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ABSTRACT: Determination of ground-state spins of open-shell
transition-metal complexes is critical to understanding catalytic and
materials properties but also challenging with approximate electronic
structure methods. As an alternative approach, we demonstrate how
structure alone can be used to guide assignment of ground-state spin
from experimentally determined crystal structures of transition-metal
complexes. We first identify the limits of distance-based heuristics
from distributions of metal−ligand bond lengths of over 2000 unique
mononuclear Fe(II)/Fe(III) transition-metal complexes. To over-
come these limits, we employ artificial neural networks (ANNs) to
predict spin-state-dependent metal−ligand bond lengths and classify
experimental ground-state spins based on agreement of experimental
structures with the ANN predictions. Although the ANN is trained
on hybrid density functional theory data, we exploit the method-insensitivity of geometric properties to enable assignment of ground
states for the majority (ca. 80−90%) of structures. We demonstrate the utility of the ANN by data-mining the literature for spin-
crossover (SCO) complexes, which have experimentally observed temperature-dependent geometric structure changes, by correctly
assigning almost all (>95%) spin states in the 46 Fe(II) SCO complex set. This approach represents a promising complement to
more conventional energy-based spin-state assignment from electronic structure theory at the low cost of a machine learning model.

1. INTRODUCTION

Determination of the ground-state spins of open-shell
transition-metal complexes is essential to understanding their
catalytic1−6 and materials7−13 properties. Nevertheless, pre-
diction of spin-state ordering is extremely sensitive to
electronic structure method choice. Correlated wave function
theory methods exhibit limitations in predicting properties of
open-shell transition-metal complexes14−17 and remain cost-
prohibitive for large-scale, high-throughput screening. The
need to explore large chemical spaces in materials design18−23

motivates the use of computationally affordable approximate
density functional theory (DFT). However, ground-state spin
prediction is extremely sensitive to the nature of the DFT
functional employed.24−29 Semilocal, generalized gradient
approximation (GGA) DFT functionals30,31 stabilize delocal-
ized,32,33 strongly covalent states,34 leading to a bias for low-
spin over high-spin states.29,35−39 Hybrid functionals with an
admixture of Hartree−Fock (HF) exchange approximately
correct delocalization errors40,41 and counteract25−27,42−46 the
bias for low-spin states, but the appropriate fraction of HF
exchange is strongly system-dependent.25−27,47−51 Divergent

proposals have been made to either reduce25,52−54 or
increase26,41,55−57 HF exchange fractions with respect to
common values (i.e., 20−25%) in order to accurately predict
transition-metal complex properties. Still others have advanced
meta-GGAs,17,27,58−60 meta-GGA hybrids,61 or double hybrid
functionals62 as candidates to improve spin-state predictions,
but such conclusions are often limited to the modest data sets
over which the studies have been carried out.
The emerging area of machine learning (ML)-accelerated

high-throughput computational screening20,21,63−75 has led to
exploration of much larger chemical spaces76,77 over which no
one-size-fits-all exchange correlation functional can be
expected to be predictive. Our group has developed
representations70,71 for training ML (e.g., artificial neural
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networks or ANNs) models to predict spin-state ordering to
within sub-kilocalorie per mole accuracy of the DFT training
data70,71,78 and demonstrated the use of these models in the
design of a range of spin-state-dependent catalytic75 and
materials63,70−73,78−80 properties. In evaluating such ML model
predictions, we treated DFT as the ground truth, despite its
limitations in predicting ground-state spin. One avenue we
pursued to overcome challenges associated with DFT
approximations is to train the ML model on a family of
functionals,63,70 providing understanding of which regions of
chemical space are most sensitive27,38 to the DFT functional.
Nevertheless, this approach makes the assumption that a
typical range of functional variation will include the
experimental result, which cannot be guaranteed.
In comparison to energetic spin-state ordering, other

properties such as the spin-state-dependent metal−ligand
bond length are much less sensitive to the exchange-correlation
functional.81−83 Also in contrast to spin-state energetics,
experimental bond lengths can be extracted from available
databases84 of crystal structures for a large number of
transition-metal complexes. The bond length is related to
spin state because high-spin (HS) states populate more
antibonding states than do equivalent low-spin (LS) states,
meaning that the bond length can be a sensitive indicator of
the ground-state spin in midrow transition-metal complexes.
While this difference can be expected to depend on the nature
of the ligand as well as oxidation state and identity of the metal,
we observed27,29,70 the difference in DFT-evaluated HS and LS
bond lengths for midrow complexes to be large in comparison
to their change with DFT functional.
As a motivating example for this work, we first review

observations from a range of transition-metal complexes for
which we previously computed70 hybrid DFT properties (i.e.,
B3LYP) with varied HF exchange (i.e., aHF) fractions. This set
of complexes consisted of homoleptic, mononuclear octahedral
complexes with ligand strengths ranging from weak field (i.e.,
H2O) to strong field (i.e., CO) in complex with d6 Fe(II) or d5

Fe(III) (Figure 1). Over these Fe(II) complexes, an increase or
decrease of aHF by 0.1 from its default value in B3LYP (aHF =
0.2) shifts the HS−LS (here, quintet−singlet) adiabatic
energetic splitting (i.e., ΔEH‑L) predictions by 10−30 kcal/
mol (Figure 1). Vertical spin splitting more relevant in light-
induced spin-state switching will exhibit larger exchange
sensitivity.70 This energetic variation can lead to ground-state
spin reassignment: Fe(II) complexes with phen or cyano
ligands that are LS at low HF exchange become HS when the
admixture is increased (Figure 1). Over this same range of aHF
variation, bond lengths vary far less, and the significantly longer
nature of the metal−ligand bond lengths in HS versus LS states
is preserved across the spectrochemical series (Figure 1). In
cases where structural data are available,84 comparison of
experimental and predicted bond lengths provides an
alternative approach85 to ground-state spin assignment70

(Figure 1 and Supporting Information Table S1). For the
phen or cyano complexes with high functional sensitivity for
energetic ground-state assignment, the bond-length-based
assignment strongly suggests an LS state (Figure 1). Similar
observations hold for Fe(III) complexes (Supporting Informa-
tion Figure S1).
In this work, we curate data sets of thousands of

experimental transition-metal complex structures to demon-
strate the potential of structure-based spin-state identification.
We leverage an ANN previously trained63 to predict spin-state

dependent DFT bond lengths of midrow transition-metal
complexes, exploiting the reduced method sensitivity of
structural properties. Using the relative agreement between
experimental and ANN-predicted HS or LS bond lengths, we
develop a robust approach for ground spin state prediction,
where alternatives (e.g., heuristics or DFT energetics)
commonly fail. We focus our demonstration on Fe(II)/Fe(III)
complexes given their widespread study, but our approach will
be generally applicable for open-shell transition-metal com-
plexes.

2. COMPUTATIONAL DETAILS
We employ an ANN that separately predicts equatorial and up
to two unique axial metal−ligand bond lengths, which was
trained on hybrid DFT bond-length data from refs 70 and 71
and first demonstrated in ref 63. The ANN consists of three
fully connected layers and is trained on a revised
autocorrelation (RAC) representation71 of the transition-
metal complexes (Supporting Information Table S2).
RACs71 are a series of products and differences on the
molecular graph that do not explicitly encode geometric
information, making them a suitable representation with which
we can predict spin-state and oxidation-state-dependent bond
lengths. The hybrid DFT training data used for these models

Figure 1. Properties of homoleptic, octahedral mononuclear Fe(II)
transition-metal complexes with ligands ordered by their field strength
in the spectrochemical series. A schematic of the structure is shown in
inset. Properties shown are evaluated with hybrid DFT (B3LYP, aHF =
0.2, sold lines and circle symbols) along with the range of properties
evaluated at aHF = 0.1−0.3 shown as a translucent shaded region. The
high-spin to low-spin adiabatic spin splitting energy (ΔEH‑L, in kcal/
mol) is shown at top, and the Fe−L bond lengths (in Å) for the HS
and LS states are shown at bottom. Representative Fe−L bond
lengths from crystal structures are shown as gray squares as indicated
in inset legend, and vertical dotted lines are shown to enable
comparison of bond-length-derived spin-state assignment (bottom)
and energetic assignment (top).
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were obtained with B3LYP86−88 using an LANL2DZ effective
core potential89 on the transition metal and 6-31G* on the
remaining atoms with a developer version of TeraChem.90,91

Following conventions in prior work, the HS or LS bond
lengths predicted for d6 Fe(II) are quintets and closed-shell
singlets, respectively, and the d5 Fe(III) HS and LS states are
sextets and doublets, respectively. Intermediate spin states are
neglected due to the higher probability of transitioning
between HS and LS states experimentally.92 The ML model
employed in this work is freely available online as part of the
molSimplify93 code.

3. RESULTS AND DISCUSSION
3a. Curation of a Unique Mononuclear Transition-

Metal Complex Set. We extracted a set of mononuclear
octahedral Fe(II) and Fe(III) complex structures from the
Cambridge Structural Database84 (CSD) through a series of
sequential steps. Overall, this procedure involved the curation
of complexes with the desired coordination and oxidation state,
removal of duplicates, and categorization of whether the
complex was compatible with ANN-based bond length
prediction. Refcodes of compounds obtained at each step of
the procedure along with necessary metadata to interpret the
outcomes of each step are provided in a spreadsheet in the
Supporting Information. This procedure employed both the
Conquest graphical interface to the CSD as well as the Python
application programming interface (API), in all cases applied
to the v5.40 data set with complexes from the November 2018
update.84 The Conquest interface was used to query for
structures containing an iron atom that forms exactly six bonds
with p-block elements (here, the first four rows of groups 13−
17, excluding boron) or hydrogen. The octahedral coordina-
tion environment was enforced by requiring a 70−90° angle
for six angles between ligand-coordinating atom pairs and the
iron and a 140−180° angle for three other angles. Although
polymeric species were excluded, no additional filters were
applied to the quality of the structures, and only compounds
with a single unique, six-letter code were selected, leading to a
set of 12 981 initial complexes (Table 1).

As this query alone does not ensure we obtain only
mononuclear transition-metal complexes, the CSD API was
used to iterate through all components in the selected refcodes.
We identified a component from the crystal structure that had
a single iron center and confirmed that the deposited structure
had either Fe(II) or Fe(III) in its chemical name, producing a
smaller subset of 4862 complexes (Table 1). The CSD Python
API was used to add missing hydrogen atoms to ∼10% (511 of

4862) of the structures and store the revised, mononuclear
transition-metal complex structures in mol2 format, which
preserves user- and CSD-defined connectivity in addition to
the Cartesian coordinates. In 60 cases, the chemical name
contained both Fe(II) and Fe(III), and these complexes were
manually inspected and reassigned to the appropriate oxidation
state based on the components in the full crystal structure in all
but one case, where no unambiguous oxidation state could be
assigned (see Supporting Information).
We next computed the molecular weights of all complexes,

including the added hydrogen atoms where applicable. For any
case where multiple complexes had the same molecular weight,
we used the connectivity recorded in the CSD mol2 file to
compute an atomic-number-weighted connectivity matrix in
which the diagonal was the atomic number (i.e., Z) of that
element, and the off-diagonal elements of bonded atoms i and j
were ZiZj. We compared the determinant of these connectivity
matrices and selected a single unique complex based on having
a distinct Z-weighted matrix determinant. This filtering step led
to 3627 unique complexes that we refer to as the UO set, with
slightly more Fe(II) cases (2179) than Fe(III) (1448, see
Table 1).
In addition to this set of unique complexes, we curated a

subset we refer to as ANN-compatible (AC). Specifically, our
ML model for bond length prediction63 was trained on
complexes with a symmetric equatorial ligand field and up to
two unique axial ligands. To select a subset of CSD complexes
most likely to be amenable to ANN predictions, we searched
for whether an equatorial plane could be identified in the
transition-metal complex that contained the same metal-
coordinating-atom element identities. To assign the equatorial
plane (and axial positions), we performed a series of physically
motivated steps designed to be repeatable across the CSD with
a hierarchy of rules (Supporting Information Text S1). In brief,
high-denticity (i.e., tetradentate) ligands or highest molecular
weight planes were selected to be the equatorial plane first. If
following this rule did not ensure the same element for the
coordinating atoms in the equatorial plane but an alternative
plane could be selected that did, then the equatorial plane was
reassigned to that alternative plane. After this step, 2201
unique complexes could be identified as ANN-compatible
(Table 1). These complexes were then filtered further to
eliminate extreme outliers in which the difference of equatorial
metal−ligand bond length in the equatorial plane exceeded
0.15 Å in the most symmetric plane or up to the 0.20 Å in the
selected equatorial plane (i.e., where multiple planes had four
identical coordinating atoms). These additional filters
produced a final AC set of 2037 complexes (Table 1 and
Supporting Information Figures S2 and S3). The AC
constraint on the UO set eliminated a higher fraction of
Fe(III) than Fe(II) complexes (60% vs 34%, Table 1).
Nevertheless, overall properties of the UO and AC sets, such as
the wide distribution of molecular weights of complexes in the
UO set, were similar for both Fe(II) and Fe(III) complexes
(Supporting Information Figures S4 and S5).

3b. Analysis of Transition-Metal Complex Structural
Trends. We evaluated properties of the curated CSD data sets
to identify if patterns emerged in the bond length distributions
of experimental data that could enable heuristic spin-state
assignment. For this analysis, we first focused on a subset of
complexes in which all coordinating atoms are the same
element in order to simplify effects of strongly mixed ligand
fields (e.g., the trans effect94,95), which we call the

Table 1. Subsets from the CSDa

filtering criterion name all Fe(II) Fe(III)

Fe with 6 bonds in angle range 12 981
Fe(II) or Fe(III) with nonmetals 4862 2865 1997
Unique octahedral structures UO 3627 2179 1448
eq plane element symmetry 2201 1558 643
eq plane bond length distortion
outliers removed

AC 2037 1447 590

Same coordinating atom element HE 1316 969 347
N and one other element NX 580 369 211
aDescription of filtering steps applied to obtain unique Fe(II) and
Fe(III) mononuclear octahedral complexes as well as subsets for
analysis, with names where appropriate.
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homoelemental (HE) set. A majority of all 3627 unique
complexes obtained from the CSD (i.e., the UO set) satisfy
this criterion, and the majority of the 2037 complexes we
retained as AC are also in this HE set (Supporting Information
Tables S3 and S4). This is in part due to the greater geometric
symmetry in complexes with greater ligand-coordinating atom
symmetry as well as the fact that fewer unique complexes
contain a high number of distinct coordinating elements
(Supporting Information Figures S2 and S3 and Tables S3−
S6).
In total, 969 Fe(II) and 347 Fe(III) complexes comprise the

HE data set (Table 1 and Supporting Information Figures S6
and S7). The coordinating elements are predominantly 2p
elements (i.e., C, N, or O), but some complexes with heavier
elements (i.e., P, S, or As) are also present (Supporting
Information Tables S3 and S4 and Figures S6 and S7).
Notably, few halide complexes are observed due to the strong
negative charge (i.e., −3 or −4) on such HE complexes
(Supporting Information Figures S6 and S7). Over the HE
complexes, we observe significant variation in the metal−ligand
bond lengths by elemental identity, some of which could be
anticipated on the basis of spin-state-dependent bonding
(Supporting Information Figures S6 and S7). The largest
variations are between elements, following trends of the
underlying covalent radii that are clearest for comparisons
within a period (e.g., O: 0.62 Å vs S: 1.05 Å leads to 1.9−2.3 Å
in Fe−O bonds vs 2.2−2.7 Å in Fe−S bonds, Supporting
Information Figures S6 and S7 and Table S7). This
observation of strong dependence on the ligand-coordinating
atom identity holds across metal−ligand bond lengths if we
expand to consider all 2037 AC complexes or even all 3627
UO complexes (Table 1 and Supporting Information Figures
S8−S11).
Thus, we focus for our analysis on a scaled metal−ligand

bond length, drel(Fe−X), evaluated relative to the sum of
covalent radii of each ligand element, X, with iron.

− = −
+

d
d
r r

(Fe X)
(Fe X)

rel
Fe X (1)

Prior analysis96 of experimental structures suggested that
appropriate LS and HS Fe covalent radii are 1.32 and 1.52 Å,
respectively (Supporting Information Table S7). We use an
average value for Fe of 1.42 Å in eqn 1, which means that a
drel(Fe−X) of 0.95 should correspond to an LS state, whereas a
value of 1.05 should correspond to an HS state regardless of
the ligand’s coordinating element (Supporting Information
Table S7). Indeed, expected patterns in ligand-field depend-
ence of spin-state ordering emerge when relative metal−ligand
bond lengths of complexes are compared (Figure 2 and
Supporting Information Figure S12). The nominally strong-
field, C-coordinating Fe(II) complexes (N = 11) are well
below the low-spin relative bond length cutoff (i.e., 0.95), with
similar observations for the small number of pnictogen
complexes (Figure 2 and Supporting Information Figure
S12). Conversely, typically weak-field oxygen Fe(II) complexes
(N = 45) approach or exceed the high-spin cutoff,
predominantly centered around relative metal−ligand bond
lengths of 1.02 (Figure 2). Interestingly, N-coordinating
species (N = 902), known for their potential as spin-crossover
complexes,92 exhibit a bimodal distribution, with one peak
closer to the HS cutoff and the other closer to the LS cutoff.
More surprisingly, the few S-coordinating Fe(II) complexes (N

= 7) in the HE set also span a wide range of bond lengths
(Figure 2).
Similar trends hold in Fe(III) complexes, although the

increase in relative metal−ligand bond length from C-
coordinating to O-coordinating species is less significant
(Supporting Information Figure S12). Because of variations
in available data set size, bimodal distributions are generally
most evident in the larger UO or AC sets of Fe(II)/Fe(III)
complexes for the specific cases of Fe−N or Fe−S bonds
(Supporting Information Figures S8−S11). Overall, it appears
that the multiple-peak nature of the observed relative bond-
length distributions may facilitate spin-state classification, but
the width and overlap of these peaks may complicate the use of
heuristic cutoffs.
To identify the extent to which relative metal−ligand bond

lengths can be used for spin-state classification beyond the HE
set, we expanded our evaluation of structural properties to a
new subset of the 2037 ANN-compatible complexes that
contain up to two coordinating elements. Given the
observation that relative metal−ligand bond lengths in Fe(II)
N-coordinating complexes exhibit a bimodal distribution, we
collected all AC Fe(II) and Fe(III) complexes that were
coordinated by nitrogen and at most one other element (NX
subset, Table 1 and Supporting Information Tables S8 and
S9). This NX subset contains 369 Fe(II) and 211 Fe(III)
complexes in which either N or the X element is the
coordinating species in the equatorial plane (Table 1 and
Figure 3 and Supporting Information Figure S13). On the basis
of the satisfaction of heuristic cutoffs, we would expect to be
confident in the classification of the ground-state spin of NX
complexes as HS or LS if both drel(Fe−X) and drel(Fe−N)
values are over 1.05 or under 0.95, respectively.

Figure 2. Normalized histograms of relative iron−ligand-atom bond
lengths for 965 mononuclear octahedral Fe(II) complexes in the HE
subset, with the coordinating element indicated in the upper left
corner of each panel. Each relative Fe−X bond length is obtained with
respect to the sum of covalent radii of Fe and the ligand atom, X, and
the value for each element is indicated in the bottom right corner of
each panel. The total number of complexes used to compute each
histogram is indicated in the top right corner of each panel, and all six
bond lengths in the complex are used to construct the normalized
histogram. Vertical dotted lines indicate 0.95 and 1.05 relative bond
length thresholds to nominally indicate LS or HS character,
respectively.
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Indeed, over 118 Fe(II) or Fe(III) complexes, all but one of
the strong-field N/X (X = C, P, As) complexes exhibit low
relative metal−ligand bond lengths for both coordinating
species (Figure 3 and Supporting Information Figure S13).
From this analysis, it can be concluded that structures with this
combination of elements in the primary coordination sphere
are unlikely to have HS ground states. For other cases, the
picture is less clear. The halide-containing NX complexes
exhibit a smooth variation of relative metal−ligand bond
lengths that defies expectations of their role as weak-field
ligands (Figure 3 and Supporting Information Figure S13). For
mixtures of nitrogen coordination with other weak-field
elements (e.g., O or S), a continuum of relative metal−ligand
bond lengths emerges, with some structures approaching high-
or low-spin thresholds but many residing between the two
limits (Figure 3 and Supporting Information Figure S13).
Furthermore, metal−ligand bond lengths can be relatively long
for one element and short for another, confounding cutoff-
based spin-state assignment (Figure 3 and Supporting
Information Figure S13). The limits of cutoff-based assignment
even on the NX subset thus motivates comparison to ANN
predictions that can independently predict equatorial and axial
bond lengths all while encoding more nonlocal information71

about the ligand chemistry’s role in metal−ligand bond length.
3c. Structure-based ANNs for Experimental Spin-

State Classification. We developed a spin-state classification
procedure that uses an ANN previously trained63 on geometry-
free representations71 for metal−ligand bond length predic-
tions in order to overcome the limitations of heuristic cutoffs
for spin-state prediction. As previously described, the ANN
predicts one equatorial bond length and two independent axial
bond lengths to sub-picometer accuracy on set aside test

partition of the DFT data.63 The assumption of high symmetry
in ANN predictions mirrors that of the underlying training
complexes, which had an equatorially symmetric ligand field
with up to two unique axial ligands. The AC subset constrains
the equatorial ligand field to contain only one coordinating
element, which leads to reduced overall asymmetry with
respect to the UO set (Supporting Information Figures S2, S3,
and S14−S17). Nevertheless, the ligand chemistries in the AC
set still may have a higher degree of asymmetry than the
original training data (see Supporting Information).
To carry out spin-state classification, we developed two

quantitative metrics to assign spin state based on agreement
between experimental CSD values and those predicted by the
ANN. If the CSD bond lengths were greater than the HS ANN
prediction values or shorter than the LS ANN prediction
values, then the spin state was assigned as HS or LS,
respectively; otherwise, it was not assigned by this metric. One
equatorial bond (eq) and two axial bonds (i.e., ax1, ax2) are
compared between the CSD and ANN, but we reweighted
them to reflect the four equatorial bonds in an octahedral
complex and compared the difference between the CSD and
HS or LS ANN predictions:

Δ ‐ = −

+ −

+ −

d d

d d

d d

(CSD ANN)
2
3

( )

1
6

( )

1
6

( )

CSD,eq avg ANN,eq

CSD,ax1 ANN,ax1

CSD,ax2 ANN,ax2 (2)

We also computed a reweighted root mean squared
difference (RMSD) of the bond lengths between the CSD
and the ANN as

‐

= − + −

+ −

d d d d

d d

RMSD(CSD ANN)

(
2
3

( )
1
6

( )

1
6

( ) )

CSD,eq avg ANN,eq
2

CSD,ax1 ANN,ax1
2

CSD,ax2 ANN,ax2
2 0.5

(3)

For all complexes, we chose a spin-state assignment from the
ANN prediction (i.e., HS or LS) with the lower RMSD (i.e.,
from eqn 3) to the CSD structural properties. For the majority
of cases where both assignments were made, the two criteria
led to consistent spin-state assignment. In a small number (22
Fe(II) and 11 Fe(III)) of exceptions, where two assignments
were made but contradicted each other, we removed any spin-
state assignment and instead labeled them as “ambiguous”.
When spin states were only assigned based on the second
criterion, we provided the distinguishing classification that
these structures are “between” the LS and HS ANN prediction
limits.
Finally, we developed a metric based on the RMSD

quantities to provide an estimate of the uncertainty for the
ANN-derived spin-state predictions. We computed the RMSD
between the HS and LS ANN bond-length predictions with
weights as in eqn 3. Our composite uncertainty score is the
RMSD of the CSD to the closest ANN prediction divided by
the RMSD of the two ANN spin-state predictions.

Figure 3. Fe−N vs Fe−X (X indicated according to inset legend)
bond-length ratios computed relative to the sums of covalent radii for
mononuclear octahedral Fe(II) complexes: Cl, Br, or I halides (top
left), O (top right), P or As pnictogen elements, and C (bottom left),
and S (bottom right). Ratios of 0.95 and 1.05 are indicated by gray
dotted lines. Circle symbols indicate cases where N is the majority
coordinating element (i.e., equatorial plane and up to one of the axial
positions), whereas square symbols reflect the reverse cases. The Fe−
N, Fe−X pair is computed from the average of all bonds of that type
in the complex. The total number of cases is indicated in the legend.
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=
‐ ‐

‐

uncertainty
min(RMSD(CSD ANN ), RMSD(CSD ANN ))

RMSD(ANN ANN )
HS LS

HS LS
(4)

This quantity is large if CSD versus ANN agreement is poor
for both candidate spin states or if the structure is relatively
spin-state independent according to the ANN model. We thus
selected uncertainty scores less than or equal to 0.5 as a cutoff
for high confidence in ANN-derived spin-state assignments.
Many Fe(II) and Fe(III) complexes have uncertainty scores
below 0.5, although a long tail of high uncertainty scores is
observed due to contributions from both poor ANN−CSD
agreement and low spin-state sensitivity of ANN predictions
(Figure 4 and see Supporting Information).
Using the final qualitative spin-state assignment and the

uncertainty score, we then classified overall spin states for
structures in the AC set as definitively HS or LS if they satisfied
the uncertainty score cutoff (Supporting Information Table
S10). For the remaining complexes that did not satisfy the
uncertainty cutoff, if the CSD value was above or below the
relevant spin-derived ANN prediction, we classified these
complexes as leaning LS or HS, respectively, to reflect reduced
confidence (Supporting Information Table S10). Finally, both
the ambiguous cases identified earlier as well as any cases both

between the two ANN prediction bounds and above the
uncertainty cutoff were classified as complexes with unsure
spin states (Supporting Information Table S10). In total, we
assign 78% of Fe(II) and 90% of Fe(III) complexes (Figure 4).
A subset of 862 (602 Fe(II) and 255 Fe(III)) complexes (ca.
40% of the full set) have confident spin-state assignments
(Figure 4). More complexes are expected to be LS for both
Fe(II) (54% vs HS 36%) and Fe(III) (61% vs 18%), although
the frequencies of confident HS and confident LS assignments
are more comparable (Figure 4).
For overall structural properties of the 862-complex subset

with confident ANN-derived spin-state assignments, good
qualitative agreement of CSD and ANN equatorially and
axially averaged bond lengths is observed (Figure 4). Since the
uncertainty cutoff eliminates complexes with the poorest
agreement between the CSD and ANN values, this result is not
particularly surprising. However, this comparison highlights
the extent to which ANN-based assignment can improve upon
heuristic distance cutoffs. The distributions of ANN HS- and
LS-classified bond lengths are similar, with no distinction
between the axial LS or HS distributions and limited clustering
of LS equatorial bond lengths at values lower than those
sampled by HS-classified states (Figure 4).
We return to the HE subset of complexes for which

confident spin-state assignment was obtained to determine if

Figure 4. (top, left) Categorization of ANN-based spin-state assignments for 1447 Fe(II) and 590 Fe(III) complexes in the AC set: confident LS
(red), lean LS (pink), uncertain (gray), lean HS (light blue), and confident HS (blue). (bottom, left) Histogram of uncertainty scores for ANN
predictions on Fe(II) (in green) and Fe(III) (in orange) AC complexes. The 0.5 cutoff used throughout this work is indicated as a gray dashed line.
(right) Comparison of ANN and CSD bond distances (in Å) averaged over the axial bonds (top) and equatorial bonds (bottom) for Fe(II)
(circles) and Fe(III) (squares) complexes on the subset of AC complexes for which spin-state assignment is confident. The LS- and HS-assigned
points are shown in red and blue translucent fill, respectively. A black dotted parity line is shown on both plots.
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the significant overlap in HS and LS bond distances observed
in the greater data set also hold for relative bond distances
when all metal-coordinating bonds are between iron and a
single element. For some elements, only a few data points
remain once we isolate confident spin-state assignment, due
both to their low numbers in the HE subset (e.g., Cl) as well as
poor ANN performance due to their absence from ANN
training data (e.g., As or P, Supporting Information Table
S11). In several of these cases, only one spin state (e.g., LS As
or C) that could be expected based on ligand-field arguments
was assigned (Supporting Information Table S11). We
therefore focus on N- or O-coordinating Fe(II) and Fe(III)
complexes due to the large number of these complexes in the
original HE set and the fact that they correspond to significant
numbers of both HS- and LS-classified spin states after
accounting for uncertainty cutoffs (Figure 5 and Supporting

Information Table S11). Consistent with the greater data set,
the distributions of bond lengths in Fe(II)/O or Fe(III)/O
complexes overlap substantially between LS and HS complexes
(Figure 5). For example, an Fe(II) complex with four
dimethylformamide and two axial tetrahydrofuran ligands
(CSD: CIDLIL97) is confidently predicted (uncertainty: 0.3)
by the ANN to be LS, because its CSD bond lengths (eq avg:
2.13 Å, ax avg: 2.06 Å) are much more consistent with the LS
ANN prediction (eq avg: 2.11 Å, ax avg: 2.01 Å) than the HS
ANN prediction (eq avg: 2.26 Å, ax avg: 2.12 Å, see
Supporting Information). The CSD bond lengths for an HS-
classified Fe(II) ethyl acetate complex (CSD: LIFBUX98) are
similar (eq avg: 2.12 Å, ax avg: 2.13 Å), but an HS state is
confidently assigned (uncertainty: 0.25) because these bond

lengths are much closer to the HS than LS ANN bond-length
predictions (see Supporting Information).
Unlike Fe/O complexes, we observe differentiation of LS

and HS bond distance distributions for Fe/N complexes
(Figure 5). The greatest separation is observed for the Fe(II)/
N cases, although the sample size of confident HS Fe(III)
complexes is significantly smaller than for Fe(II), limiting a
direct comparison of the two oxidation states (Figure 5). None
of the Fe(III)/N high-spin complexes have relative bond
distances above the nominal 1.05 cutoff for HS state
designation, and few of the HS Fe(II)/N complexes do
(Figure 5). Despite differences in the distributions, overlap is
observed between the LS and HS bond lengths for both
oxidation states of the Fe/N complexes (Figure 5).
To this point we have only assessed complexes based on the

ANN-based spin-state classification confidence. We next
consider the extent to which these classifications are consistent
with ground-truth observations (e.g., experimental spectrosco-
py). We carry out this analysis first on representative Fe(II)/N
complexes and then in greater detail in Section 3e. A
representative Fe(II)/N LS complex (CSD: DOQRAC99)
consists of three acetonitrile monodentate ligands along with a
tridentate macrocycle (Figure 6). Our algorithm for plane

selection chooses one acetonitrile ligand and one coordination
site of the tridentate macrocycle to be axial, although the range
of Fe−N bond lengths across the ligands (2.09−2.15 Å) is
relatively small and close to a drel(Fe−N) of 1.0, meaning that
any cutoff-based assignment would fail (see Supporting
Information Table S7). This complex is classified as LS by
the ANN (uncertainty: 0.37) due to very good agreement
between the CSD and the LS predictions for axial bond lengths
and better agreement of the CSD with the LS ANN than HS

Figure 5. Normalized histograms of relative iron−ligand-atom bond
lengths for Fe(II) and Fe(III) complexes in the HE subset with
oxygen coordination (top two panes) and nitrogen coordination
(bottom two panes), as indicated in insets. Only complexes for which
ANN-based spin-state assignment is confident are shown, and the
total count in LS (red translucent bars) and HS (blue translucent
bars) are annotated in inset. Each histogram is individually
normalized, and all six bond lengths in the complex are used to
construct the histogram. Vertical dotted lines indicate 0.95 and 1.05
relative bond-length thresholds to nominally indicate heuristic LS or
HS character, respectively.

Figure 6. Representative LS (left) and HS (right) assignments by the
ANN of two Fe(II)/N HE complexes. The structures of the
complexes are shown at top (left, CSD: DOQRAC, right, CSD:
VILZOH) with stick structures and the iron center shown as a sphere.
Carbon atoms are in gray, nitrogen in blue, hydrogen in white, and
iron in brown. The equatorially and axially averaged bond lengths (in
Å) from the CSD structure (gray circle) are compared to the ANN-
predicted LS (red, triangle down) and HS (blue, triangle up) values.
The 95% and 105% threshold for the Fe−N bond lengths
corresponding to heuristic LS and HS character are shown as dotted
lines for reference.

The Journal of Physical Chemistry A pubs.acs.org/JPCA Article

https://dx.doi.org/10.1021/acs.jpca.0c01458
J. Phys. Chem. A 2020, 124, 3286−3299

3292

https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig6&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.jpca.0c01458?fig=fig6&ref=pdf
pubs.acs.org/JPCA?ref=pdf
https://dx.doi.org/10.1021/acs.jpca.0c01458?ref=pdf


ANN predicted average equatorial bond lengths (Figure 6).
Experimental spectroscopy confirms99 the LS assignment made
by our ANN-based classification.
In prior work, we78 evaluated the ability of an ANN to

predict the HS−LS adiabatic spin splitting, ΔEH‑L, of this same
complex. We had observed78 that the ΔEH‑L ANN strongly
overstabilized (ΔEH‑L = −34.7 kcal/mol) the HS state with
respect to ΔEH‑L from hybrid (i.e., B3LYP86−88) DFT. We
rationalized this poor ΔEH‑L ANN performance by the
significant dissimilarity of the CSD complex to available
training data.78 The hybrid DFT energetics predicted a weakly
HS state (ΔEH‑L = −1.4 kcal/mol), inconsistent with the
experimentally observed ground state, although the two states
are likely nearly degenerate due to the observation of spin-
crossover behavior.99 The correct LS assignment of this
complex that had challenged energy-based prediction models
demonstrates that structure-based classification can provide an
independent corroboration of spin-state assignment, even
when training data are limited or energetics can be expected
to be sensitive to the level of theory used. Our analysis of prior,
energy-based spin-state assignment neglects zero point vibra-
tional energy and the crystal field environment contributions,
which could be considered in future work to more
quantitatively assess the magnitude of energetic errors we
observe with hybrid DFT.
For comparison, we choose a representative HS-classified

Fe(II)/N complex (CSD: VILZOH100) consisting of two
tridentate, substituted pyridinyl ligands with bond distances
(2.08−2.17 Å) relatively comparable to the CSD values in the
previously described LS complex (Figure 6). A heuristic
approach would fail to classify the spin state of this complex, as
the relative bond lengths are intermediate (0.97−1.02)
between the LS and HS cutoffs. Our approach classifies this
structure as HS (uncertainty: 0.47), because the CSD bond
lengths are significantly closer to the HS ANN values (eq avg,
CSD: 2.13 Å vs HS ANN: 2.08 Å) than to the LS ANN values
(Figure 6). Notably, the LS and HS ANN values themselves
are considerably closer to each other in this case than they
were in the LS complex, leading to a higher uncertainty score
(Figure 6). Experimental spectroscopy100 indicates that this
complex has an HS ground state, confirming our ANN
structure-based assignment. Interestingly, this complex is a
methylated derivative of a well-known temperature-dependent,
spin crossover complex (i.e., LS at low temperature).
Experimental characterization showed100 the methylated
complex to be in an HS state at low temperature, suggesting
the importance of the single addition of methyl groups three
bonds away from the metal center. Such subtle effects can be
expected to be easier to quantify with the structure-based ANN
approach than more standard methods such as direct
evaluation of ΔEH‑L with hybrid DFT or an ANN, although
we had not previously evaluated ΔEH‑L for this complex.
Outside of the HE subset, even more complex relationships

are observed in the relative bond distances when multiple
elements are present in the primary coordination sphere, as
exemplified by the NX subset (see Section 3b). We revisit NX
complexes for which confident structure-based spin-state
assignment was possible. We focus on the Fe(II)/N and
Fe(III)/N complexes that are partly coordinated by Cl, O, or S
coordinating atoms due to the significant number of these
complexes in the full NX set as well as the wide range of drel
values that are observed over these sets (see Figure 3 and
Supporting Information Figure S13). Over the subset of all

possible NX (X = Cl, O, or S) complexes, structure-based
ANN classification is confident for 25−50% of the complexes,
independent of oxidation state (Supporting Information Table
S12).
Within the confidently assigned subset, the classified spin

states for N/S complexes are most consistent with expectations
based on heuristic cutoffs of the relative bond distances
(Figure 7). All LS N/S Fe(II/III) complexes have drel(Fe−N)

and drel(Fe−S) close to or below 0.95, with significantly higher
values (drel(Fe−N) = 1.0, drel(Fe−S) = 1.05) for the single HS
N/S Fe(II) complex (Figure 7). Mössbauer spectroscopy101 on
the HS complex (CSD: ZERFEK101) corroborates the
confident (uncertainty: 0.29) structure-based ANN HS
classification, which was made possible by the ANN’s accurate
prediction (HS ANN: 2.54 Å vs LS ANN: 2.31 Å) of
elongated, equatorial Fe−S bond lengths (CSD: 2.58 Å, Figure
7).
The N/Cl complexes have more ambiguous drel values in

comparison to N/S complexes, despite a similar data set size
(Figure 7). Shorter drel(Fe−Cl) values are observed for Fe(III)
complexes regardless of spin state, likely due to stronger
electrostatic attraction than in Fe(II) complexes (Figure 7).
While longer drel(Fe−N) values (i.e., >1.05) are observed for

Figure 7. Fe−N vs Fe−X (X indicated according to inset in each
pane) bond-length ratios computed relative to the sums of covalent
radii for NX subset octahedral Fe(II) (top) and Fe(III) (bottom)
complexes with N/Cl (left), N/O (middle), and N/S (right)
coordinating atoms. Ratios of 0.95 and 1.05 are indicated by gray
dotted lines. Only points for which spin-state assignment is confident
are shown, and triangle down symbols indicate LS, whereas triangle
up indicates HS. The total number with each spin assignment is
shown in the bottom right corner of each pane. The Fe−N, Fe−X pair
is computed from the average of all bonds of that type in the complex.
Three representative HS Fe(II) complexes are shown at top and
correspond to the only symbol that is solid filled with a dark colored
border in each representative pane: N/Cl (left, CSD: POKNEJ), N/O
(middle, CSD: DAQVEZ), N/S (right, CSD: ZERFEK). Structures
are shown as sticks with carbon in gray, nitrogen in blue, hydrogen in
white, chlorine in green, sulfur in yellow, oxygen in red, and iron in
brown.
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some HS-classified Fe(II) complexes, exceptions are also
apparent, and no such trend is observed in the Fe(III)
complexes (Figure 7). We selected as a representative example
the HS Fe(II) N/Cl complex (CSD: POKNEJ102), which has
the shortest HS drel(Fe−N) and a comparable drel(Fe−Cl),
both of which are ∼1.0 (Figure 7). Susceptibility experi-
ments102 were consistent with an HS ground state, confirming
the classification by the structure-based ANN. In comparison,
heuristic distance-cutoff-based assignment of this complex
would not be possible, since the complex has drel values
equidistant between the HS and LS heuristics.
For the largest N/O complex subsets, there appears to be

little separation between the LS and HS drel values (Figure 7).
The few points with short simultaneous drel(Fe−N) and
drel(Fe−O) values of ∼0.95 for both are indeed classified as LS
states (Figure 7). A similar classification of extreme HS points
is more challenging, as LS and HS states have similarly long
(>1.05) drel(Fe−N) values (Figure 7). Most of the points
either have intermediate drel(Fe−N) and drel(Fe−O) values
(i.e., close to 1.0) or have a combination of one long bond type
with one short bond type (Figure 7). Thus, heuristic cutoff-
based assignment of spin states would only be possible for a
small fraction of N/O complexes. As a representative example
HS Fe(II) N/O complex, we selected a complex (CSD:
DAQVEZ103) of a tridentate dicarboxylated pyridine ligand
with water molecules in the three remaining coordination sites
(Figure 7). The average Fe−N and Fe−O bond lengths are
both relatively short (2.08−2.12 Å), likely due to the
overriding influence of the coordinating carboxylates, but
ANN-based assignment provides a confident (uncertainty:
0.16) HS classification (Figure 7 and see Supporting
Information). Despite this unusual structure, magnetometry
experiments on related complexes103 are suggestive of an HS
ground-state assignment, consistent with the structure-based
ANN prediction. Thus, ANN structure-based spin-state
classification shows promise as an alternative to energy-based
or heuristic distance-based spin-state assignment across a range
of complex ligand chemistries.

3d. Curation of a Spin Crossover Complex Set. Given
their frequent study as candidate spin-crossover (SCO)
materials, one of which we discussed in Section 3c, we curated
a broad set of putative Fe(II) SCO complexes. From the
original set of 2865 nonunique Fe(II) complexes, we
performed a series of steps to identify the refcodes most likely
to correspond to experimentally identified SCO complexes.
Specifically, we focused on those deposited at multiple
temperatures believed to correspond to distinct low- and
high-spin states and identified by the authors in the associated
publication as SCOs. The CSD refcodes containing multiple
copies of the same six-letter code with a number appended
were expected to represent structures diffracted at multiple
temperatures. For cases where multiple refcodes were present,
we reviewed every component (i.e., isolated chemical species)
of the CSD crystal structure to identify the one that matched
the original six-letter code Fe(II) structure based on both
molecular weight and connectivity. For the 95 Fe(II)
complexes that satisfied these criteria, the resulting axial and
equatorial bond lengths were then saved for the highest and
lowest recorded temperatures as candidate high- and low-spin
geometries, respectively.
To narrow the results of this query, we carried out text

search and sentiment analysis to narrow the pool of candidate
SCO complexes. We mined titles and abstracts using the
pybibliometrics104/Scopus API package using article DOIs
obtained from the CSD. For titles and abstracts, VADER105

text analysis was performed on sentences containing essential
keywords (i.e., “spin crossover”, “cross over”, or “sco”). We
required that these keywords were not just present but had
positive mentions of SCOs in their titles or abstracts, avoiding
instances where the text was referring to the compound not
being an SCO complex by requiring positive VADER
sentiment. A large number (i.e., 626) of Fe(II) complexes
were identified through the text analysis step, but only 66
complexes were identified in both the temperature-dependent
bond-length extraction step and in this text analysis step.
Finally, to select an ANN-compatible subset of SCO

complexes, we eliminated any cases where the change in spin

Figure 8. (left) Fe−L equatorially averaged bond lengths (in Å) of identified CSD Fe(II)/N SCO complexes: low- and high-T XRD values (red
and blue horizontal lines) are compared to predictions from the ANN for the LS (red diamond) and HS (blue square) states. An example SCO
complex is shown as a stick structure in inset (CSD: BAKGUR), corresponding to the points outlined in gray and highlighted by the gray line.
Atoms are colored as gray for carbon, blue for nitrogen, white for hydrogen, and brown for iron. The CSD values for the equatorially averaged bond
lengths are compared to the ANN-predicted values as shown in the inset table. (right) Overlapping histograms of deviations of ANN-predicted
bond lengths from XRD values (in Å) for low-T (red) and high-T (blue) XRD structures. Structures to the left of the vertical line are classified as
LS, while structures to the right are classified as HS.
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state did not exhibit expected bond elongation from low- to
high-spin either experimentally or predicted by our ANN. We
also eliminated cases that had either low- or high-temperature
structures with high equatorial plane bond distortion (>0.2 Å)
as in our other data set curation steps. Finally, low- and high-
temperature structures with averaged equatorial bond lengths
that differed by less than 0.05 Å were also excluded because
these bonds are nearly identical within the uncertainty
resulting from the resolution of the X-ray diffraction experi-
ment. After all of these steps, we obtain a final set of 46 unique
complexes that both exhibit temperature-dependent equatorial
bond lengths and have been positively noted as SCO
complexes by their authors. Details of candidate SCO
complexes eliminated at intermediate steps are provided in
the Supporting Information.
3e. Analyzing Structure-based Spin State Prediction

on SCO Complexes. To evaluate the promise of the
structure-based ANN to classify experimental spin states, we
analyzed the performance of the approach over all 46 curated
Fe(II) SCO complexes for which both sentiment analysis and
distinguishable, multiple temperature (T) X-ray diffraction
(XRD) structures were available (see Section 3d). All
identified complexes belong to the HE set with nitrogen
coordination, consistent with the tendency92 of Fe(II)/N
complexes to exhibit SCO behavior. Here, we assume the low-
T XRD iron−ligand bond length corresponds to the LS state
and the high-T XRD iron−ligand bond length corresponds to
the HS state, because the LS state is typically enthalpically
favored, whereas the HS state is typically entropically
favored.92 Given the weak separation between HS and LS
axial bond lengths, we focus on the equatorially averaged bond
lengths to quantify differences in the LS and HS CSD
structures (see Figure 4). The difference in the equatorial bond
lengths between low- and high-T XRD structures for the 46-
complex SCO set is large (average: 0.18 Å, range: 0.10−0.22 Å,
Figure 8 and see Supporting Information Table S13).
Individual XRD bond length distributions (LS: 1.93−2.09 Å
and HS: 2.09−2.22 Å) do overlap over the full set,
corresponding in many cases to intermediate (i.e., between
0.97 and 1.02) drel(Fe−N) values (Supporting Information
Table S13).
To perform ANN structure-based spin-state classification on

this set of complexes, we compare the equatorially averaged
bond lengths of the low- or high-T XRD structures to the
predictions of the equatorial bond length from the LS and HS
ANN. Through comparison of the expected ANN bond length
to the appropriate XRD structure (i.e., LS for low-T or HS for
high-T), we observe low discrepancies, especially for the LS
states (avg: 0.027 Å, range: 0.00−0.097 Å, see Supporting
Information Table S13). Larger disagreements observed for
the HS states (avg: 0.070 Å) could be due to the fact that the
DFT bond lengths are obtained at 0 K, but the high-T
structures are solved at higher temperatures (HS: 160−420 K
vs LS: 25−243 K), where thermal corrections to the bond
lengths could be more significant (Supporting Information
Table S13).
To classify spin states based on the low-T and high-T

equatorial bond lengths, we select the spin state corresponding
to the ANN in better agreement with the experimental
structure (Supporting Information Table S13). Over the 92
low- or high-T XRD structures, 96% of structures are correctly
classified by the ANN, with only two low-T and two high-T
structures misclassified (Figure 8). For the small number of

cases for which the ANN incorrectly classifies the spin state,
incorrect classification for the LS states is due to long low-T
bond lengths that are underpredicted by the LS ANN in higher
denticity (i.e., tridentate in RIPZAS106 or hexadentate in
IMANIT107) structures not present in the ANN’s training
data.70,71 The incorrect classification of high-T structures as LS
in two cases occurs when the LS state has a relatively long
bond length and the ANN overestimates the HS elongation,
leading the high-T bond length to be closer to the LS ANN
value (Figure 8 and Supporting Information Table S13).
For the remaining 88 cases, the ANN-based classification is

robust when the bond length of a compound is atypical,
because the ANN encodes significant information about ligand
chemistry. For example, the relevant HS/LS ANN predicts the
equatorial bond lengths of a homoleptic, facial isomer complex
with bidentate methylimidazole/methylideneamino ligands
(CSD: BAKGUR108) to within 0.02 Å for both low-T (2.00
Å) and high-T (2.22 Å) XRD structures (see inset in Figure 8).
The bond length in the high-T structure of a heteroleptic
complex with isothiocyanate ligands (CSD: AKENAF,109 high-
T XRD: 2.09 Å) is comparable to that in the low-T structure of
a homoleptic complex with six monodentate substituted
tetrazole ligands (CSD: YAGYIP,110 low-T XRD: 2.09 Å),
but the two structures are correctly classified as HS and LS by
the ANN, respectively (Figure 8 and see Supporting
Information Table S13). Thus, we expect this low-cost
machine learning model approach to provide a valuable
complement to experimental interpretation in spin-state
assignments, particularly where energetically derived assign-
ments from approximate electronic structure methods are
challenging and time-consuming.

4. CONCLUSIONS AND SUMMARY
Given the challenges associated with predictive spin-state
energetics using widely employed electronic structure methods
(e.g., density functional theory), we have investigated
alternative approaches to assigning the ground-state spin of
experimentally characterized transition-metal complexes. For a
small set of mononuclear octahedral iron complexes in the
spectrochemical series, we observed that metal−ligand bond
lengths were both less sensitive to method choice than spin-
state energetics and also distinguishable between spin states.
These observations motivated a quantitative assessment of the
degree to which experimental metal−ligand bond lengths
could be used for spin-state classification. From a database of
experimentally characterized structures, we curated a data set
of over 3600 unique, structurally characterized Fe(II)/Fe(III)
mononuclear octahedral complexes. Analysis of metal−ligand
bond lengths in subsets of the data suggested trends in distance
distributions that could sometimes be used to assign ground-
state spin. Nevertheless, intermediate bond lengths for many
complexes indicated limits to purely heuristic, distance-cutoff-
based spin-state assignment.
To generalize our approach, we employed an ANN trained

on hybrid DFT data to predict spin-state-dependent metal−
ligand bond lengths. On a 2037 complex subset of Fe(II)/
Fe(III) structures compatible with the ANN, this approach led
to spin-state assignments in 80−90% of all complexes. We
showed how even when ANN and experimental metal−ligand
bond lengths differed slightly, the use of proximity to one of
the two predictions enabled confident spin-state assignment.
Confident ANN ground-state spin assignments were obtained
even when bond distances were paradoxical in comparison to
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heuristic distance cutoffs. These ANN-classified spin states
were corroborated by available experimental characterization
from the literature. In a representative case for which we had
prior hybrid DFT energetics and ANN energetic predictions,
we showed that this bond-length classification approach
reversed the ground-state spin assignment in improved
agreement with experiment. To generalize the approach
beyond the presently ANN-compatible subset, necessary next
steps would be to broaden the ANN’s training data and assess
its ability to predict spin-state-dependent bond lengths in
asymmetric complexes.
To develop a quantitative measure of the promise of our

ANN classification approach, we screened the unique complex
data set with sentiment analysis to extract known Fe(II) SCO
complexes for which multiple spin states had been structurally
characterized. Over these 46 SCO complexes, the bond-length-
based ANN spin-state classification correctly assigned low-T
and high-T XRD spin states in 96% of cases.
In brief, the chief insights and conclusions from this study

were:

• Relative bond length is a valuable measure that enables
distinguishing of spin-state-dependent metal−ligand
chemical bonding.

• An ANN we have trained to predict DFT-level metal−
ligand bond lengths can distinguish differences in bond
length in differing spin states from experimental
structures where any heuristic rules would fail.

• Our ANN succeeds because the RAC featurization it has
learned encodes key aspects of nonlocal ligand chemistry
(i.e., beyond the metal and its direct coordinating
atoms).

• This structure-based approach improved upon DFT-
energetics-assigned ground states and correctly pre-
dicted experimental spin states mined from the
literature.

• In a set of all text-mined Fe(II) SCO complexes, we
correctly assigned 96% of spin states.

Thus, our bond-length-based ANN classification approach
represents a promising complement to energy-based spin-state
assignment from DFT at the reduced cost of ANN model
evaluation. By combining bond-length ML models with
energetic models or DFT predictions, we envision improved
robustness in high-throughput computational screening of
challenging materials spaces.
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