
2008; Rini, Campbell & Escudier, 2009). Therefore, exploration of ccRCC therapies at the
molecular level is urgently needed.
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MicroRNAs (miRNAs) are a recently discovered class of small noncoding RNAs (Tran
& Hutvagner, 2013), most of which are initially transcribed by RNA polymerase II as long
primary transcripts characterized by a hairpin structure. These pre-miRNAs contain stem-
loop structures, a 5′-end cap and a 3′-poly (A) tail (Saj & Lai, 2011), which have been found
to play important roles in various biological functions such as proliferation, differentiation
and apoptosis (Calin & Croce, 2006). miRNAs regulate target gene expression at the
post-transcriptional level in various cancers, such as thyroid cancer (Tang et al., 2018) and
breast cancer (Li et al., 2017).

In recent years, researchers have reported associations between miRNAs and ccRCC
pathogenesis (Braga et al., 2019). For example, miR-381 has been identified as a potential
biomarker that suppresses ccRCC cell metastasis and cell proliferation (Chan et al., 2019),
and the combination of miR-141 and miR-155 has been found to be able to discriminate
ccRCC samples from benign samples (Jung et al., 2009). Qi et al. (2019) revealed that
different stages of ccRCC have distinct miRNA profiles. Furthermore, a three-miRNA
signature was calculated by Luo et al. (2019) as a prognostic biomarker for patients with
ccRCC.

In this study, we downloaded miRNA and gene datasets (three and five, respectively)
and used bioinformatics methods to select differentially expressed genes (DEGs) and
differentially expressed miRNAs (DEMs), which were used for functional and pathway
analyses. We initially performed validation by using data from The Cancer Genome Atlas
(TCGA) and quantitative real-time PCR (qRT-PCR), and we initially performed overall
survival (OS) analysis with TCGA clinical data. To improve prediction, we then established
a nomogram model consisting of has-miR-21-5p, stage and grade. The overall workflow
of our study is illustrated in Fig. 1.

METHODS
Gathering of relevant microarray data
The microarray expression profiling data of miRNAs (GSE16441–GPL8659, GSE71302
and GSE116251) and genes (GSE15641, GSE16441–GPL6480, GSE16449, GSE53757 and
GSE68417) were obtained from Gene Expression Omnibus (GEO; http://www.ncbi.nlm.
nih.gov/geo/). The details of the microarray datasets are provided in Table 1.

Data preprocessing and DEG/DEM analysis
Within each GEO dataset, using the ‘‘Limma’’ package for R v3.5.1, we selected miRNAs
and genes with |log fold change (FC) |>1 and adjusted p-value of <0.05 as DEMs and
DEGs. Three Venn diagrams were constructed with the online Venn diagram drawing
tool Draw Venn Diagram (http://bioinformatics.psb.ugent.be/webtools/Venn/). Genes
found in interactions in at least three gene datasets were considered the primary key DEGs,
whereas miRNAs appearing in more than two miRNA datasets were considered the key
DEMs.
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Figure 1 The flow chart of this study. Except for the steps using online tools (Metascape and miRwalk,
which were mentioned in the figure), most procedures such as data mining, statistical analysis and valida-
tion were achieved by R software (version 3.5.1).

Full-size DOI: 10.7717/peerj.10292/fig-1

Table 1 Basic information of GEO datasets used in this study. In this table, we integrated the basic in-
formation of GEO datasets which we used as primary analysis, including their Accesion ID, the PMID of
researches including these datasets, the platform of these datasets, number of tumor samples and healthy
control samples, and their experiment type.

Accession/ID PMID Platform Number of
ccRCC tissues

Number of
normal tissues

Gene/MicroRNA

GSE15641 16115910 GPL96 32 23 Gene
GSE16441 20420713,

26941587
GPL6480 17 17 Gene

GSE16449 22363672 GPL6480 52 18 Gene
GSE53757 24962026 GPL570 72 72 Gene
GSE68417 26670202 GPL6244 29 14 Gene
GSE16441 20240713 GPL8659 17 17 MicroRNA
GSE71302 26248649 GPL10850 5 5 MicroRNA
GSE116251 30201497 GPL25243 18 18 MicroRNA

Notes.
Abbreviations: GEO, gene expression Omnibus; ccRCC, Clear Cell Renal Cell Carcinoma; PMID, PubMed ID.
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Enrichment analysis of DEGs
Gene ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway analysis were performed in Metascape (Zhou et al., 2019) (http://metascape.org/
gp/index.html#/main/step1). Key DEGs were uploaded to Metascape, and related GO and
KEGG pathway enrichment analyses were performed. The cut-off criterion was set at a
p-value of <0.05, a minimum count of 3 and an enrichment factor (the ratio between the
observed counts and the counts expected by chance) >1.5.

Construction of the miRNA-target gene regulatory network
To determine target genes of the key DEMs and the interactions among them, we
downloaded data from miRWalk (Dweep et al., 2011) (version 3.0; http://mirwalk.umm.
uni-heidelberg.de/). For each miRNA, key DEM–target gene intersection data were
downloaded with standards of ‘‘min-p-value’’ = 1; ‘‘position’’ = 3UTR, 5UTR and
CDS, and three databases (TargetScan, miRDB and miRTarBase) were used. Those target
genes were regarded as candidate genes. The interactions between the candidate genes and
the primary key DEGs were denoted key DEGs within the list; genes targeted by at least
three miRNAs were screened as target nodes, whereas the corresponding miRNAs were
considered source nodes. Cytoscape 3.6.1 was used for visualization of the miRNA–mRNA
regulatory network.

Further validation by TCGA data
On the basis of the expression data and clinical data from the ‘‘TCGA-KIRC’’ dataset,
we constructed Kaplan–Meier plots with the ‘‘survival’’ package in R v3.5.1. We further
selected key DEMs that could be considered independent prognostic factors via univariate
and multivariate Cox regression analyses. We then combined the independent prognostic
miRNAs with stage and grade to generate amodel for better prediction of patient prognosis.
Moreover, two-tailed t-tests were performed on the expression levels of these prognostic
miRNAs to validate whether our results were reasonable. Box-plots were constructed in
GraphPad Prism 7.0.4 for visualization.

Validation by qRT-PCR from clinical specimens of ccRCC
Further validation was performed via qRT-PCR of the four prognostic key DEMs in 15 pairs
of tumor and matched normal tissues (n= 30; the clinical and pathologic characteristics
of these 15 patients are listed in Table S1.

Detailed procedures of this step are described in our previous article (Chen et al., 2016).
The primers for PCR are shown in Table S2. U6 was used as an internal control to normalize
the results. Threshold cycle (Ct) values were calculated after each PCR reaction. Each sample
was tested in triplicate, and the relative quantification equation (RQ = 2−11Ct) was used
for evaluating relative miRNA expression. The expression data of all 15 pairs of ccRCC
samples and matched normal samples are listed in Table S3. This study was approved by
Shengjing Hospital Ethics Committee (2017PS012J).
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Figure 2 Selection of key DEMs and primary DEGs. (A) Selection of key DEMs through the interaction
of more than two datasets; (B) Filteration of primary key upregulated DEGs of by inclusion of DEGs ap-
peard in more than three datasets. (C) Genes which showed up in more than three datasets were regarded
as primary key downregulated DEGs.

Full-size DOI: 10.7717/peerj.10292/fig-2

RESULTS
Screening of key DEMs and primary key DEGs according to
interactions among GEO datasets
A total of 7,022DEGs and 131DEMs (Fig. 2A)were identified.Within theseDEMs,miRNAs
that appeared in more than two datasets, such as miR-21, miR-142-3p, miR-155-5p and
miR-342-5p, were filtered and considered 26 key DEMs (Supplementary file 1). After the
miRWalk 3.0 procedure, 3903 candidate genes were obtained. These candidate genes were
found to interact with 3506 upregulated DEGs (Fig. 2B) and 3516 downregulated DEGs
(Fig. 2C). A total of 167 key upregulated and 140 key downregulated DEGs were obtained.

GO and KEGG enrichment analyses of primary key DEGs
GO analysis results showed that the up-regulated DEGs were significantly enriched in
biological processes including response to wounding, cytokine production, epithelial
cell proliferation, animal organ regeneration and blood vessel development (Fig. 3A).
Downregulated DEGs were significantly enriched in biological processes including kidney
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Figure 3 GO and KEGG pathway enrichment analysis of primary key DEGs. (A & E) The results of
GO biological process analysis of upregulated DEGs and downregulated DEGs. (B & F) The results of GO
cellular component analysis of upregulated DEGs and downregulated DEGs. (C & G) The results of GO
molecular function analysis of upregulated DEGs and downregulated DEGs. (D & H) The results of KEGG
pathway enrichment of upregulated DEGs and downregulated DEGs.

Full-size DOI: 10.7717/peerj.10292/fig-3

development, regulation of neurogenesis, positive regulation of sodium ion transport,
nephron development and regulation of phosphatidylinositol 3-kinase signaling (Fig. 3E).
For cell components, upregulated DEGs were significantly enriched in extracellular
matrix, platelet alpha granule membrane and endoplasmic reticulum lumen (Fig. 3B).
Downregulated DEGs were significantly enriched in bicellular tight junction, axon part,
apical part of cell and receptor complex (Fig. 3F). Moreover, 16 GO molecular function
were over-represented in the upregulated DEGs, including extracellular matrix structural
constituent, growth factor activity, organic acid transmembrane transporter activity,
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Figure 4 Construction of mIRNA-mRNA regulatory network. Construction of regulatory network
consists of miRNAs and mRNAs. Each mRNA was targeted by at least three miRNAs, in this figure, pink
square nodes represent miRNA while mRNAs were showen as blue nodes. Lines in different color meant
the results of different databases (yellow line, miRTarbase; green line, TargetScan; blue line, miRDB).

Full-size DOI: 10.7717/peerj.10292/fig-4

cysteine-type endopeptidase inhibitor activity involved in apoptotic process, and RNA
polymerase II regulatory region sequence-specific DNA binding (Fig. 3C), whereas the
downregulated DEGs were significantly enriched in 18 GO molecular functions, including
small GTPase binding, steroid binding, semaphorin receptor binding cell adhesion
molecule binding and structural constituent of cytoskeleton (Fig. 3G). KEGG pathway
analysis showed that the upregulated DEGs were significantly enriched in the HIF-1
signaling pathway, transcriptional misregulation in cancer and focal adhesion (Fig. 3D).
Downregulated DEGs were significantly enriched in tight junction, Rap1 signaling pathway
and hematopoietic cell lineage (Fig. 3H).

Construction of an miRNA-mRNA network of primary key DEGs and
key DEMs
Target genes were screened with miRTarBase, miRDB and TargetScan. A total of 20
mRNAs, which were targeted by at least three key DEMs, were selected for the construction
of the network. For example, BCL6 had connections withmiR-124, miR-181c andmiR-34a.
The miRNA-mRNA network (Fig. 4) was mapped in Cytoscape 3.6.1.
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Figure 5 Identification of prognostic key DEMs.We operated overall survival analyses of all 26 key
DEMs of ccRCC patieints from TCGA and found four miRNAs that were prognosis-related (miR-21-5p
(A), miR-142-3p (B), miR-155-5p (C), miR-342-5p (D)), these prognostic key DEMs were selected for
next step.

Full-size DOI: 10.7717/peerj.10292/fig-5

Overall survival analysis of key DEMs and construction of a
nomogram model on the basis of TCGA data along with qRT-PCR
validation
Kaplan–Meier plots were drawn on the basis of the survival data downloaded from TCGA.
Four of 26 key DEMs—miR-21-5p (Fig. 5A), miR-142-3p (Fig. 5B), miR-155-5p (Fig. 5C)
and miR-342-5p (Fig. 5D)—were believed to be associated with overall survival (OS) in
patients with ccRCC. According to the results, low expression of miR-21-5p and elevated
expression of the other three miRNAs in patients with ccRCC might lead to poorer OS.

Further validation using TCGA clinical data was then performed with t-tests. The
expression levels of all four miRNAs in tumor tissues were notably different from those
in normal tissues (p< 0.001). The expression levels of miR-21-5p (Fig. 6A), miR-142-3p
(Fig. 6B), miR-155-5p (Fig. 6C) and miR-342-5p (Fig. 6D) were dramatically higher in
tumor tissues. Box-plots were constructed, and the primary data were log2 standardized
to facilitate the visualization of differential expression. Only hsa-miR-21-5p had p< 0.05
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Figure 6 Validation by expression data from TCGA. To validate our results obtained by GEO, we com-
pared the relative expression level of miR-21-5p (A), miR-142-3p (B), miR-155-5p (C), miR-342-5p (D)
in ccRCC tissues and normal tissues by expression profiles of TCGA. We identified that all four DEMs
showed considerable difference. The *** means p< 0.001.

Full-size DOI: 10.7717/peerj.10292/fig-6

in both univariate and multivariate analyses (Table S4). We then built a nomogram model
(Fig. S1) for better prediction. The areas under the model’s three- and five-year OS receiver
operating characteristic curve were 0.759 and 0.714, respectively (Figs. S2A, S2B); the
concordance-index (C-index) was 0.717 (95% confidential interval: 0.713–0.721); and the
calibration curves (Figs. S3A, S3B) showed high agreement between the predicted and
observed OS. Together, these results indicated the accuracy of our nomogram model.
The outcomes of qRT-PCR revealed higher expression levels of miR-21-5p, miR-142-3p,
miR-155-5p and miR-342-5p in ccRCC specimens (Figs. 7A–7D). These findings were
consistent with results based on bioinformatics methods.

DISCUSSION
A total of 233 ccRCC samples and 193 normal control samples were collected from
eight datasets. In aggregate, 26 key DEMs, 167 key upregulated DEGs and 140 key
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Figure 7 Validation by qRT-PCR. To further validate our results, qRT-PCR of miR-21-5p, miR-142-3p,
miR-155-5p and miR-342-5p (Figs. 7A–7D, respectively) were performed, U6 acted as internal control to
normalize the results, Cycle threshold (CT) values were calculated after each PCR reaction. Each sample
was tested in triplicate and the relative quantification equation (RQ= 2−11CT) was used for evaluating
relative miRNA expression. In this figure, the validation results were concordant with those obtained via
bioinformatics methods. In this figure, * is a marker meaning p < 0.05, ** means p < 0.01, and *** repre-
sents p< 0.001.

Full-size DOI: 10.7717/peerj.10292/fig-7

downregulated DEGs were identified from this analysis. Through functional enrichment
analyses, associations between key DEGs in ccRCC with common cancer pathways, such
as tight junction and HIF-1 signaling pathways, were identified. Because various miRNAs
and mRNAs interact with one another, miRNAs were considered to have crucial roles in
all identified key cellular pathways.

Among all these key DEMs, miR-21 (Fritz et al., 2014), miR-34a (Fritz et al., 2015),
miR-124 (Butz et al., 2015), miR-141 (Liep et al., 2016), miR-146a (Yang et al., 2018),
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miR-155 (Zhang et al., 2018), miR-200c (Jiang et al., 2016), miR-210 (Samaan et al., 2015),
miR-224 (Fujii et al., 2017), miR-452 (Liu et al., 2018) and miR-142 (Liu et al., 2010) have
been reported to be correlated with ccRCC. Therefore, our findings are consistent with
those from former studies. This consistency, to some extent, justifies our findings. In
contrast, other miRNAs, including miR-142, miR-342, miR-363, miR-532 and miR-15a,
have not been reported in previous ccRCC studies, although our results suggested their
possible connection with ccRCC. Moreover, on the basis of the data for 506 patients with
ccRCC in TCGA, the group with high expression of miR-155-5p, miR-142-3p and miR-
342-5p showed poorer OS than the low-expression group. In contrast, high miR-21-5p
expression was associated with better survival. Therefore, these miRNAs may serve as
prognostic factors for patients with ccRCC. The differential expression of these miRNAs
was further validated with TCGA database data for 544 ccRCC specimens and 71 normal
kidney tissue samples in the ‘‘TCGA-KIRC’’ dataset. Among them, miR-21-5p acts as a
post-transcriptional repressor of SATB1 expression and is associated with prognosis in
ccRCC (Kowalczyk et al., 2016). Additionally, miR-155-5p has been reported to predict
the recurrence and tumorigenesis of kidney renal clear cell carcinoma. Furthermore, its
potential oncogenic role in renal cell carcinoma tumorigenesis has been confirmed (Zhang
et al., 2018), and increased levels of miR-142-3p can cause loss of function of the tumor
suppressor LRRC2 (Liu et al., 2010). In addition, miR-342-5p overexpression may render
breast cancer cells less proliferative and more sensitive to cellular stress by affecting HER2
downstream signaling, cell motility and mitochondrial stability (Lindholm et al., 2018).
Intensive clinical validation and pathway exploration of these three miRNAs should be
performed to discover novel ccRCC mechanisms.

In this study, 167 key upregulated and 140 key downregulated DEGs were filtered
on the basis of the interactions of target genes for 26 DEMs and DEGs generated by 5
microarrays. A miRNA-mRNA regulatory network was constructed and provided targets
that might potentially be used in evaluating prognosis. miRNA-mRNA integrated analysis
has been applied in several studies, which have reported potential targets as prognostic
and carcinogenetic biomarkers in prostate cancer (Li, Hao & Song, 2018) and colorectal
cancer (Xu et al., 2018). The TCGA validation results indicated that has-miR-21-5p was the
only DEM with meaningful outcomes in either univariate or multivariate Cox regression
analyses. By adjusting factors in the nomogram model, we found that the inclusion of
miR-21-5p in the model increased the area under the curve; therefore, this nomogram
model has better prognostic power than prediction based only on stage and grade. This
model could be applied in clinical use in the future.

This study has several limitations. First, the miRNA and mRNA data were from various
GEO datasets, and the expression in different datasets may have been greatly affected by
the detection methods, researcher skill and specimen status. Moreover, among the three
miRNA datasets we used, GSE16441 and GSE71302 are based on the same microarray,
whereas GSE116251 is based on another microarray. Therefore, technical and chemistry
specific differences might have outweighed differences in biology in the process of DEM
selection. Most samples in this study were from American patients, which may have led to
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a risk of selection bias. Additionally, future in vitro and vivo experiments are needed for
validation.

CONCLUSION
In conclusion, we identified 26 miRNAs that may participate in key pathways including
tight junction and HIF-1 signaling pathways in ccRCC regulatory networks. We found that
higher expression of miR-142-3p, miR-155-5p and miR-342-5p, and lower expression of
miR-21-5p were associated with poor survival in the prognosis of ccRCC. Additionally, a
nomogrammodel composed of independent prognostic factors (has-miR-21-5p, stage and
grade) showed strong prognosis prediction ability. Our results indicate a need for further
experimental studies for validation.
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