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Recognition of pathogen-derived nucleic acids by host cells is an effective host strategy to detect patho-
genic invasion and trigger immune responses. In the context of pathogen-specific pharmacology, there is
a growing interest in mapping the interactions between pathogen-derived nucleic acids and host pro-
teins. Insight into the principles of the structural and immunological mechanisms underlying such inter-
actions and their roles in host defense is necessary to guide therapeutic intervention. Here, we discuss the
newest advances in studies of molecular interactions involving pathogen nucleic acids and host factors,
including their drug design, molecular structure and specific patterns. We observed that two groups of
nucleic acid recognizing molecules, Toll-like receptors (TLRs) and the cytoplasmic retinoic acid-
inducible gene (RIG)-I-like receptors (RLRs) form the backbone of host responses to pathogen nucleic
acids, with additional support provided by absent in melanoma 2 (AIM2) and DNA-dependent activator
of Interferons (IFNs)-regulatory factors (DAI) like cytosolic activity. We review the structural, immuno-
logical, and other biological aspects of these representative groups of molecules, especially in terms of
their target specificity and affinity and challenges in leveraging host-pathogen protein-nucleic acid inter-
actions (HP-PNI) in drug discovery.
� 2022 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Decoding the detailed mechanisms of infections and immune-
related diseases can be helped by investigating the interactions
between the molecules of the invading species (pathogens) and
the cellular machinery of the invaded (host) organism tasked with
counteracting them. These so-called, host-pathogen interactions
involves the molecules from the pathogen cell called Pathogen-
Associated Molecular Patterns (PAMPs) with those of the hosts
called Pattern Recognition Receptors (PRRs). The interactions
between PRRs and PAMPs enable the host immune system to dis-
criminate between the self and a foreign body before the stimula-
tion of adaptive immunity. PRRs are either present on the surface
or in the interior compartments of various host cell types such as
dendritic cells (DCs), epithelial cells, mast cells, monocytes and
granulocytes [1]. They are primarily germline-encoded receptors
recognizing PAMPs [2], closely associated with danger-associated
molecular patterns (DAMPs) [3]. They are also involved in activat-
ing transcription factors, acting in the regulation of cytokine
expression. There are many different groups of PRRs among which,
the most studied are TLRs, NOD-like Receptors (NLRs) and RLRs, C-
type lectin receptors (CLRs) and AIM2-like receptors (ALRs) [4,5].
These PRRs either recognize PAMPs in the nucleus and cytoplasm
(such as cyclic GMP-AMP synthase (cGAS)–stimulator of interferon
genes (STING) and the RLRs) [6] or an extracellular environment
(such as TLRs) [7–9]. As both of these interactions occur at the
onset of the disease, they are attractive targets for potential pre-
ventive and therapeutic interventions.

The early PRRs recognition of PAMPs is aimed at eliminating the
pathogen, preventing its entry into the host cells and triggering an
adaptive immune response [9]. The PRR-PAMP host-pathogen
interactions trigger a cascade of innate immune response reac-
tions, including kinase pathway activation, production of effector
molecules, and selective transcription factor stimulation. These
events guide the immune system toward mounting either anti-
inflammatory or pro-inflammatory responses [10]. From the
molecular standpoint, PRR-PAMP host-pathogen molecular inter-
actions include proteins, nucleic acids, carbohydrates and metabo-
lites. Of these, protein–protein interactions (PPIs) have been widely
studied and reviewed [11–13]. Host-virus and host-bacteria (mi-
crobe) interactions such as those involving non-coding RNAs and
metabolites have also been well-documented [14–17]. On the
other hand, although many protein-nucleic acid interactions, cru-
cial to the host defence, immune response and pathogen life cycle
have been investigated across different species, the information is
widely scattered and sometimes incoherent. Analysis and in-depth
structure-based understanding of host-pathogen recognition via
pathogen nucleic acid fragments or more broadly their genomic
DNA is generally lacking in the literature. Although the field of
protein-nucleic acid interactions is one of the most actively pur-
sued topics in computational and experimental biology, dominant
studies on the subject have largely focused on host–host dynamics
[18–20].

In this review, we aim to provide a comprehensive overview of
studies on host-pathogen interactions from the perspective of
pathogen nucleic acids and their recognition by host proteins.
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We observed that an extensive body of literature is available that
may provide deep insights into target specificity, systems-level
responses and drug targeting of nucleic acid recognition machin-
ery. Currently, most of it is reported in a focused and domain-
specific manner, making it inconvenient to develop a holistic
assessment, integrating immunological, therapeutic and structural
perspectives. Here, we first provide an overview of the nature of
the interactions and the diseases in which specific HP-PNIs are
implicated. Next, we examine the disease and cellular specificity
of common pathogens and their receptors and the therapeutic
interventions that are available and being actively pursued. We
also survey sequence, structural and expression level studies in
the context of individual interactions and high throughput analy-
sis. Finally, we discuss potential applications and future directions
in the study of pathogen nucleic acid sensing by proteins.

2. Types of HP-PNIs

Given the diversity of the interaction sites that pathogen mole-
cules encounter upon gaining cellular entry, we first review the lit-
erature on the spatial regulation of pathogen recognition.

Nucleic acids (DNA or RNA) are polyanionic molecules. They are
intracellular but upon cell death or injury, they are released to the
extracellular environment and can stimulate or inhibit host
immune response by binding to PRRs. In general, PRRs are protein
molecules that interact with a nucleic acid through different types
of inter-molecular forces. These include electrostatic interactions
(e.g., salt bridges), dipolar interactions (such as hydrogen bonding,
van der waals interactions), entropic effects (hydrophobic interac-
tions) and dispersion forces (base stacking) [21]. Often water mole-
cules also facilitate the binding, for example by screening the
electrostatic repulsion between similar charges on complementary
molecules [22]. The interactions can be sequence-specific (tight) or
non-specific (loose) manner [21,23–25]. Specific protein–DNA
interactions are commonly mediated by an a-helical motif in the
protein that inserts itself into the major groove of the DNA, thereby
recognizing and interacting with a specific nucleotide sequence.
The interactions are typically facilitated by H-bonds and salt
bridges [26]. However, concomitant conformational changes in
the DNA, sequence-dependent kinking, helical dislocation,
untwisting, intercalation, etc., can contribute significantly to this
recognition process [27].

Proteins that recognize DNA act through independently folded
binding domains such as.

� Winged helix-turn-helix proteins, composed of two roughly
perpendicular a-helices linked by a b-turn or loop;

� Zinc coordinating proteins, which entail the tetrahedral coordi-
nation of 1–2 zinc ions with conserved cysteine and histidine
residues in a-helix and 2-stranded b-sheet;

� Zipper type proteins, such as the leucine zipper, which has an a-
helix with a leucine at every 7th amino acid);

� Other a-helix proteins e.g., those using a-helices as the main
binding motif;

� Other b-sheet proteins, which use b-strands as recognition and
binding motifs and
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� b-hairpin/ribbon proteins, which contain small 2- and 3-
stranded b-sheets or hairpin motifs that binds with DNA major
or minor grooves [28].

Interestingly, some non-enzymatic proteins that do not have a
well-defined secondary structural motif use multi-domain sub-
units for DNA recognition. An enzyme is another group of proteins
that recognizes DNA based on their biological function rather than
structure. It mainly uses combinations of a-helices, b-strands, and
loops to form domains such as DNA-recognition domain that reads
sequence, a catalytic domain with the enzyme’s active site; where
applicable, a dimerization domain [27,28].

While the interactions of RNA to proteins are similar to those of
DNA, their complex secondary and tertiary structures provide an
important additional mechanism. At the detailed structural level,
RNA molecule is recognized by RNA-binding modules such as.

� RNA recognition motifs (RRM): a four-stranded anti-parallel b-
sheet with two helices packed in babbab topology and interacts
with 4 nucleotides of ssRNA through stacking, electrostatics and
hydrogen bonding;

� hnRNP K homology domain (KH domain): a three-stranded b-
sheet packed against three a–helices. It recognizes 4 nucleo-
tides of ssRNA through hydrophobic interactions between
non-aromatic residues. Based on its topology it can be further
grouped into two subfamilies, type I (baabba topology) and
type II (abbaab topology);

� Double-stranded RNA-binding domain (dsRBD), with a shape-
specific dsRNA minor-major-minor groove pattern interacting
with the sugar-phosphate backbone;

� Zinc fingers motifs: typically classified based on the residues
used to coordinate zinc, cysteine and histidine. For example,
ZnF-C2H2, which contains nine C2H2 zinc fingers of which fin-
gers 1–3, 5 and 7–9 interact with DNA through hydrogen bind-
ing in the major groove, while fingers 4–6 interact with the 5S
RNA through electrostatic contacts to two RNA loops. Another
group of Zinc Fingers (ZnF-CCCH) has a stacking interaction
between aromatic residues and bases, and

� Sterile alpha motif (SAM domain) has a shape-dependent recog-
nition of RNA stem-loop, mainly through interactions with
sugar-phosphate backbone and a single base in loop [29–35].

In general HP-PNI are affected by neighboring proteins, small
molecules, and physical conditions such as temperature or pH.
Such interactions are important to fully understand the physiolog-
ical processes and pathology of the host, and drug design [21].

When it comes to first line of defense in terms of protein-
nucleic interactions, the The TLR family of receptors is the best
characterized group of PRRs and most of its members can recog-
nize intracellular as well as extracellular pathogen molecules. Most
TLRs have been conserved through evolution [36]. Of these, TLR3,
TLR7, TLR8 and TLR9 can recognize extracellular (pathogen)
nucleic acids in the endosome [37]. Currently, 13 members are
known in the mammalian TLR family [4]. Among those TLR1–
TLR9 are conserved between humans and mice, TLR10 is not func-
tional in mice because of a retrovirus insertion, and TLR11, TLR12
and TLR13 are lost in human genomes [380]. Even though the
specific association between TLRs or other PRRs towards each
pathogen is not fully understood, a broad range of pathways that
they activate have been reported. Studies focused on characteriz-
ing (1) the nature of the immune response towards the types of
involved diseases, (2) sub-cellular location in which the interaction
occurs, and (3) types of pathogen molecules recognized by each
PRR. For example, extracellular CpG-DNA and RNA have been
responsible for the pathogenicity in rheumatoid arthritis, SLE, toxic
shock and bacterial sepsis [38–40]. Blood coagulation under severe
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tissue damage conditions, caused by secreted nucleic acids has
been presented as a possible mechanism of pathogenesis in these
diseases [40].

Apart from the extracellular recognition, host-pathogen interac-
tions also take place in various subcellular locations. The most
studied cytosolic PRRs are DAI, AIM2, protein kinase receptor
(PKR) and the RIG-I [41]. Specifically, TLR3 is reported to recognize
dsRNA [42], TLR7 and TLR8 bind to ssRNA [43,44] and TLR9 identi-
fies DNA-containing unmethylated CpGs [44]. Further DAI and
AIM2 recognize dsDNA while PKR and RIG-I respond to single
and double-stranded viral RNAs [41].

Aberrations arising due to an under-performing PRR-based
recognition system pose a grave threat to hosts against a wide
range of pathogens, whereas their hyperactivity poses a potential
threat of autoimmune diseases [45]. Some nucleic acid-sensing
hyperactivity autoimmune disorders include SLE, Aicardi-
Goutieres syndrome, spondyloenchondrodysplasia, and STING-
associated vasculopathy with onset in infancy [38,46,47]. The roles
of host-pathogen interactions in some of these diseases are
reviewed below.

SLE is an autoimmune disease involving HP-PNIs. TLR7 and
TLR9 have been implicated with stimulation of type I IFNs in SLE
[48]. The role of TLR7 has been clearly established by showing that
its overexpression in lupus in mouse models leads to SLE; its
absence protects from the disease [49]. On the other hand, the role
of TLR9 in SLE is not as well understood. It is known that theTLR9
plays a significant role in SLE by producing auto antibodies in mice
models [50] and its overexpression is observed in SLE patients [51].
However, in contrast to TLR7, deletion of TLR9 in mice results in a
more severe disease phenotype suggesting a protective role of
TLR9 [52]. The exact synergy or competition between TRL7 and
TLR9 and their detailed mechanism of molecular recognition in
SLE is still not fully understood.

Another autoimmune disease involving protein-nucleic acid
interactions is Type-1 diabetes. Among the animal models, studies
have shown that in the transgenic rat, insulin promoter (RIP)-B7.1
or RIP-LCMV mice, administration of TLR3 or TLR7 is required for
stimulation of Type-1 diabetes [53]. Conversely, TLR3 was shown
to protect against the disease occurrence in some studies [54].
TLR9 is also involved in the stimulation of Type 1 diabetes [55].
Again, a complete picture of various TLRs conferring or protecting
from this disease remains to be completely understood.

Another autoimmune disease involving protein-nucleic acids is
Rheumatoid arthritis, mediated by synovial fibroblast’s hyper-
activation [56] in synovial tissues and the overexpression of
TLR3, TLR7, TLR9 together with TLR2 and TLR4 [57,58]. TLR3 and
TLR4 are hyper-activated during the onset and the end stages, indi-
cating their roles in disease pathogenesis [57,59–61]. However, the
role of TLR9 appears contradictory in Rheumatoid arthritis [62],
with TLR9 expression shown to have triggered the disease [63].
Injection of CpG DNA into mice produced an anti-inflammatory
response and prevented arthritis [64,65]. These studies highlight
how TLRs target specific types of nucleic acids to misunderstand
self as a DAMP and how the introduction of a competitive DNA
can intervene in this process.

Inflammatory bowel diseases (IBD) known as Crohn’s disease
and ulcerative colitis in the gastrointestinal tract involve TLR2
and TLR4, wherein TLR3 and TLR9 have a protective role [66,67].
Similar to SLE protection, CpG injections in the murine model
reduce the severity of the disease through a pro-inflammatory
secretion [67].

TLR9 overexpression is involved in the onset of multiple sclero-
sis, characterized by immune response and inflammation that
leads to neuronal injury [68]. Mice models deficient in MyD88 of
the TLR pathways are resistant to experimental autoimmune
encephalitis (EAE) whereas mice deficient in TLR9 develop disease
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with decreased severity suggesting a synergistic role for EAE,
MyD88 and TLR9 [69].

cGAS, is also involved in autoinflammatory diseases [70–74],
with the cGAS-STING pathway triggering an anti-tumor immune
response [75,76]. DNA derived cGAS recognizes endogenous
tumour cells, triggers the cGAS-STING pathway, production of
IFN and acts on CD8+ cells to kill tumour cells [77–79].

In summary, protein-nucleic acid host-pathogen interactions,
are primarily driven by TLRs which are involved in either protect-
ing against or triggering auto-immune diseases due to defective
regulation of the immune system. Treatments may include inject-
ing nucleic acid PAMP-like molecules and blocking the interaction
of TLRs that recognize nucleic acids. The challenge lies in clearly
deciphering the roles of individual TLRs in a disease before we
use them as targets. The critical aspect of characterization is
whether a TLR is protective against or serves as a promoter of
autoimmune response and exact quantification of the conse-
quences of a specific intervention. This leads to the question of
the molecular specificity of PRRs beyond the animal models and
available clinical data. Such issues can best be investigated by look-
ing at the detailed atomic structures of involved molecules in iso-
lation or complexity with their targets. In the next section, we
review the status of knowledge on these very issues.
3. Specificity and structural basis of pathogen nucleic acid
recognition by host PRRs

In the last section, we took a disease-level view of various PRR-
PAMP interactions. At the molecular level, nucleic acids from dif-
ferent pathogens are recognized by endosomal and cytoplasmic
PRRs. Nucleic-acid recognizing PRRs include endosomal TLRs and
cytoplasmic DNA sensors like cGAS, DAI, IFN-c-inducible protein
(IFI16), AIM2 as well as RLRs (RIG-I, Melanoma differentiation-
associated protein 5 (MDA5)) and NLRs. Each PRR recognizes a
specific class of pathogen nucleic acids. For example, TLR3 recog-
Fig. 1. Nucleic acids are recognized by the pattern recognition receptors (PRRs) through
with other proteins, leading to the production of Type-I and Type-II IFNs, inflammatory cy
key adaptors i.e., TRIF (black), MAVS (dark green), MyD88 (brown) and STING (purple). R
(bright green). Common agonist shares same shape.
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nizes dsRNA [80], TLR7 and TLR8 detect viral ssRNA [81,82] and
TLR9 recognizes CpG motifs in viral and non-viral pathogens
[83–85]. Similarly, cytoplasmic PRRs namely RIG-I, MDA-5 and
LGP2 detect dsRNAs, whereas other cytoplasmic DNA sensors rec-
ognize dsDNAs highly specialized nucleic acid sensing PRR, the
TLR13 recognizes a specific sequence in bacterial rRNA giving it a
unique anti-bacterial function [86]. In general, PRR’s actions are
mediated by cell-specific and condition-specific adaptors, leading
to different downstream host defence pathways. A summary of
PAMPs recognizing their respective PRRs, key adaptors involved
in PRRs and their, downstream signaling events issignalling,
cross-talks and response especially some of representative agonist
responses are provided in Fig. 1.

Although TLRs detect different types of PAMPs, most are found
to have a common horseshoe-shaped structure. They are composed
of ectodomain (also called leucine-rich repeat (LRR) domain),
transmembrane domain and Toll/IL-1 receptor (TIR) domain
(Fig. 2). It is actually the extracellular LRR domain that recognizes
the PAMPs, and other ligands directly and hence is used as a drug
target. Transmembrane Typically, the LRR domain is composed of
19–25 tandem copies of LRR motifs that contain the ‘xLxxLxLxx’
as well as ‘xUxxUxxxxUxxLx (U: hydrophobic)’ motif sequences.
Generally, it is 20–30 amino acids long and contains a b-strand
and an a-helix linked by loops, causing the horseshoe-like struc-
ture of the LRR [380]. Other, transmembrane and the intracellular
TIR domains are responsible for the signal transduction. Domain
wise availability of PDB structures for all domains of PRRs in
humanhumans and mousemice are providedlisted in Table 1.
Domain structures need to be listed separately. Although PDB
structures are available for PRRs, the reported crystal data are only
for a single domain or its fragment and does not tell us about the
PRR’s complete folding. We discuss below nucleic acid recognition
by specific TLRs areas known from the literature.

TLR3, an endosomal PRR, recognizes polyinosinic-polycytidylic
poly(I:C). Earlier reports depicted TLR3 as involved in recognition
of viral dsRNA such as reovirus [76], respiratory syncytial virus
key adaptors. Specific adaptors propagate the downstream signalling and cross-talk
tokines and chemokines in the nucleus. Colours of dashed lines represents different
epresentative agonists binding with their targets are shown through different shape



Fig. 2. Schematic representation of TLR structure (Assembled structure of TLR3) with highly conserved nucleic acid (dsRNA) sensing LRRs on TLR surface. A number of Leucine
enriched, so called Leucine Repeat Regions (LRRs) are observed in the ectodomain (extracellular) in all TLRs. LRR-NT and LRR-CT referred to as the N- and C-terminal of the
ectodomain.
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[87], west nile virus [88], dengue virus [89], Influenza A virus [90],
epstein-barr virus [91], hepatitis C virus (HCV) [92] and herpes
simplex virus (HSV) [93]. The TLR3-dsRNA complex has a horse-
shoe shaped structure with dsRNA bound to the amino and car-
boxyl termini on the lateral convex surfaces of the TLR3 ectodo-
mains [94,95]. Synthetic poly(I:C) is an important ligand used to
study this system. A typical structure of poly(I:C) and TLR3 inter-
acting residues and their hydrogen-bond and non-bonded contacts
to dsRNA (<3.35A) are shown in Fig. 3.

In contrast to TLR3, which recognizes dsRNA, TLR7 and TLR8
recognize ssRNA in viruses and certain bacteria, which are also
U-rich [77,78]. Although TLR7 and TLR8 share high sequence sim-
ilarity, TLR7 prefers GU-rich ssRNA whereas TLR8 prefers AU-rich
ssRNA in humans [96] although, interestingly such a behaviour is
not observed in mice. TLR7 and TLR8 contain two ligand-binding
sites. In TLR8, the first site binds U while the second site binds to
an oligonucleotide like UG; both sites are required for activation
of signal transduction [97]. TLR7 is a dual receptor as it can bind
G and U-rich ssRNA. The structures of the ssRNA-binding sites of
TLR7 and TLR8 differ [98]. TLR7 recognizes a 3-mer UUU motif of
a long poly-U ssRNA. Crystal structure of TLR8-dsRNA complex
revealed that it undergoes large conformational changes upon
ligand binding, bringing the carboxyl terminals close to enable
dimerization with TIR domain and stimulate downstream signaling
[99].

The third TLR group with nucleic acid recognition function is
TLR9, which recognizes ssDNA having an unmethylated CpG motif
in bacteria and viruses [100]. TLR9 CpG hexamer motif was first
described as ‘‘RRCGYY”, where R and Y represent purine and
pyrimidine respectively [101]. Following additional fine tuning
by other researchers, the CpG motif, GTCGTT and GACGTT have
been proposed to be the optimal TLR9 ligands for humans and mice
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respectively [102,103]. Notably, TLR9 primarily recognizes the
hexamer consensus sequence of ssDNA [104]. Water-mediated
hydrogen bonding and vanderWaals interaction are required for
the recognition of the CpGmotif by TLR9 although TLR9 also recog-
nizes DNA:RNA hybrids, with the ssDNA isolated from DNA:RNA
hybrids unable to activate TLR9 [105]. Furthermore, TLR9 recog-
nizes the CpG motif in viruses, including Human Papillomavirus
(HPV) [106], Herpes simplex virus (HSV) [107] and also in several
bacteria such as salmonella Typhimurium [108] and Mycobac-
terium tuberculosis (MTB) [109].

Unlike humans, mice express TLR13, an endosomal TLR that
recognizes its ligand in a sequence-specific manner, sensing a
highly conserved bacterial 23S rRNA sequence that contains 50-
GAAAGACC-30 [86,110]. Interestingly, a 13-nt ssRNA derived from
23S rRNA and a viral-derived 16-nt ssRNA, containing the same
sequence that bound to TLR13 and folds into a stem-loop-like
structure that is responsible for activation of TLR13 [111]. Notably,
this sequence is found within a region of RNA targeted by certain
antibiotics, and clinical isolates of Staphylococcus aureus resistant
to these antibiotics are unable to stimulate mouse TLR13 [86].
Overall, TLR13 functions as a sequence- and conformation-
specific PRR [112].

Apart from TLRs, RIG-I, MDA5 and LPG2 receptors are the best-
studied cytoplasmic receptors. The domain structure of most RLRs
consists of a Caspase recruitment domain (CARD) at the N-
terminal, a central ATPase/Dead-box helicase domain and a C-
terminal regulatory domain, with some notable omissions in speci-
fic groups as shown in Fig. 4. For example, in contrast to RIG-I,
LGP2 lacks an N-terminal CARD domain and hence functions as a
regulator in the signalling of RIG-I and MDA5 [113]. Crystal and
NMR structures revealed the presence of a groove within the C-
terminal domain, which represents the ligand binding site



Table 1
List of known PDB structures (A) for all domain of 10 TLRs in Human and Ectodomain of 13 TLRs in Mouse. No structure is available for transmembrane and cytoplasmic domain of
any TLRs in Mouse. (B) for specific domain of other PRRs. ‘‘_” represent the data are not available.

(A) Humans Mouse

TLRs Extracellular Domain Transmembrane Domain Cytoplasmic Domain All-Domain Extracellular Domain

TLR1 6NIH (2.3 Å) _ 1FYV (2.9 Å) _ 2Z81 (1.8 Å)
TLR2 6NIG (2.3 Å) _ 1FYW (3.0 Å) _ 3A7C (2.4 Å)
TLR3 1ZIW (2.1 Å) 2MKA (NMR) _ 7C76 (3.4 Å) EM 3CIG (2.6 Å)
TLR4 3FXI (3.1 Å) 5NAM (NMR) _ _ 3VQ2 (2.4 Å)
TLR5 _ _ _ 3j0A (26 Å) EM _
TLR6 _ _ 4OM7 (2.2 Å) _ 3A79 (2.9 Å)
TLR7 _ _ _ 7CYN (4.2 Å) EM _
TLR8 3W3G (2.3 Å) _ _ _ 4QDH (2.3 Å)
TLR9 _ _ _ _ 3WPF (1.9 Å)
TLR10 _ _ 2 J67 (2.2 Å) _ _
TLR11 _ _ _ _ _
TLR12 _ _ _ _ _
TLR13 _ _ _ _ 4Z0C (2.3 Å)

(B) Human Mouse

Other PRRs Specific Domain Specific Domain
NLR 2NSN (2 Å) CARD Domain4EWI (2.2 Å)

Pyrin Domain
4KXF (3.2 Å) CARD Domain

RIG-I 2LWD (NMR) CARD Domain2QFD (2.7 Å) Regulatory
Domain 3LRR (2.1 Å)
C-terminal Domain5F9F (2.6 Å)
Helicase Domain

6BZH (2.5 Å) CARD Domain3TBK (2.1 Å)
ATPase Domain

CLR 4RWF (1.7 Å) Extracellular Domain _
AIM2 3VD8 (2.0 Å) Pyrin Domain3RN5 (2.5 Å)

Cytoplasmic Domain
2N00 (NMR) Pyrin Domain

MDA5 4GL2 (3.5 Å) RNA binding Domain3B6E (1.6 Å)
Helicase Domain3GA3 (1.4 Å)
C-terminal Domain

6G19 (3.6 Å) RNA binding Domain3TS9 (2.0 Å)
Helicase Domain

LGP2 3EQT (2 Å) Cytoplasmic Domain2w4R (2.6 Å)
Rgulatory Domain

_

DAI 3EYI (1.4 Å) DNA binding Domain
cGAS 6CT9 (2.2 Å) DNA binding Domain4LEV (1.9 Å)

Ctalytic Domain
4O6A (1.8 Å) DNA binding Domain

DHX9 3VYX (2.2 Å) DNA binding Domain _
LRRFIP1 4H22 (2.89 Å) Coiled-coil Domain _
IFI16 3RNU (2.502Å) DNA binding Domain _
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[114,115]. RIG-I, MDA5 and LGP2 recognize different ligands
because of the differences in the residues at the bottom of the
groove. A crystal structure of LGP2-dsRNA indicated that the initial
contacts are made with the 30- OH whereas RIG-I and LGRP2 NMR
data pointed to secondary structural elements in ligand binding
[114].

RIG-I recognizes either viral dsRNA (>200 bp) or a base-paired
region of 18–20 nucleotides with a 50 triphosphate end [116]. Pre-
vious studies reported that in the hepatitis c virus, RIG-I detected
the poly-U/UC motif in the 30 untranslated region whereas in the
50-triphosphate in the case of the hantaan virus [117,118]. Modifi-
cations in the sequences of the RNA ligand stimulate the activation
of RIG-I [119,120]. Next-generation sequencing (NGS) in viral
infection has shown that RIG-I and MDA5 prefer binding to AU-
rich RNAs in viral genomes [121–123]. Structural analysis of RIG-
I indicated that for the recognition of the 50-ppp end of RNA, the
C-terminal binding site of RIG-I must be acidic. MDA5 detects dis-
tinct groups of viral RNAs. It has been shown that some viruses are
specifically sensitive to RIG-I and MDA-5 while others are sensitive
to both RIG-I or MDA5. For example, RIG-I recognizes the New-
castle disease virus, Sendai virus, Influenza virus and Japanese
encephalitis virus and MDA5 detects Picorna viruses like
Encephalomyocarditis virus, and Theiler’s virus. Viruses sensitive
to both RIG-I and MDA5 include the West Nile virus and the Den-
gue virus [124–129]. Previous studies had identified LGP2 as a neg-
ative regulator of RIG-I and MDA5 signalling [130,131]. However,
more recent studies showed that LGP2 positively regulates these
signalling pathways. For example, in LGP2 deficient mice, impaired
4420
type-I IFNs production was observed revealing the role of LGP2 as a
positive regulator [113]. Structural studies have also suggested
that the un-liganded RIG-I and MDA5 have a closed conformation
[131] but ligand binding induces open active conformation that
oligomerizes in an ATP-dependent manner [132].

In contrast to RNA PAMPs, it was initially believed that the DNA
PAMPs are primarily recognized by TLR9 only. However, recent
studies have identified additional cytoplasmic receptors which rec-
ognize either microbial DNA or self-DNA during cell damage lead-
ing to infection and stimulating production of Type I IFNs, Type III
IFNs or IL-1b. For example, DAI [133,134], leucine-rich repeat
flightless-interacting protein 1 (LRRFIP1) [135], RNA polymerase
III [136,137], IFI16 [138], extrachromosomal histone H2B [139],
DNA-PK [140], and MRE11[141] recognize dsDNA to induce type-
I IFNs production. Similarly, DHX9, DHX36 and DDX41 is involved
in recognition of DNA with different microbial specificities [142].
Finally, AIM2 and IFI16 have also been established as recognizing
cytosolic DNA [143,144].

The cGAS-STING is another critical dsDNA-sensing PRR that pro-
vides an innate immune response to infections, inflammations, and
cancers [145,146]. The dsDNA interacts with cGAS in a sequence-
independent manner [147], promoting a conformational change
of cGAS to catalyze the formation of 20,30-cyclic GMP-AMP
(cGAMP). It is a cyclic dinucleotide from ATP and GTP, containing
the phosphodiester linkages of both 20–50 and 30–50 [148]. Acti-
vated cGAS and cGAMP synthase activate the STING, comprising
an N-terminal transmembrane domain with four helices (aa 1–
154), an acidic C-terminal tail (aa 342–379), and a central globular



Fig. 3. Ligand bound ectodomain structure of TLR3. Center panel shows the dsRNA bound to TLR3 at N and C terminals through both its chains (A: brown and B: cyan
respectively). Inset view shows the middle part of the interaction site, whereas residue-wise interactions of N and C-terminals are shown in the left and right-side panels
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Domain structure of RIG-I (925aa), MDA5 (1025aa) and LGP2 (678aa) receptors. Both RIG-I and MDA-5 have similar structures consisting of a CARD domain, RNA
helicase domain and C-terminal domain but LGP2 consists of only RNA helicase and C-terminal domain and lacks CARD domain.
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domain (aa 155–341) [149]. This cytosolic DNA sensing by cGAS-
STING can induce type-I IFNs production, infiltration of T cells
and natural killer (NK) cells [150,151].

Thus, we conclude that cell surface as well as cytosolic nucleic
acid PRRs recognize specific pathogenic genomes. The primary
grouping of these PAMPs and PRRs depends on whether the nucleic
acid is single-stranded, double-stranded, RNA or DNA, methylated
or unmethylated, rich in AU, GU and CpG etc. As we discuss below,
these PAMPs’ specific attributes are crucial for designing therapeu-
tic strategies against pathogen-specific PAMPs.
4. Target recognition, drug design and resistance against HP-
PNI

Invading pathogens often hijack the cellular machinery of the
host cells and subvert their immune system leading to disease
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[152]. Evidence indicates that under many conditions, correcting
the aberrant nucleic acid sensors can be a robust therapeutic inter-
vention [153]. However, obstacles such as drug resistance can arise
[153]. Nonetheless, nucleic acid sensors remain attractive targets
[154]. In Table 2, we have listed some representative agonists
and antagonists, their mechanisms and effect on HP-PNI targets.
Below, we review the status of designing molecular interventions
in nucleic acid PRRs.
4.1. TLR3 pharmacological agents

Multiple drugs have been proposed for targeting host-pathogen
interactions between proteins and nucleic acids. Most prominent
among them is arguably the poly(I:C), a synthetic analogue of
dsRNA used as a TLR3 agonist (a potent adjuvant) that is locally
administered for viral prophylaxis and therapeutic anticancer vac-



Table 2
Pharmacological agents mechanism and effects, targeting nucleic acid sensing PRRs: (A) for agonist and (B) for antagonist. ‘‘_” represent the data are not available.

(A)

Target Agonist Agonist mechanism Agonist effects Other agonist bound
structure

TLR3 Poly(I:C) Recruits NK cells and tumor specific CTL cells through
maturation of DCs; TNF-related apoptosis of tumor
growth.

Therapeutic agent for chronic fatigue syndrome, adjuvant to cancer vaccines,
antiviral response in human immunodeficiency virus

3QOQ (TLR3/C1068)
3ULV
(TLR3/TLR3ecd-2)
3ULU
(TLR3/TLR3ecd-1)3ULS
(TLR3/Fab12)

ARNAX Target immune checkpoint blocker; Promotes cross-
priming of DCs

overcome resistance to agents targeting Programmed cell death in mice

TLR7 Imiquimod
(R-837)

Reverse the local immunosuppression; Induce secretion of
pro-inflammatory cytokines, IFN- a, TNF-a and IL-12

Antiviral agent in cytomegalo virus & herpes simplex virus-2, genital warts,
superficial basal cell carcinoma & actinic keratosis treatment

4QC0
(TLR8/compound53)
4QBZ
(TLR8/compound9)
3W3K (TLR8/CL075)
3W3J
(TLR8/CL097)
6KYA (TLR8/TH1027)
4R07
(TLR8/ORN06)
4R08 (TLR8/ssRNA40)
4R09 (TLR8/ORN06S)
4R0A
(TLR8/uridine)3WN4
(TLR8/DS-877)
6WML
(TLR8/GS-9688)7CRF
(TLR8/CU-CPD107)
5AWC (TLR8/MB-564)
5AWA
(TLR8/MB-568)

TLR8 Motolimod
(VTX-2337)

Improve NK cells ability to mediate antibody-dependent
cellular toxicity

Used in head and neck cancer and in chemotherapy with platinum-resistant ovarian
cancer

TLR7/8 Resiquimod
(R-848)
# 3W3N

Stimulates DCs maturation by IL-12 and other Th1
cytokines; Generate CD8 + T cell responses

Limits viral replication in monocytes isolated from human immunodeficiency virus-
1 infected individuals; treatment of herpes simplex virus-2 infection or hepatitis c
virus infection;

TLR9 Lefitolimod Increase the expression of surface markers, such as CD86,
CD40, HLA-DR, CD169 and CD69 along with cytokines IL-6
and IL-8

Antiviral agent for human immunodeficiency virus-1; suppress IL-33 driven airway
hyperreactivity in mice

5ZLN (TLR9/CpG DNA)

CpG-1018 Induces B-cell proliferation and cytokines production Provide seroprotective responses against hepatitis b virus
Agatolimod Develop the Th2 and Th17 cell responses; Mediate

superior immunostimulatory effects
Adjuvant for prophylactic hepatitis b virus vaccination

RIG-I SB-9200 Culminates in type-I and type-III IFNs secretion and IL-1b
release

Antiviral agents for hepatitis b virus and hepatitis c virus infected patients _

BO-112 Releasing type-I IFN, IFN-c and CD8 + T lymphocytes Used for tumor cell apoptosis; Activate systemic immunity against distant lesions
50-pppRNA
# 3OG8
# 3LRR
# 5F9F

Stimulates the innate antiviral response including IRF3,
IRF7; STAT1 activation

Provide resistance against both RNA (dengue, chikungunya) and DNA (stomatitis,
vaccinia) viruses

cGAS-STING DMXAA
# 4QXR
# 4QXQ
# 4QXP
# 4QXO
# 4LOL

Potent vascular disrupting agent; Induce TNF-a and IFN-b
production

Mediate antiviral activity in hepatitis b and herpes simplex virus infection 7SSM
(hSTING/compound11)
5VDV
(cGAS/compoundF3)
5VDU
(cGAS/compoundF2)

20 ,30-cGAMP
# 4LOJ
# 4LOH

Natural STING agonists; Enhanced type-I IFN signaling,
Cxcl10, Ccl5, and T-cell migration

Effectively used in immunotherapy such as the combination with antigen-specific
vaccinations

ADU-S100
# 7Q3B

Promote PBMC; Generate pro-inflammation cytokines Tumour regressor in B16 melanoma, CT26 colon, and 4 T1 breast cancer murine
models

Note: In this table additional available PDB structures for human and mouse agonist not included in the text are included.
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Table 2 (continued)

(B)

Target Antagonist Antagonist mechanism Antagonist effects Other antagonist
bound structure

TLR3 CNTO2424 Recognize extracellular domain of TLR3; Down-regulates
the production of IL6, IL8, MCP-1 and IP-10

Reduce NFjB activation in sepsis, bowel disease and diabetes etc. _

Compound 4a Competitive inhibitors of dsRNA binding to TLR3;
Repressed the expression of TNF-R and IL-1b

Ameliorate the radiation-induced gastrointestinal syndrome

TLR7 20-O-ribose-methylated
RNA

Abrogates cytokine production; Potent inhibitor of
immunostimulatory RNA

Therapeutic tools for the management of SLE 6LVX (TLR7/Cpd-1)
6LVY
(TLR7/Cpd-2)6LVZ
(TLR7/Cpd-3)6LW0
(TLR7/Cpd-6)6LW1
(TLR7/Cpd-7)6ZJZ
(TLR7/M5049)6V9U
(TLR8/compound17c)
6TY5
(TLR8/compound11)
7R54
(TLR8/compound4)
R53
(TLR8/compound15)
7R52
(TLR8/compound2)
5WYZ
(TLR8/CU-CPT9b)
5WYX
(TLR8/CU-CPT8m)5Z15
(TLR8/CU-CPT9c)5Z14
(TLR8/CU-CPT9a)

TLR8 ODN-1411 Limits the deregulation of cytokines secretion and TNF
production

Reduce disease progression in mouse model of psoriasis and human model of
Rheumatoid Arthritis

TLR9 COV08-0064 (MP-3964) Blocked mRNA upregulation of TNF-a, IL-1b, NLRP3 Effective approach in liver surgeries including transplantation 3WPG (TLR9/
DNA4084)

RIG-I VP35
# 3L26
# 4LG2
# 3KS8

Suppress the DCs maturation followed by impaired
expression of a/b-IFN

May be counteract to ebola virus immune evasion _

Vpg Block the 50ppp RNA motif associated with RIG-I
activation

Block the downstream signaling in mammalian cells as well as in avian cells

cGAS-STING C-176 &
H-151

Bind to Cys91 of STING; Reduced elevated levels of type-I
IFNs and IL-6

Recapitulating autoantibody production; Aberrant T-cell activation in AGS patients 5V8O (cGAS/PF-
06928215)5XZG
(cGAS/RU521)5XZE
(cGAS/RU332)5XZB
(cGAS/RU365)

Astin C Exhibits anti-inflammatory activity; Blocks IRF3
recruitment

Used in STING-mediated cancer and autoimmune diseases

Note: We have mentioned available PDB structures for only human and mouse for antagonist that are not describe in this review.
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Fig. 5. The four critical locations on TLR3-dsRNA complex where TLR3 agonist poly-ICLC are dock (represented by arrows in panel A and their inset views in panel B). These
first to fourth locations refer to C-terminal chain B, C-terminal chain A, N-terminal chain A and N-terminal chain B of the TLR3-dsRNA complex respectively. A two
dimensional poly-ICLC structure with yellow color coding at the center. Both strands of dsRNA are colored red and blue. And, brown and cyan colours correspond to chains A
and B of TLR3.
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cination [155]. However, abundant preclinical data demonstrated
that poly(I:C) is unstable with side effects including shock, renal
failure, hypersensitivity reactions and limited therapeutic efficacy
in early clinical trials with leukaemia patients [156], leading to
the termination of its clinical development (source: http://
www.clinicaltrials.gov). At least two poly(I:C) derivatives have
been attempted to address some of the issues. First, poly(I:C12U)
(rintatolimod or Ampligen) that contains uridylic acid in a
12:1 M ratio in the poly(C) strand for chronic fatigue syndrome
4424
[157], and shown to reduce the concentration of antiretroviral
agents in human immunodeficiency virus-1 control [158] as an
adjuvant to cancer vaccines in mice [159]. Second, poly-ICLC (Hil-
tonol) is stabilized with poly(l-lysine) and carboxymethylcellulose
[153]. Poly(I:C) has been shown to have a significant potential to
boost the immune system [160–162] by mediating antitumor NK
cell and tumor-specific cytotoxic T lymphocyte (CTL) activities
through maturation of DCs [163–165]. Therefore, Clinical trials
suggested its effectiveness in combination with cancer vaccines

http://www.clinicaltrials.gov/
http://www.clinicaltrials.gov/


Fig. 6. The interactions and key residues of TLR3 and important nucleic acids positions of dsRNA at four locations of the binding pocket in TLR3-dsRNA complex. Purple
arrows illustrate hydrogen bonds (distance closer than 2.5 Å) between Poly-ICLC and TLR3-dsRNA complex.
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and chemotherapeutics for haematological conditions [166,167],
solid malignancies [168–170], brain [171,172] and antiviral
responses in human immunodeficiency-1-positive individuals
[173]. Since, TLR3 is frequently expressed by various types of
malignant cells and can directly trigger tumor cell apoptosis,
poly(I:C) has been used to induce potent anti-tumor activity
against various tumors [379]. Along these lines, it has been
reported that poly(I:C) inhibits tumor growth in a TNF-related
apoptosis inducing ligand (TRAIL)-dependent manner [174]. Both
(poly(I:C12U) and poly-ICLC) favour cross-priming in human and
mouse experimental systems [146,147]. Clinically, poly(I:C) has
been used as an adjuvant to enhance cancer vaccine protocols
[175]. Even though poly(I:C) was downgraded as a candidate drug
for TLR3-targeted treatments, if suitably remodeled, it may emerge
as a promising candidate in the future. Both (poly(I:C12U) and
poly-ICLC) favour cross-priming in human and mouse experimen-
tal systems [176,177]. Clinically, poly(I:C) has been used as an
adjuvant to enhance cancer vaccine protocols [175]. Even though
4425
poly(I:C) was downgraded as a candidate drug for TLR3-targeted
treatments, if suitably remodeled, it may emerge as a promising
candidate in the future. Our in silico docking study (previously
unpublished) suggested that poly-ICLC can bind to both TLR3 resi-
dues and dsRNA bases at four different locations. These are the
locations where dsRNA electrostatically interacts with TLR3
[178]. Potential interactions of TLR3 with its ligands have been
shown in Fig. 5 and Fig. 6 and the detailed results are presented
in Table 3. Strong binding energy also suggested that it may stabi-
lize the TLR3-dsRNA complex. Another TLR3 agonist, ARNAX (a
novel synthetic DNA–dsRNA hybrid molecule), also promotes
robust cross-priming by DCs. ARNAX with cancer vaccine and a
programmed cell death 1 ligand 1 (PD-L1)-targeting immune
checkpoint blocker overcame resistance to agents targeting pro-
grammed cell death 1 in mice [179].

TLR3 Antagonist CNTO2424 is a monoclonal antibody (mAb)
that recognizes the extracellular domain of human TLR3 in a
conformation-dependent manner and down-regulates poly(I:C)-



Table 3
The docking study provides information regarding the binding free energy and interaction of TLR3 agonist poly-ICLC with TLR3-dsRNA complex at four different locations.

S. No Location of binding pocket Binding energy (kcal/mol) Interacting nucleic acid bases Interacting protein residues

1 C-terminal of Chain B �5.485 U-D:26
U-D:27

LYS:ChainB:467
ALA:ChainB:519

2 C-terminal of Chain A �5.76 A-C:26 ASN:ChainA:494
VAL:ChainA:495
ASN:ChainA:520
ALA:ChainA:519
ASN:ChainA:517

3 N-terminal of Chain A �6.03 None GLH:ChainA:110
HIS:ChainA:156
LYS:ChainA:182
HIE:ChainA:136

4 N-terminal of Chain B �5.17 G-D:4 HIE:ChainB:136
LYS:ChainB:182
GLY:ChainB:158
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induced production of IL-6, IL-8, MCP-1, and IP-10 in human lung
epithelial cells [180]. Additionally, CNTO4685 (rat anti-murine
TLR3) and CNTO5429 (CDRs grafted onto mouse IgG1 scaffolds
from CNTO4685) mAbs were also worked in a similar manner
and reduced poly(I:C)-induced production of CCL2 and CXCL10 in
primary mouse embryonic fibroblasts [181]. The compound4a or
CU-CPT4a was another potent agonist of TLR3, recognized as a
competitive inhibitor of dsRNA binding to TLR3 with high affinity
and specificity. After binding to the target, it repressed the expres-
sion of downstream signaling pathways mediated by the TLR3/
dsRNA complex, including TNF-R and IL-1b. Docking studies
showed that CU-CPT4a forms hydrogen bonds with Asn541 resi-
dues to target asparagine glycosylation and prevent dsRNA binding
to TLR3 in murine macrophage RAW 264.7 cells with an IC50 of
3.44 lM at TLR3-dsRNA interface [182,183].
4.2. TLR7/8 pharmacological agents

Some TLR7 agonists have been used for developing novel antivi-
ral agents [184]. These are mostly imidazoquinoline and adenine
derivatives [185]. Imiquimod or R-837 is a prototypic imidazo-
quinoline that shared resemblance with nucleoside analogue but
lacks the fourth nitrogen atom present in purines. Imiquimod bind-
ing with TLR7 induces secretion of pro-inflammatory cytokines,
predominantly IFN-a, TNF-a and IL-12. This creates a local cyto-
kine milieu biased towards a Th1-type response, with the genera-
tion of cytotoxic effectors [186,187]. Therefore, originally attracted
attention for its antiviral effects in animal models of cytomegalo
virus and herpes simplex virus 2 infection [188] but failed long-
term efficacy trials in patients with standard chemotherapeutic
regimens [189,190]. Imiquimod mediates several therapeutic
effects alone or in combination with other drugs. Another study
reported that imiquimod combined with monobenzone (an ICB
targeting cytotoxic T lymphocyte-associated protein 4) reverses
the local immunosuppression in nivolumab resistant melanoma
patients [191]. This drug has now been approved for the treatment
of some skin tumours involving genital warts, superficial basal cell
carcinoma and actinic keratosis [192].

Another TLR7 agonist is S-28463 that has been shown to reduce
airway resistance, leukocyte infiltration and IgE levels in mouse
models of allergic sensitization to ovalbumin [193].

Motolimod or VTX-2337 is imidazoquinoline-derived agonist,
targeting TLR8 [194]. Motolimod administration to white blood
cells improves the ability of NK cells to mediate antibody-
dependent cellular cytotoxicity [195]. It is currently tested in com-
bination with ICB specific for PD-1 and/or cetuximab in head and
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neck cancer as well as together with durvalumab plus chemother-
apy in women with platinum-resistant ovarian cancer.

Resiquimod (also known as R-848) and CL075 are other agonists
that target both TLR7 and TLR8. In vitro studies have demonstrated
that resiquimod stimulates DC maturation by inducing a Th1 cyto-
kine profile. This leads to a more efficient cross-presentation of
exogenous antigens and stronger antigen-specific CD8+ T cell
responses [187,196]. It also favors IL-12 secretion and limits the
viral replication in monocytes isolated from human immunodefi-
ciency virus-1-infected individuals [197]. Resiquimod is currently
in phase II clinical trials and has been proposed for the treatment
of patients with herpes simplex virus-2 or hepatitis c virus infec-
tion [198]. Accumulating evidence indicates that Resiquimod acts
as immunological adjuvant and can be combined with peptide-
based vaccines such as recombinant cancer/testis antigen 1B
(CTAG1B or NY-ESO-1) to CD8+ cytotoxic T lymphocyte responses
against melanoma, or can be used to reverse immunosuppression
in cervical carcinoma linked to human papillomavirus 16 infec-
tions [199].

TLR7 antagonists can be generated through a robust chemical
approach using 20-O-ribose methylation in the sense or anti-
sense strand [200] or selective incorporate into siRNA which abro-
gates cytokine production without reduction of gene silencing
activity [201] and therefore, acts as a potent inhibitor of immunos-
timulatory RNA in both human and murine systems and used as a
therapeutic tools for the management of SLE [202]. The ODN-1411
is TLR8 antagonist that competitively binds to its ectodomain. It
limits the deregulation of cytokines secretion and TNF production
in human models of Rheumatoid Arthritis [203] and decelerates
disease progression in mouse models of psoriasis [204].
4.3. TLR9 pharmacological agents:

TLR9 has been targeted by potent antiviral agents that may act
via viral interference or immunostimulation [184,205]. One such
synthetic immunomodulatory oligonucleotide (IMO) is tilso-
tolimod (IMO-2125), which incorporates cytosine or guanine ana-
logues and shows increased stability, species-independent activity
and a clear structure activity relationship. It has been evaluated in
clinical trials for toxicity in severely hepatitis c virus-infected
patients resistant to recombinant IFNa [206]. Another TLR9 agonist
is lefitolimod, a CpG-rich ODN with a covalently closed dumbbell
shape structure and also known as MGN1703. According to struc-
tural and preclinical studies, MGN1703 showed limited interac-
tions with molecules outside its target structure [207]. Although,
MGN1703 significantly increased the expression of surface activa-



A. Jain, S. Mittal, L.P. Tripathi et al. Computational and Structural Biotechnology Journal 20 (2022) 4415–4436
tion markers, such as CD86, CD40, HLA-DR, CD169 and CD69, as
well as the release of a variety of cytokines and chemokines,
including IFN-*, IFN-*, IL-6, and IL-8 [208]. MGN1703 was investi-
gated in combination with chemotherapy or immunotherapy in
cancer patients [209–211]. Only a single clinical study has tested
lefitolimod as an antiviral agent for human immunodeficiency
virus-1-positive patients treated with human immunodeficiency
virus-1-specific antibodies. It indicates that this drug is safe even
as it induces robust virus-specific humoral and cellular immunity
and prolonged control of viraemia [212]. It was further confirmed
to efficiently suppress IL-33-driven airway hyperreactivity in mice
[213]. Furthermore, MGN1703 was evaluated as an adjuvant for
the treatment against infectious diseases [187].

One of the most important TLR9 agonists that were formulated
in licensed vaccine (Heplisav-B) for Hepatitis B is CpG-1018,
derived from nucleotide backbone sequence modification of CpG-
ODN to produce immunostimulatory activity. CpG-1018 is a type
B CpG-ODN that contains a phosphorothiolate backbone through-
out their entire sequence with one or several CpG-hexamer motifs
[214,215]. It induces strong B-cell proliferation, cytokines produc-
tion, and has some effect on the maturation and activation of plas-
macytoid DCs, monocytes, and NK cells [216–218]. Administration
of two doses of heplisav-b induced higher seroprotective responses
against hepatitis b virus with a faster onset rate compared with the
administration of three doses of Engerix-B vaccine with similar
safety profiles [219,220].

Agatolimod (CpG-7909 or PF-3512676) is another synthetic
CpG-rich ODN tested as an adjuvant for prophylactic hepatitis b
virus vaccination [221]. It is wrapped with non–agonistic ligands
for DC receptors such as C-type lectin domain containing 7A
(CLEC7A) that mediate the superior immune stimulatory effects
and develop the Th2 and Th17 cell responses [222] while clinical
development of agatolimod as an anti-cancer agent has been dis-
continued (source https://www.clinicaltrials.gov).

TLR9 antagonist COV08-0064 (MP-3964) limited neurodegener-

ation in mice exposed to Parkinson’s disease [223] (source: http://

www.clinicaltrials.gov).
Also, selectively blocked mRNA upregulation of TNF-a, IL-1b,

NLRP3 and MCP-1 in macrophages and IFN-b mRNA in dendritic
cells induced by the TLR9 agonist CpG-ODNT. This leads to inhibi-
tion of JNK and ERK phosphorylation. TLR9 signaling inhibition by
COV08-0064 may be an effective approach in liver surgeries
including transplantation [224].
4.4. RLRs pharmacological agents

Several agonists have been developed to target RLRs. Some have
effectively cleared the clinical trials and were used for the treat-
ment of severe diseases. Mostly, RIG-I agonists are being explored
in a diverse range of cancers. RIG-I activation in cancer patients
could stimulate three distinct immune responses: 1.) direct activa-
tion of tumor apoptosis and pyroptosis that is programmed necro-
sis; 2.) IFNs and cytokine-mediated activation and maturation of
macrophages, DCs, natural killer cells, and 3.) increased recruit-
ment and cross priming of adaptive immune effectors e.g.
CD8 + T-lymphocytes and enhanced activity of APCs [225–227].

The SB-9200 (inarigivir soproxil or GS-9992) is an orally avail-
able prodrug of a dinucleotide agonist that targets RIG-I with
cytosolic PRR nucleotide-binding oligomerization domain-
containing protein 2 (NOD2) for the elimination of invading patho-
gens [228,229]. It also culminates in type-I and type-III IFNs secre-
tion and IL-1b release downstream of inflammasome activation
[230]. SB 9200 mediated robust antiviral effects and tested in clin-
ical trials as a stand-alone agent or combined with entecavir in
chronically hepatitis b virus and hepatitis c virus-infected patients
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[228,231]. In addition, it is known that poly(I:C) mimics the dsRNA
and also acts as a RIG-I and MDA5 agonist. The BO-112 is another
agonist based on a nanoplexed formulation of poly(I:C) complexed
with polyethylenimine. It is used for tumour cell apoptosis and
activation of systemic immunity against distant lesions via releas-
ing type-I IFN, IFN-c and CD8+ T lymphocytes [232]. A clinical trial
just commenced testing the activity of BO-112 in adults with
aggressive solid tumours (source https://www.clinicaltrials.gov).

Natural RIG-I agonist 50-triphosphate RNA (50-pppRNA)
acquires resistance against infection of some RNA viruses such as
dengue and chikungunya virus [233] as well as DNA viruses such
as vesicular stomatitis and vaccinia virus [234]. But, 50-pppRNA is
unstable and unable to cross the plasma membrane. To resolve this
issue, short stem–loop RNA molecules that present a single duplex
terminus and a triphosphorylated 50 end (and hence retain strong
RIG-I-binding capacity) have been developed. It stimulates innate
antiviral response including IRF3, IRF7 and STAT1 activation in
human lung epithelial A549 cells [235].

Only a few RIG-I agonists such as RTG100 and MK-4621 entered
clinical stage but their development was ultimately terminated
[153]. According to a 2017 report, KIN1000 is a benzobisthiazole
compound identified as a potent RLR inducer via high-
throughput screening-based approach. It was developed as an
immunological adjuvant. Another compound having adjuvant-
like activity for RLRs is KIN1148 as a prophylactic mice vaccination
against a pandemic human influenza virus [236].

RIG-I antagonist such as ebola virus VP35 is a dsRNA binding
protein that suppresses DCs maturation followed by impaired
expression of a/b-IFN and proinflammatory cytokines, abnormal
upregulation of costimulatory markers, and inhibition of naive T
cells activation. It may be possible to counteract EBOV immune
evasion by using treatments that bypass the VP35-imposed block
to DCmaturation [237]. Another is picorna viruses Vpg protein that
serve to block the 50ppp RNA motif associated with RIG-I activation
thus preventing RIG-I recognition and signaling. The V proteins of
several paramyxo viruses have been shown to directly bind MDA5
and block its downstream signaling actions mainly IFN-b induction
in a range of mammalian cells as well as in avian cells [238,239].

4.5. cGAS-STING pharmacological agents

The most important function of cGAS–STING is to direct cancer
cell senescence through the secretion of chemokines, pro-
inflammatory cytokines, growth factors, and proteases, thus medi-
ating oncosuppressive effects either by autonomously controlling
tumor cells or by stimulating immune cells (CD8+ T cells cross-
priming via DCs) against tumors [240,241].

STING agonists were modelled on their natural partner cGAS.
Among them, 5,6-Dimethylxanthine-4-acetic acid (DMXAA, vadi-
mezan or ASA404) developed as potent vascular disrupting agent
and induce production of cytokines like TNF-a and IFN-b [242].
Study suggests that it presented therapeutic efficacy in preclinical
models of acute myeloid leukemialeukaemia and mammary carci-
noma and was shown to be safe in chemotherapy [243,244
245,246], and was shown to be safe in chemotherapy [247,248].
However, later structural studies suggested that it binds to STING
protein in mice but not in humans [73,249]. Cyclic GMP–AMP
(cGAMP) 20,30-Cyclic GMP–AMP (20,30-cGAMP) and other cyclic din-
ucleotide (CDNs) of bacterial origins are natural STING agonists
that enhanced the type-I IFN signaling, Cxcl10, Ccl5, and T-cell
migration into the brain of glioma-bearing mice and effectively
used in immunotherapy such as the combination with antigen-
specific vaccinations [74,250] successful in mouse tumor models
[251] and combinatorial therapeutics [252].

Second-generation STING agonists are synthetic CDNs that
include 20-30-cGSASMP and ADU-S100. Both are potent inducers

https://www.clinicaltrials.gov
http://www.clinicaltrials.gov/
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of IFN-b secretion from THP-1 cells. 20-30-cGSASMP is phospho-
rothioate analogue of 20,30-cGAMP and �40 times more resistant
to ENPP1 hydrolysis [382]. On the other hand, ADU-S100
(MIW815 or ML RR-S2 CDA) showed improved stability, lipophilic-
ity, and comparable activity toward mouse and human STING,
making it the first candidate to move to early clinical studies
[381]. ADU-S100 could promote human peripheral blood mononu-
clear cell (PBMC) to generate pro-inflammation cytokines such as
IFN-b and resulted in profound tumour regression in B16 mela-
noma, CT26 colon, and 4T1 breast cancer murine models
[110,253-255].

Pharmaceutical companies are actively exploring multiple
cGAS–STING antagonists [256]. Among other actively pursued
compounds are Astin C, C-176 and H-151. C-176 and H-151 occupy
the CDN binding site at transmembrane domain and prevent STING
from acquiring an ‘‘active” conformation in human and mouse,
thus acting as competitive antagonists of STING activators. It irre-
versibly binds to Cys91 of STING and markedly reduces the ele-
vated levels of type-I IFNs and IL-6, inhibits TBK1
phosphorylation and suppresses Cys91 palmitoylation in various
cellular assays of Trex1�/� mice. These inhibitions are capable of
reversing the strong tissue inflammation, recapitulating the
autoantibody production and aberrant T-cell activation in
Aicardi-Goutieres syndrome (AGS) patients [257–259]. Another
antagonist is Astin C, a cyclopeptide from Aster tataricus that exhi-
bits anti-inflammatory activity and blocks the recruitment of IRF3
to the STING signalosome. Therefore, it is used in STING-mediated
cancer and autoimmune diseases [258,260].

4.6. Common agonists

A novel TLR7, TLR8 and RIG-I agonist (CV8102) was used alone
or with doses of a rabies vaccine to test its safety, tolerability and
immunogenicity for various types of cancers such as melanoma
and hepatocellular carcinoma with a PD-1 blocker [261]. NAB2 is
an agonist of TLR3 and MDA5 that is a dsRNA molecule isolated
from yeast. It is complexed with a cationic agent and effectively
acts as an adjuvant to a prophylactic cancer vaccine [252].

Although, MDA5 stands out as a promising cancer therapy, its
agonists and adenosine deaminase RNA (ADAR) inhibitors may
be combinatorial partners in immunotherapy for ICB-resistant
tumours [252]. IC31 is ODN based poly(I:C), combined with
antimicrobial peptide KLKL5KLK, to develop the agonist effect of
both TLR9 and TLR3. Studies in mice demonstrated that IC31
helped to induce potent antigen-specific CTL cells, strong
protein-specific humoral responses and T cell proliferation and dif-
ferentiation [377]. IC31 has been used as potent adjuvant against
infectious disease mostly in the candidate tuberculosis vaccine
H56:IC3. It is a novel vaccine consisting of a triple antigen
(Ag85B, ESAT-6 and Rv2660c), demonstrated tolerability and
immunogenicity, inducing antigen-specific IgG and persistent
H56-specific CD4+ T cell responses [378].

4.7. Common antagonists

Above, we reviewed drugs that can induce or inhibit host
nucleic acid-sensing efficacy of PRRs on a one-on-one basis. More
recently, antagonists were used to effectively target multiple
nucleic acid-recognizing PRRs. For example, inhibitory ODNs
(INH-ODNs) are mixed TLR3 and TLR9 antagonists that mediate
therapeutics in an experimental model of SLE. IMO-8400 is a com-
bined TLR7, TLR8 and TLR9 antagonist that demonstrates efficacy
in placebo-controlled moderate- to- severe plaque psoriasis
[262]. Another TLR7, TLR8 and TLR9 antagonist is CPG-52364,
quinazoline derivative which inhibits the disease progression of
SLE and other autoimmune diseases in animal models [263]. Like-
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wise, IMO-3100 blocks the TLR7 and TLR9 and reduce the expres-
sion of inflammatory genes such as IL-17A, b-defensin, CXCL1,
keratin 16, TNF-a and IFNa [264].

Thus, we conclude that drugs targeting various protein-nucleic
acid interactions are a highly pursued field and hold great promise
in combating infectious diseases. Among them, multi-target ago-
nists appear promising for multi-disease vaccination and
treatments.
4.8. PRR agonist or adjuvant mechanism

When PRRs recognize an agonist or an adjuvant that helps to
promote immune responses within a few hours of stimulus, an
agonist mechanism is activated through the development of innate
immunity [265,266]. In this first phase, adjuvant-induced antigen-
independent innate immune responses are critical for the subse-
quent development of antigen-specific immune responses. During
this phase, gene expression increases; chemokines and proinflam-
matory cytokines are released from TLR-expressing cells; and
innate immune cells including monocytes, macrophages, DCs, NK
cells, and neutrophils are recruited to the site of injection. The
expression of cell surface molecules, including the cluster of differ-
entiation 80 (CD80), CD86, and molecules of the major histocom-
patibility complex (MHC) are increased. The APCs at the injection
sites uptake the agonist antigen and migrate to the lymph node
or primary lymphocytes [267,268].

These TLR agonist-activated early immune responses are fol-
lowed by a second phase of adaptive immune responses that occur
several days later. During this second phase, activated APCs pro-
duce cytokines to shape the differentiation of naïve CD4+ T cells
into different T helper (Th) cell. TNF-a, IL-12, and IFNs promote
Th1 polarization and IL-1, IL-6, and IL-23 promote Th17 polariza-
tion. Th1 cells produce IFN-c and proinflammatory cytokines,
and Th17 cells are the major source of IL-17. The second phase of
adaptive immune responses results in the expansion of antigen-
specific CD8+ T cells that recruits B cells. In this way, TLRs regulate
the development and differentiation of B cells and increase the
production of antigen-specific antibodies. The class switching
recombination process in the B cells further differentiate it into
antibody-secreting plasma cells and memory B cells, which are
long-lived and provide the adaptive immunity for later life [269-
273].

Despite the fact that different TLR ligands share a common
mechanism to develop the immune responses, their immunologi-
cal inducing profiles are not entirely the same. TLRs have overlap-
ping but different cell-type expression profiles [274,275]. Their
adjuvant effects are also distinct. These TLR adjuvants preferen-
tially utilize different signal transductions and transcription factors
activities for controlling gene expression. Studies involving human
blood also revealed the differences in the cytokine-inducing pro-
files of the TLR7/8, and TLR9 agonists [276,277]. The specific mech-
anisms of PRR agonist are noted in Table 2.
5. Computational approaches to HP-PNIs

Advancements in high-throughput omics technologies has facil-
itated large-scale mapping of the highly complex and rapidly
evolving host-pathogen interactions. Computational methods have
emerged as primary tool for the analysis of the voluminous exper-
imental host-pathogen interaction data. Most of them aim to iden-
tify the key pathogen and host targets in infection, generate and
test new hypotheses and help develop novel anti-pathogen drugs
[278,279].

PPIs are deemed to be most important among the host-
pathogen interactions hence, and have been the most widely stud-
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ied [280,281]. Computational systems biology approaches evolved
to investigate, analyze, predict and model host-pathogen PPI net-
works [207]. These include interface structural mimicry
[280,282–285], structure-based mimicry, or homology [286–296]
and interactome-based and systems biology [278,297–302].

In addition to encouraging progress in PPI modeling of host-
pathogen interactions, the roles of immune cell receptors in sens-
ing pathogen-derived nucleic acids have also been widely
acknowledged. Consequently, there is a growing interest in imple-
menting computational approaches to predict and analyze protein-
nucleic acid interactions. Below we review some of these
approaches and strategies.

5.1. Predicting foreign (pathogenic) nucleotide sequences interacting
with host

Knowledge of the molecular interactions between hosts and
their pathogens is critical to the understanding the mechanisms
of infections and identifying potential targets for therapeutics. In
that respect, structural approaches predict not only which patho-
gen protein interacts with which host protein, but also define the
drug target. The same rationale holds for pathogen nucleic acids
host protein interaction. However, the task is challenging, with a
greater likelihood of false-positive predictions. Yet, the technical
challenges in experimental identification on a large scale are
daunting, emphasizing a pressing need for efficient and powerful
computational approaches for the analysis and prediction of
host-pathogen interactions [301]. Speedy and accurate sensing of
pathogen-derived nucleic acids by host TLRs is the first line of
defense for the host innate immune system. The two key aspects
of this strategy are a) identifying the pathogenic nucleic acid
sequence and b) identification of host elements i.e., the sequence
and structural motifs in host receptors [112,303,304]. The initial
set of computational approaches focused on distinguishing patho-
genic DNA from the host DNA, which later evolved into more com-
plex algorithms to pinpoint the patterns that discriminate the
invading pathogenic from the host genomes [305].

Statistical approaches to identifying sequence and structure
motifs, which may inform us about the specificity and viability of
PRR-PAMP interactions, have been outperformed by machine
learning-based approaches such as semi-supervised [306], and
supervised learning [307], random forest and Support Vector
Machine based classifiers. Some research has adopted specialized
techniques including transfer and multitask learning [308], domain
and motifs models [309], and sequence homology combined with
others [310,311]. Other machine learning-based methods such as
multiple linear regression partial least squares analysis [312] and
Gradient Boosting Regressor [313] were also reported. More
recently, deep learning-based Artificial Neural Network [314] and
Convolution Neural Network [315] methods have been used for
binding affinity prediction. Chemical feature-based pharma-
cophore models used the HypoGen algorithm for TLR7 agonist pre-
diction [316]. Similarly, mouse TLR9 agonists have been predicted
through a random forest approach [317]. In summary, machine
learning methods provided a better mapping of the sequence and
structural features in PRRs and PAMPs that contribute to the host’s
ability to defend against a pathogen.

Machine learning and closely related statistical approaches
have also provided much data on protein-nucleic acid interactions,
which will help understand scenarios for host-pathogen pairs. Our
work in these directions relates to the study of specificity, thermo-
dynamics and clustering patterns [318,319], sequence-based pre-
dictions of protein-nucleic acid interactions [320,321], patterns of
electrical moments of nucleic acids binding proteins [322] and
co-operativity between gene expression and sequence [323]. Some
of the purely data-driven and computational approaches can pro-
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vide deep insights into the biological and mechanistic nature of
protein-nucleic acid interactions, including host-pathogen interac-
tions. This belief is borne out by the broad literature on the predic-
tion of DNA binding sites and affinities and the key principles
which are involved, recently including cooperativity [324–333].

On the technical side, the prediction of DNA-binding sites and
the proteins that specifically interact with them is a non-trivial
task. Strategies can be sequence-based DNA-binding site predic-
tion, structure-based DNA-binding site prediction, and homology
modelling. Structurally, protein recognition may take place
through positively charged amino acids, primarily lysine and argi-
nine, and hydrophobic residues that interact with the bases. GC-
rich regions are often recognized by arginine side chains through
hydrogen bonding and cation-p interactions; AT-rich regions are
often recognized via minor groove contacts that sterically exclude
the N2 atom of GC base pairs. Recognition may involve the major
and minor grooves; it may also involve Hoogstein base pairs.
DNA binding specificity arises from all of the above. The shape is
also a key factor, and recently a database that annotated transcrip-
tion factor binding sites based on shape was described [334]. Algo-
rithms for RNA binding sites have also been constructed [335].
Large-scale prediction of nucleic acid-host protein interactions,
particularly structural predictions can serve as targets in drug
discovery.
5.2. Gene regulatory networks

Systems-level approach for studying HP-PNIs is based on mod-
elling of signalling and gene regulatory networks, which can also
provide considerable insight into the interactions between the host
and pathogen in infectious diseases [336]. This, the so-called
network-based analysis of host-pathogen interactions is highly
useful in improving our understanding of pathogenesis and pin-
pointing novel experimental and drug targets [279]. While sig-
nalling networks are driven primarily through PPIs, the gene
regulatory networks (GRNs), i.e. a network of regulatory relation-
ships between transcription factors and their targets are also cru-
cial and gaining more attention recently. These networks are
based on the time-series gene expression data and have been par-
ticularly effective both in predicting host-pathogen interactions
and in understanding the mechanistic basis of the underlying PHI
networks [337]. One of the most widely used tools for this purpose
is NetGenerator, a computational tool to infer small-scale GRNs,
that has been used to predict PHI networks [337,338]. More
recently, Castro and colleagues proposed Gene regulatory net-
works of transfer entropy (GRNTE), to examine the transcriptional
regulatory network of the plant pathogen Phytophthora infections
as it infected two different host organisms [339].
5.3. Databases related to HP-PNIs

Several web-based databases provide quick references on
protein-nucleic interactions between host and pathogen, either
exclusively or as part of a broader theme. Most significant among
them are (1) LRRML: a conformational database and an XML
description of LRRs [340], (2) TollML: a database of TLRs structural
motifs [341], and (3) PRRDB 2.0: a comprehensive database of
pattern-recognition receptors and their ligands [342], and (4) Pro-
NIT database that uses structural and quantitative binding interac-
tion data to elucidate the molecular mechanism of protein-nucleic
acid recognition [343]. The sequence arrangement of amino acid or
base pairs and stable conformation of protein or DNA/RNA mole-
cules indicates specificity towards each other.
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6. Current trends and evolving perspectives

With the emergence of genomic technologies, host-pathogen
genetic studies have transitioned from single candidate gene stud-
ies to whole-genome studies of hosts and pathogens [344]. NGS
techniques have enabled us to identify and feature the regulatory
mechanism through which hosts and pathogens interact with each
other either in a diseased or in a healthy state. Such studies have
pointed out that host-pathogen interactions not only depend on
the host and pathogen genomic sequences but also on the ecolog-
ical, immunological and epigenetic context in which the genomic
data are collected [345]. For example, in a study of mucus, it was
revealed that in addition to genetic factors, post-translational mod-
ification plays a significant role in defence against pathogens
[346,347].

Pathogens represent a major portion of the biomass and diver-
sity of several ecosystems [348–352]. PCR-based technologies and
recently high throughput technologies have helped in the identifi-
cation of novel pathogens especially viral sensing pathogens [353–
358]. Metagenomics approaches have further exposed pathogen-
and host-associated microbial communities playing a significant
role in infection and disease development suggesting that a patho-
gen may not occur alone but may belong to a larger community
[359–362]. Several immune gene families including TLRs, IFNs
and antimicrobial peptides have gained attention in host-
pathogen interaction studies [363–370]. These studies have high-
lighted the positive selection and rapid evolution of these immune
genes in the innate immune system [371–373]. Metagenomics
studies have also provided key insights into host-pathogen interac-
tions. For example, several metagenomics studies unearthed the
links between the gut microbiome and diseases like RA, diabetes,
and depression [374–376]. Thus, multi-target drug discovery,
metagenomics, NGS and identification of better derivates of natu-
ral agonists are likely to remain the focus areas of research in
HP-PNIs for the foreseeable future.
7. Conclusion

Investigations into the detailed interactions and recognition of
pathogen nucleic acids by host factors such as TLRs, RLRs and NLRs
have yielded common as well as specific insights into the mecha-
nisms underlying such interactions. However, significant chal-
lenges remain in deciphering the full spectrum of host-pathogen
interactions and their potential implications in countering infec-
tion and in therapeutics. A deeper understanding of these interac-
tions will help in identification of new drug targets and clinical and
therapeutic strategies to manipulate them and counter infectious
diseases. Such associations also offer a means to explore alterna-
tive approaches such as targeting host proteins instead of patho-
genic components to bypass the vexing pathogenic variability
and genetic mutations. Further studies will improve strategies to
inhibit host-pathogen interactions and clinical outcomes.
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