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Despite significant improvements in injury prevention and emergency response, injury- 
related death and morbidity continues to increase in the US and worldwide. Patients with 
trauma, invasive operations, anti-cancer treatment, and organ transplantation produce 
a host of danger signals and high levels of pro-inflammatory and pro-thrombotic media-
tors, such as damage-associated molecular patterns (DAMPs) and extracellular vesicles 
(EVs). DAMPs (e.g., nucleic acids, histone, high-mobility group box 1 protein, and S100) 
are molecules released from injured, stressed, or activated cells that act as endogenous 
ligands of innate immune receptors, whereas EVs (e.g., microparticle and exosome) are 
membranous vesicles budding off from plasma membranes and act as messengers 
between cells. DAMPs and EVs can stimulate multiple innate immune signaling path-
ways and coagulation cascades, and uncontrolled DAMP and EV production causes 
systemic inflammatory and thrombotic complications and secondary organ failure (SOF). 
Thus, DAMPs and EVs represent potential therapeutic targets and diagnostic biomark-
ers for SOF. High plasma levels of DAMPs and EVs have been positively correlated with 
mortality and morbidity of patients or animals with trauma or surgical insults. Blocking 
or neutralizing DAMPs using antibodies or small molecules has been demonstrated to 
ameliorate sepsis and SOF in animal models. Furthermore, a membrane immobilized 
with nucleic acid-binding polymers captured and removed multiple DAMPs and EVs from 
extracellular fluids, thereby preventing the onset of DAMP- and EV-induced inflammatory 
and thrombotic complications in vitro and in vivo. In this review, we will summarize the 
current state of knowledge of DAMPs, EVs, and SOF and discuss potential therapeutics 
and preventive intervention for organ failure secondary to trauma, surgery, anti-cancer 
therapy, and allogeneic transplantation.

Keywords: damage-associated molecular pattern, extracellular vesicle, thrombosis, inflammation, polymer, 
trauma, cancer, transplantation

Abbreviations: DAMP, damage-associated molecular pattern; DC, dendritic cell; DNase, deoxyribonuclease; EV, extracellular 
vesicle; exDNA, extracellular DNA; HMGB1, high-mobility group box 1 protein; IRI, ischemia and reperfusion injury; MAPK, 
mitogen-activated protein kinase; MHC, major histocompatibility complex; MODS, multiple organ dysfunction syndrome; 
MOF, multiple organ failure; mtDNA, mitochondrial DNA; NABPs, nucleic acid-binding cationic polymers; nDNA, nuclear 
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oligomerization domain, leucine rich repeat and pyrin domain containing 3.

http://www.frontiersin.org/Immunology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.00190&domain=pdf&date_stamp=2018-02-08
http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/editorialboard
http://www.frontiersin.org/Immunology/editorialboard
https://doi.org/10.3389/fimmu.2018.00190
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:jaewoo.lee@duke.edu
https://doi.org/10.3389/fimmu.2018.00190
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00190/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00190/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00190/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00190/full
https://www.frontiersin.org/Journal/10.3389/fimmu.2018.00190/full
https://loop.frontiersin.org/people/519261
https://loop.frontiersin.org/people/521644
https://loop.frontiersin.org/people/521627
http://loop.frontiersin.org/people/473317
http://loop.frontiersin.org/people/460852
http://10.13039/100000009
http://10.13039/100006512


TAble 1 | Immunothrombotic activity of DAMPs released after trauma and sepsis.

DAMP Molecular classification PRR Coagulation activity Pathologic plasma levels Reference

Formyl peptide Mitochondrial protein FPR1 Unknown Unknown (12)

nDNA Nucleic acid TLR9, AIM2 Inhibits plasmin-mediated fibrin  
degradation

181,303 kilogenome 
equivalents/L

(13–15)

mtDNA Nucleic acid TLR9 Activates intrinsic coagulation pathway 2–3 µg/mL (12, 16)

Heparan sulfate Glycosaminoglycan TLR4 Activates antithrombin 180 ng/mL (17–19)

Histone Nuclear protein TLR2, TLR4,  
TLR9, and NLRP3

Unknown 10–230 µg/mL (20, 21)

HMGB1 Nuclear protein TLR2, TLR4,  
TLR9, RAGE

Inhibits protein C, upregulates  
TF expression

57–526 ng/mL (22, 23)

Hyaluronan Glycosaminoglycan TLR2, TLR4, and NLRP3 Unknown Unknown (24)

S100 Cytosolic protein TLR2, TLR4, and RAGE Promotes thrombus formation Unknown (25, 26)

Uric acid Metabolic breakdown  
component of purine nucleotides

NLRP3 Unknown Unknown (27)

DAMPs, damage-associated molecular patterns; PRR, pattern recognition receptor; FPR1, formyl-peptide receptor 1; nDNA, nuclear DNA; TLR, toll-like receptor; NLRP3, 
nucleotide-binding oligomerization domain, leucine rich repeat and pyrin domain containing 3; HMGB1, high-mobility group box 1 protein; RAGE, receptor for advanced glycation 
end products; TF, tissue factor.
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KeY CONCePTS

•	 Secondary Organ Failure: Dysfunction or injury of organs 
remote from the primary injury site is often the sequelae of the 
host’s dysregulated immune response.

•	 Immunothrombotic Agents: Certain cellular components 
released from stressed, damaged, or dead cells can activate both 
innate immune receptors and coagulation cascades, leading to 
inflammatory response and blood coagulation, respectively.

•	 Feed-Forward Loop: In solid organ transplantation, graft 
injury from infiltrating inflammatory cells leads to further 
DAMP release, intensified inflammation, and exacerbation of 
graft injury.

•	 Vicious Cycle of Injury and DAMP/EV Production: 
Polytrauma or invasive surgery will produce circulating 
pro-inflammatory and pro-thrombotic mediators that cause 
microinjury and de novo release of the pro-inflammatory and 
pro-thrombotic mediators in remote organs, thereby develop-
ing SOF.

iNTRODUCTiON

About five million people die from injuries worldwide every year 
(1). Most injury deaths are immediate or early death, occurring 
within 2–3 days as a result of primary injuries, while 10–20% of 
injury deaths occur in the late phase (2). Secondary damage in 
organs remote from the primary site of injury causes 50–60% 
of late injury deaths (3). Secondary organ failure (SOF) is often 
caused by systemic, overwhelming inflammatory response fol-
lowing hemorrhage and reperfusion injury (3). Although SOF 
is most prevalent in patients with traumatic injuries, SOF also 
occurs in patients with sterile insults such as invasive surgery or 
anti-cancer treatment (4, 5). Injuries induce significant immune 
and thrombotic consequences at local and remote organ sites, as 
well as systemic circulatory changes. After injury, tissues release 
various cellular components into the extracellular space or 
bloodstream. These components play a key role in hemostasis, 

repair of damaged tissue, and initiation of host immune response 
against infection (6, 7). On the other hand, they are directly and 
indirectly involved in the pathogenesis of systemic inflammatory 
and thrombotic complications that cause multiple organ failure 
(MOF) (8, 9).

Damage-associated molecular patterns (DAMPs) are a 
broad array of molecules or molecular complexes released from 
damaged, stressed, or activated cells. DAMPs are recognized 
by various innate immune receptors called pattern recognition 
receptors (PRRs), e.g., toll-like receptors (TLRs), C-type lectin rece-
ptors, nucleotide-binding oligomerization domain-like receptors, 
retinoic acid-inducible gene I-like receptors, and receptors for 
advanced glycation end products (RAGE), which are expressed on 
both immune and non-immune cells (10). Each PRR recognizes 
a particular molecular pattern presented in DAMPs (Table  1). 
Upon binding to DAMPs, PRRs trigger intracellular signaling 
cascades that lead to the expression of inflammation-associated 
genes that have pleiotropic effects on host immune defense and 
pathogeneses (11).

Extracellular vesicles (EVs) are small membranous vesicles 
released from cells. EVs contain various cellular contents, such 
as proteins, DNA, and RNA and represent their parental cells. 
Thus, EVs may play a fundamental role in the communication 
between cells (28). On the other hand, EVs carry various pro- 
inflammatory and pro-coagulative mediators [e.g., mitochondrial 
DNA (mtDNA), high-mobility group box 1 protein (HMGB1), 
heat shock protein (HSP), tissue factor (TF), and phosphatidyl-
serine] that modulate inflammatory response and coagulation  
(29, 30). This review will focus on discussing the pro-inflammatory 
and pro-thrombotic DAMPs and EVs in the pathogenesis of SOFs 
after trauma, invasive therapy, and organ transplantation. This 
review will also introduce potential therapeutics and preventive 
approaches for SOF.

SeCONDARY ORGAN FAilURe

The concept of MOF [also called multiple organ dysfunction syn-
drome (MODS)] following surgical or traumatic insult dates back 
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TAble 2 | Multiple organ failure scoring system.

Organ system Degree of dysfunction

Grade 0 Grade 1 Grade 2 Grade 3 Grade 4

(A) Marshall multiple organ dysfunction score

Pulmonary
PaO2/FiO2 ratio

>300 226–300 151–225 76–150 ≤75

Renal
Creatinine (μmol/L)

≤100 101–200 201–350 351–500 >500

Hepatic
Total bilirubin (μmol/L)

≤20 21–60 61–120 121–240 >250

Cardiac
Pressure-adjusted HR (PARa)

≤10 10.1–15.0 15.1–20.0 20.1–30.0 >30

Coagulation
Platelet count (×103/mm3)

>120 81–120 51–80 21–50 ≤20

Central nervous system
Glasgow Coma Score

15 13–14 10–12 7–9 ≤6

(b) Denver postinjury multiple organ failure score

Pulmonary
PaO2/FiO2 ratio

>250 250–200 200–100 <100

Renal
Creatinine (μmol/L)

<159 160–210 211–420 >420

Hepatic
Total bilirubin (μmol/L) 

<34 34–68 69–137 >137

Cardiac
Inotropes

None 1 inotrope at small dose 1 inotrope at moderate dose  
OR > 1 inotrope at small dose

1 inotrope at high dose OR > 2  
inotropes at moderate dose

aPAR = (heart rate/mean arterial pressure) × central venous pressure.
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to 1970s as Tilney et al. first described the phenomena as sequential 
organ failure after ruptured abdominal aneurysms (31). Eiseman 
et al. first used MOF in 1977 to describe a clinical presentation 
after trauma-initiated hospitalization (32). The spectrum of physi-
ological dysfunction prior to MOF was subsequently refined with 
the advent of systemic inflammatory response syndrome (SIRS) 
in 1990s (33), which provides a systematic way to identify the sys-
temic hyperinflammatory state and potential reversibility, prior 
to overt organ failure. Regardless of the etiology of insult, MOF 
is ultimately attributed to the loss of homeostatic host immune 
function resulting in irreversible tissue and organ damage.

Multiple organ failure can be further classified as primary 
or secondary. Primary organ failure refers to organ dysfunction 
directly attributed to the principal insult. Secondary organ 
failure, however, is not necessarily the direct result of traumatic 
tissue or organ injury, but rather the sequelae of the host’s dys-
regulated immune response, and it may not be appreciated until 
days after the primary insult. While early organ failure as a result 
of polytraumatic injury or invasive surgical intervention may 
be intuitive, the exact pathogenesis of SOF is less clear. Multiple 
studies have attempted to elucidate the multimodal distribution 
of SOF following traumatic or surgical insult. Deitch introduced 
the “gut hypothesis” in 1989, which hypothesized that transloca-
tion of bacteria across the intestinal mucosal barrier occurs more 
easily following trauma or hemorrhagic shock, leading to a condi-
tion that mirrors septicemia (34). Meakins proposed the “two-hit 
model,” purporting that an initial surgical or traumatic insult 
primes the immune system for a second hit (infection or surgical 
intervention) (35). This second insult propagates an exaggerated 
SIRS response, causing SOF.

Multiple organ failure is the leading cause of mortality in 
late death after traumatic injury (36, 37). However, because a 
singular definition does not exist for post-traumatic MOF, the 
variance in its epidemiologic impact, time course, and pattern 
remains broad. Two commonly used scoring systems are the 
Marshall MODS score (38) and the Denver postinjury MOF 
score (39). These clinical adjuncts attempt to further stratify 
risk and categorize critically ill patients by combining objective 
measures of continuous variables over multiple organ systems for 
a quantifiable threshold of MOF (Table 2). A recent paper aimed 
to examine the predictive properties of the Marshall MODS and 
Denver postinjury MOF score to better understand, synthesize, 
and prognosticate MOF in trauma patients (40). Hutchings et al. 
showed that the incidence of post-trauma MOF varies between 
22.8 and 58.5% of patients, depending on which scoring system 
was used, as the Denver MOF score tends to be more stringent 
than the Marshall MODS in categorizing organ failure (40). 
Although the overall incidence of MOF has decreased with the 
improvement of prehospital and early inhospital resuscitative 
strategies, the rate of MOF-related morbidity and mortality has 
not significantly changed over time (37). It is clear that the impact 
of MOF remains significant, and further studies to clarify the 
complex pathologic interplay are needed.

iMMUNOTHROMbOTiC DAMPs AND evs

extracellular DNA
Elevated levels of extracellular DNA (exDNA) in the form of 
nuclear DNA (nDNA), mtDNA, or neutrophil extracellular trap 
(NETs) are often found in patients with sepsis (41, 42), traumatic 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


4

Eppensteiner et al. Pro-Inflammatory and Pro-Thrombotic DAMPs and EVs

Frontiers in Immunology | www.frontiersin.org February 2018 | Volume 9 | Article 190

injury (14), cancer (43), autoimmune disease (44), cardiopulmo-
nary bypass surgery (45), and solid organ transplantation (46) 
and are correlated with morbidity and mortality of these patients. 
The exDNAs released from mammalian cells and bacteria are 
known as potent innate immune stimulators. The unique cel-
lular location of nucleic acid-sensing PRR probably explains how 
nucleic acid-sensing PRR in immune cells can distinguish dan-
gerous nucleic acids from safe counterparts (47, 48). Barton et al. 
demonstrated that a chimeric TLR9, engineered for expression 
on the cell surface, could be activated by self-DNA that could not 
stimulate wild-type TLR9 in the endosomal compartment (49). 
Thus, free DNA without delivery into endosomal compartments 
may not stimulate TLR9. Prikhodko et al. demonstrated that the 
levels of circulating mtDNA significantly increased in trauma 
patients compared to those in healthy volunteers, but purified 
mtDNA could not stimulate innate immune cells (50). These data 
suggest that the level of exDNA in the blood may be a suboptimal 
marker for human disease. Development of new approaches to 
detect circulating exDNA that actually activate innate immune 
cells would be beneficial.

In addition to pro-inflammatory activity, exDNA may have 
potent pro-thrombotic activity. A prospective cohort study 
demonstrated that elevated plasma DNA was detected in 19 of 
23 patients with pulmonary embolism and in none of the 49 
patients with other diagnoses (pneumonia, myocardial infarc-
tion, thrombophlebitis, or normal lung scans) (51). Moreover, 
the levels of plasma mtDNA and nDNA were much higher in 
patients with massive pulmonary embolism than in patients 
with submassive pulmonary embolism or healthy controls (52). 
Fuchs et al. demonstrated that NETs, a meshwork of DNA fib-
ers comprising histones and antimicrobial proteins, stimulated 
thrombus formation in  vitro and in  vivo, and treatment with 
deoxyribonuclease (DNase) or anticoagulant heparin prevented 
NET-mediated thrombus formation (53). Thus, exDNA acts as 
potent immunothrombotic agents.

High-Mobility Group box 1 Protein
High-mobility group box 1 protein is a non-histone nuclear 
protein composed of two positively charged DNA-binding motifs 
and a C-terminal acidic tail (54). HMGB1 is known to be pas-
sively released from dead and dying cells or actively released from 
live cells (55, 56). Circulating HMGB1 was markedly elevated 
in patients after traumatic injuries (22), ischemic injuries (57), 
severe acute pancreatitis (58), organ transplantation (59, 60), 
and arthritis (61, 62). Elevated plasma HMGB1 was significantly 
correlated with poor clinical outcome of these patients. In innate 
immune response, HMGB1 acts as an endogenous ligand of TLRs 
2, 4, 9 and RAGE (63, 64). The innate immune stimulatory activ-
ity of HMGB1 has been determined by the redox state of cysteine 
residues C23, C45, and C106 (65). A disulfide bond between C23 
and C45 is required for HMGB1 to activate innate immune cells 
and produce inflammatory cytokines (65), while reduction of all 
cysteine residues makes HMGB1 a chemoattractant rather than 
a cytokine inducer (66). By contrast, oxidization of the cysteine 
residues using reactive oxygen species abrogated both activities 
(66). Therefore, the level of total HMGB1 may be proximal in 
the innate immune response and may not accurately reflect the 

complex clinical nature of patients with inflammatory compli-
cations, as well as relevant clinical inflammation downstream 
signaling.

High-mobility group box 1 protein is also a potent pro-
coagulant. HMGB1 directly stimulated and recruited platelets 
through TLR4 and RAGE (67–69). In a rat model, combined 
administration of thrombin and HMGB1 resulted in excessive 
fibrin deposition in glomeruli, prolonged plasma clotting times, 
and increased mortality (23). Mice with HMGB1-deficient plate-
lets exhibited increased bleeding times and reduced thrombus 
formation, platelet aggregation, inflammation, and organ damage 
during experimental trauma/hemorrhagic shock (67). In a mouse 
venous thromboembolism (VTE) model, disulfide HMGB1 
played a critical role in the development of venous thrombosis 
through facilitation of RAGE-dependent NET formation and 
platelet activation (56). Thus, HMGB1 is an important pathogenic 
factor of inflammatory and thrombotic complications.

Histone
Histone is a cationic nuclear protein that packages DNA into 
nucleosomes. Extracellular histones are found in three different 
forms (free, DNA-bound nucleosome, and a part of NET) in the 
blood of patients with sepsis, trauma, ischemia and reperfusion 
injury (IRI), and autoimmune disease (70). In mouse models 
of concanavalin A-induced inflammatory complication and 
toxin-induced liver injury, extracellular histones contributed to 
mortality after inflammatory and cellular injuries through TLRs 
2 and 4 (71). Moreover, extracellular histones exacerbated IRI 
through TLR9-medicated cytotoxic effects in a mouse hepatic 
IRI model (72).

On the other hand, recombinant human histones H3 and 
H4 directly triggered thrombin generation in vitro in a platelet-
dependent manner (73). Moreover, extracellular histones upregu-
lated the expression of TF on endothelial cells and macrophages 
through TLRs 2 and 4 (74). Extracellular histones activated 
platelets to aggregate through fibrinogen-mediated cross-linking 
of platelet integrin αIIbβ3, leading to profound thrombocytope-
nia and tissue damage in mice (75). Treatment with heparin could 
prevent histone-mediated thrombocytopenia and tissue damage 
in vivo (75). Clinically, elevated levels of circulating histones and 
histone-DNA complexes were associated with the incidence of 
MOF, disseminated intravascular coagulation, cardiac injury, 
arrhythmia, and ventricular dysfunction in patients with sepsis 
(76, 77). Therefore, the extracellular histone also acts as an immu-
nothrombotic agent.

S100
S100 proteins are a family of intracellular low-molecular weight, 
calcium-binding proteins. At least 25 distinct S100 proteins have 
been identified, and each S100 protein exerts diverse cellular 
functions in cell proliferation, differentiation, migration, calcium 
homeostasis, inflammation, and cell death (78). The S100 proteins 
are known to be either passively released from damaged cells or 
actively secreted from activated cells, and they have been detected 
in various body fluids, such as serum, urine, sputum, cerebro-
spinal fluid and feces of patients with cancer, inflammatory and 
autoimmune disease, or cardiovascular complications (79).
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Extracellular S100 proteins act as potent pro-inflammatory 
and pro-thrombotic mediators. S100A1 released from damaged 
cardiomyocytes during myocardial infarction triggers TLR4-
dependent pro-inflammatory responses, leading to induction of 
myocardial damage (80). S100A8, S100A9, and S100A12 induced 
TLR4-mediated inflammatory cytokine production by human 
peripheral blood mononuclear cells (81). In contrast, S100A9 
induced RAGE-dependent cell migration of human monocytes 
and leukocytes (81), and S100B mediates neuronal damages in 
a RAGE- and NF-κB-dependent manner (82). Furthermore, 
S100A8/A9 heterodimeric proteins released from neutrophils 
induced RAGE-dependent activation of hepatic Kupffer cells, 
leading to the development of inflammatory thrombocytosis and 
atherogenesis in diabetic mice (83). Platelet-secreted S100A9 and 
S100A8/A9 proteins facilitated thrombus formation and occlu-
sive thrombosis in mice with carotid artery injury (25).

il-1α and il-33
IL-1α and IL-33 are expressed in precursor form in the nucleus 
of various hematopoietic cells, and these nuclear proteins 
play important roles in regulation of gene expression (79). 
IL-1α and IL-33 do not contain a secretory signal peptide, and 
thus they are released into extracellular space through either 
non-canonical vesicular secretion pathway or passive necrotic 
release (79). Proteolytic cleavage is required for the release and 
pro-inflammatory activity of IL-1α and IL-33 (79). Extracellular 
IL-1α interacts with ubiquitously expressed IL-1 receptor-1 
and IL-1 receptor accessory protein (IL-1RAcP) that activates 
downstream signaling proteins, such as myeloid differentiation 
primary response gene 88 (MyD88) and interleukin-1 receptor-
activated protein kinase 4, and induces an inflammatory response 
(84). IL-1α has been considered a potential pathogenic factor 
involved in the development and progression of diabetes (85), 
inflammatory bowel disease (86), myocardial inflammation (87), 
and cancer (88). Active IL-33 binds to the heterodimeric plasma 
membrane receptor complex, consisting of ST2 and IL-1RAcP, 
inducing NF-κB and mitogen-activated protein kinase (MAPK) 
activation and Th2 maturation (89). Elevated IL-33 expression 
in lung tissue and blood was correlated with the severity of 
asthma (89) and chronic obstructive pulmonary disease (90). 
IL-33 upregulated TF expression on endothelial cells in ST2 and 
NF-κB-dependent manner, promoting arterial thrombus forma-
tion after plaque rupture (91).

extracellular vesicles
Extracellular vesicles comprise various membranous particles 
that originate from different intracellular origins and have dif-
ferent sizes. Thus, different types of EVs have been isolated by 
differential ultracentrifugations (92). Organelle size ranges from 
0.5 to 10 µm. Microparticles (MPs) range from 0.1 to 1 µm in 
diameter, while apoptotic bodies range from 0.5 to 4 µm in diam-
eter; both of these originate from plasma membranes. Exosomes 
are smaller than 0.1 µm and originate from multivesicular bod-
ies (MVBs). Different types of EVs are generated by different 
mechanisms of biogenesis (30). For example, exosomes form by 
inward budding of MVB membranes while MPs and apoptotic 
bodies are generated by outward budding of plasma membrane 

(30). The biogenesis of MPs requires cytoskeletal reformations, 
such as redistribution of phospholipids, repositioning of phos-
phatidylserine, and contraction of the actin–myosin machinery  
(93, 94). The release of exosomes requires sequential assembly 
of the endosomal sorting complex on the MVB membrane (95). 
Upon release, EVs transfer their cargo by multiple mechanisms, 
such as endocytosis, phagocytosis, micropinocytosis, and mem-
brane fusion (96, 97).

Depending on their origin, EVs carry various immune modu-
lators and pro-coagulants (29, 30). Dendritic cell (DC)-derived 
exosomes express major histocompatibility complex (MHC) I,  
MHC II, and costimulatory molecules, and they can induce 
antigen-specific T  cell responses (98). Interestingly, exosomes 
released from organ donor-derived DCs presented alloantigen 
and activated alloreactive T cells (99, 100). Exosomes and MPs 
released from cancer cells contributed to the suppression of host 
immune surveillance, cancer progression and metastasis, and 
angiogenesis (101–103). Like cancer-derived EVs, EVs released 
from mesenchymal stem cells attenuated host inflammatory 
responses and facilitated tissue regeneration, and are therefore 
being developed as therapeutic agents to treat graft-versus-host 
disease (104), chronic kidney disease (105), and acute radiation 
injury (106). On the other hand, MPs express various pro- 
coagulants, such as phosphatidylserine and TF (107), that pro-
mote vascular thrombosis in cancer patients (108). Moreover, 
endothelial and circulating cells after sepsis-induced microvas-
cular injury released pro-thrombotic MPs into circulation (109). 
Thus, EVs may play dual roles in tissue repair and damage.

iMMUNOTHROMbOTiC FACTORS iN 
POST-TRAUMA ORGAN FAilUReS

The biologic response to traumatic injury is a complex physiologi-
cal phenomena that involves a host of inflammatory and throm-
botic mediators including cytokines, chemokines, complement, 
oxygen free radicals, inflammatory cells (neutrophils, monocytes, 
and macrophages), and endothelial cells (110). Immediately after 
traumatic injury, the immune response is mounted in reaction to 
cellular stress and tissue damage. Matzinger first introduced the 
“Danger Theory” in 1994 to explain how endogenous mediators 
released from damaged tissues can stimulate the innate immune 
response and elicit a nearly identical exaggerated SIRS response 
to that of infectious insult (111). This relatively new perspective of 
the immunostimulatory effects of self-molecules in sterile inflam-
mation of a trauma model has challenged researchers to identify 
and categorize specific DAMPs.

The library of known DAMPs and their respective immu-
nostimulatory consequences is constantly evolving as researchers 
continue to elucidate the complex signaling pathways involved. 
The release of DAMPs following traumatic injury promotes local 
inflammation and tissue repair, though when left unchecked leads 
to systemically injurious effects. One of the earliest characterized 
and well-known DAMPs in post-traumatic MOF is HMGB1, 
whose pathogenic effects were first outlined in experimental sep-
sis models. HMGB1 was found in the extracellular space after IRI 
and hemorrhagic shock (112) and led to inflammatory responses 
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and microthrombotic effects through TLR4 and RAGE (23, 26). 
Given the multitude of inflammatory and coagulopathic effects, 
not surprisingly, elevated plasma levels of HMGB1 in critically 
ill trauma patients have been shown to be a negative prognostic 
indicator early in the course of traumatic disease (113).

Mitochondrial DNA is a well-studied endogenous signal 
for systemic inflammatory response after traumatic injury. 
Originally postulated from endosymbiotic theory, mtDNA shares 
many evolutionarily conserved molecular motifs with bacterial 
DNA (114), and human mtDNA is mostly unmethylated similar 
to bacterial DNAs (115). More recently, Zhang et al. have dem-
onstrated that not only are mtDNA levels markedly elevated in 
trauma patients but also that in vivo shock-induced cell damage 
stimulates neutrophils to produce cytokines and cause end-
organ damage via TLR9 (12, 116). 20–30% of CpG DNA across 
the genome of mammalian somatic tissues is unmethylated and 
may act as potential ligands of TLR9 (117). However, pathologic 
roles of unmethylated nDNA and mtDNA are debated in trauma 
and sepsis. Elevated mtDNA levels in the blood are positively 
correlated with the mortality of patients with sepsis or SOF in 
the intensive care unit (118). Furthermore, trauma patients who 
developed SIRS or MOF had elevated levels of mtDNA in their 
blood compared to those who did not (119). By contrast, the level 
of circulating nDNA, but not mtDNA was profoundly elevated in 
patients immediately after trauma, and the elevated nDNA was 
associated with immune suppression in these patients (120).

Another important pro-inflammatory mediator typically 
found in the mitochondrial matrix is N-formyl peptide, a well-
established leukocyte chemoattractant (121). When released 
from necrotic or damaged cells, these proteins have been shown 
to aid in chemotaxis of neutrophils to sites of sterile inflammation 
(122). In addition, circulating histones caused direct cytotoxic-
ity to epithelial and endothelial tissues by altering membrane 
permeability, which was associated with the incidence of acute 
lung injury after severe trauma (20). While an in-depth charac-
terization is beyond the scope of this review, other well-known 
DAMPs mediating inflammation and tissue injury following 
trauma include but are not limited to HSP, uric acid, adenosine 
triphosphate, hyaluronan, galectins, and thioredoxin.

ORGAN DAMAGe AND FAilURe AFTeR 
SOliD ORGAN TRANSPlANTATiON

Damage-associated molecular pattern-mediated processes are 
increasingly recognized as important drivers of pathophysiology 
in solid organ transplantation (123, 124). The IRI process inher-
ent to solid organ transplantation produces significant cellular 
injury with the concomitant release of multiple DAMPs. In turn, 
DAMPs are robust activators of the innate immune system, incit-
ing inflammatory and thrombotic cascades that contribute to 
graft injury. More recently, the role of DAMPs in the subsequent 
activation of the alloimmune response has become an area of 
active investigation. Below, we review key aspects of DAMP biol-
ogy in solid organ transplantation.

Damage-associated molecular patterns bind to PRRs on 
leukocytes and endothelial cells to initiate intracellular signaling 

cascades that lead to activation of the transcription factor NF-κB 
and increased gene expression of inflammatory response ele-
ments, particularly inflammatory cytokines. This cytokine milieu 
generates a sterile inflammatory environment and promotes 
infiltration of graft tissues with neutrophils and macrophages. 
Graft injury from infiltrating inflammatory cells contributes to a 
feed-forward loop leading to further DAMP release, intensified 
inflammation, and exacerbation of graft injury (123, 124). The 
clinical manifestation of these cellular events is the development 
of early allograft dysfunction (125). While the clinical definition 
of early allograft dysfunction differs by organ type, the common 
phenotype is insufficient physiologic function of the transplanted 
organ. In kidney transplantation, the immediate consequences 
of graft dysfunction are less severe, given the availability of renal 
replacement therapy by dialysis. However, for liver, lung, and 
heart transplantation, post-transplant graft dysfunction can be 
life-threatening.

Inflammation and thrombosis have a strong link, with sig-
nificant interplay between elements of the inflammatory and 
coagulation cascades. Extracellular nucleic acid DAMPs (RNA 
and DNA) activate factors XII and XI in the coagulation cascade, 
inducing a pro-thrombotic state (126). The observation that such 
a pro-thrombotic state can be reversed through the actions of 
nucleic acid scavengers further supports the mechanistic link 
between DAMPs and thrombosis (127). The development of a 
pro-thrombotic state following solid organ transplantation has 
important clinical implications. One of the most severe complica-
tions following solid organ transplantation is the development of 
graft thrombosis. While important technical factors contribute to 
this complication (size and quality of blood vessels, surgical tech-
nique, etc.), there is growing recognition that the pro-thrombotic 
milieu generated by DAMP signaling may be an important risk 
factor warranting further investigation.

While DAMPs have been viewed predominantly as activators 
of the innate immune system, there is growing recognition that 
DAMPs represent an important link between the innate and 
adaptive immune response following solid organ transplantation 
(128). The initial inflammatory response generated by DAMP 
signaling leads to infiltration of the graft with host immune cells, 
including DCs and macrophages. These host antigen-presenting 
cells then traffic to local lymph nodes, presenting graft antigens 
to host T  cells and initiating the adaptive immune response. 
Additionally, DAMP-mediated signaling potentiates the alloim-
mune response via increased expression of costimulatory and 
MHC molecules on antigen-presenting cells (129).

The clinical consequence of this array of molecular events is 
the development of acute allograft rejection. Allograft rejection 
is broadly categorized as either acute cellular rejection (T  cell- 
mediated process) or antibody-mediated rejection (B  cell- 
mediated process). The frequency and severity of rejection 
episodes vary greatly by organ type and by characteristics of the 
individual recipient. While acute rejection is usually reversible 
with high-dose steroid treatment, the clinical management of 
these complex patients continues to be a significant challenge 
routinely encountered by transplant physicians. Perhaps, an even 
more vexing and unsolved clinical problem in transplantation is 
the development of chronic allograft rejection. Chronic rejection 
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is characterized by an inexorable decline in graft function over 
months or years, ultimately resulting in complete graft loss. 
Although chronic rejection manifests differently by organ type, 
this poorly understood process is frequently characterized by the 
development of graft fibrosis. Growing evidence demonstrates 
that DAMP signaling in response to subclinical immune injury 
over a prolonged time frame may contribute to the development 
of graft fibrosis (129). This exciting hypothesis warrants further 
study and may yield significant progress in combating one of the 
major clinical problems still limiting solid organ transplantation.

DAMPs AND evs: CANCeR THeRAPY-
iNDUCeD FAvORAble AND ADveRSe 
eFFeCTS

Thromboembolism is the obstruction of a blood vessel by abnor-
mal clot formation in the circulation and a common fatal disease. 
Interestingly, VTE was 22-fold higher in patients with recent 
surgery, more than 12-fold higher in patients with recent trauma, 
4.1-fold higher in patients with cancer, and 6.5-fold higher in 
patients undergoing anticancer therapies compared with healthy 
people (130). It is still unclear why VTE incidence elevates in 
such patients. Moreover, a precise prediction marker of VTE is 
indecisive. A growing body of evidence has demonstrated that 
increased levels of cancer-released MPs in the blood are highly 
correlated with the incidence of VTE in various types of cancers, 
e.g., malignant melanoma (131), pancreatic cancer (132), breast 
cancer (133), and glioblastoma (134). Furthermore, the level of 
transmembrane coagulation initiator TF in the blood was posi-
tively correlated with the recurrence of VTE in cancer patients 
(132, 135). Anticancer therapies increased the release of MPs 
from cancer cells (136–139) and upregulated the expression of 
TF on malignant and non-malignant cells (140, 141).

Depending on its mode of action, certain anticancer thera-
pies, such as anthracycline chemotherapy (142, 143), radiation 
therapy (142, 144), transfection with PRR agonist polyriboin
osinic:polyribocytidylic acid (145, 146), oncolytic virotherapy 
(147), and focused ultrasound ablation therapy (148), can induce 
substantial T  cell-mediated antitumor responses. Unlike other 
cancer therapies, these anticancer therapies are known to induce 
immunogenic cancer cell death characterized by the release of 
tumor antigens and high levels of immune stimulators (DAMPs, 
adenosine triphosphate and cell-surface calreticulin) (142, 144, 
149–151). DAMPs activate innate and adaptive immune cells via 
TLR and PRR signaling (152) while adenosine triphosphate and 
calreticulin act as “find-me” and “eat-me” signals, respectively, to 
recruit DCs and promote uptake and clearance of dead cells (153, 
154). These DAMPs, find-me/eat-me signals, and tumor antigens 
cooperate to induce adaptive antitumor immune responses after 
treatment with immunogenic cancer cell death-inducing anti-
cancer agents (155). On the other hand, uncontrolled DAMPs 
released from cancer cells with antineoplastic treatments are 
known as a risk factor of SOF in cancer patients (156–159). 
Therefore, it is evident that DAMPs and EVs released from cancer 
cells treated with anticancer therapeutic agents are double-edged 
swords in cancer therapy. Further studies are needed to elucidate 

mechanisms by which DAMPs and EVs produced by anticancer 
therapies contribute to the development of adverse and favorable 
responses in cancer patients.

THeRAPeUTiCS TARGeTiNG 
UNCONTROlleD DAMPs, evs, AND 
DOwNSTReAM SiGNAlS

TlR and TlR Signaling inhibitors
Small Molecules
Eritoran, a synthetic lipid A antagonist, binds to and blocks 
the TLR4–MD2 complex. Intravenous administration of eri-
toran decreased lung injury and pulmonary inflammation and 
increased survival of mice infected with influenza (160). However, 
treatments with eritoran did not reduce mortality in patients 
with sepsis in a randomized, double-blind phase 3 clinical trial 
(161). 2-Acetamidopyranoside (C34) is a small molecule that 
tightly binds to the hydrophobic internal pocket of the TLR4–
MD2 complex (162). C34 inhibited endotoxin-simulated TLR4 
in enterocytes and macrophages in  vitro and reduced systemic 
inflammation in the mouse models of endotoxemia and entero-
colitis (162). Furthermore, C34 protected mice against acute lung 
injury after trauma/hemorrhagic shock (163). C34 has not been 
studied in humans.

TAK-242 is a small molecule TLR4 signaling inhibitor. 
TAK-242 as monotherapy failed to significantly reduce systemic 
inflammatory response, organ dysfunction, or survival in 
patients with sepsis, shock, or respiratory failure compared to a 
placebo control (164). TLR signaling pathways involve multiple 
transcription factors, e.g., NF-κB, c-Jun N-terminal kinase, 
and p38 MAPK. Inhibition of MAPK using a small molecule 
FR167653 suppressed lung heme oxygenase 1 expression and 
attenuated acute lung injury after hemorrhagic shock in mice 
(165). Furthermore, postburn treatments with MAPK inhibitor 
SB203580 prevented cardiac dysfunction after burn injury and 
resuscitation in rats (166). Interestingly, the SB203580 improved 
cardiac function but worsened lung injury and overall survival of 
mice with Escherichia coli-induced pneumonia, probably because 
of reduced innate immune response and bacteria clearance (167).

Anti-TLR Antibodies
Systemic blockade of TLR2 or TLR4 using monoclonal anti-
bodies reduced systemic and pulmonary inflammation and 
mortality after polymicrobial sepsis in mice with cecal ligation 
and puncture (168). Furthermore, treatment with anti-TLR3 
antibody attenuated ischemic gut injury and SOFs in mice with 
cecal ligation without puncture (169). A humanized anti-TLR2 
antibody, OPN-305, reduced infarct size and myocardial necrosis 
and improved cardiac function in pigs after IRI (170).

Endosomal Acidification Inhibitor
Chloroquine and its derivative hydroxychloroquine are the pro-
totype antimalaria drug. They also act as an endosomal acidifica-
tion inhibitor, thus inhibiting endosomal TLRs 3, 7, and 9 (171). 
Administration of chloroquine after cecal ligation and puncture 
attenuated sepsis-induced MOFs and mortality in mice (172). In 
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a rat hepatic IRI model, chloroquine treatment ameliorated acute 
liver injury at the early phase (0–6 h after reperfusion) but wors-
ened liver injury at the late phase of reperfusion (24–48 h after 
reperfusion) (173). The mechanism of early protective action of 
chloroquine involved the modulation of MAPK activation and 
HMGB1 release, whereas chloroquine inhibited autophagy and 
induced hepatic apoptosis at the late phase (173). In addition to 
injury prevention, chloroquine and hydroxychloroquine have 
been used as anticancer therapeutic agents (174) and immuno-
suppressive agent for rheumatic diseases, lupus erythematosus, 
skin diseases, and graft-versus-host disease after bone marrow 
transplantation (175).

Oligonucleotide
Small oligonucleotides that bind to and inhibit TLR9 protected 
mice against sepsis-induced death (176). HMGB1 is an endog-
enous ligand of TLR4 and RAGE. In addition, HMGB1 can bind 
to immune stimulatory nucleic acids and facilitate nucleic acid-
mediated innate immune stimulation (177). Non-immunogenic 
oligonucleotides were screened to bind to HMGB1 with high 
affinity but did not activate TLR9, and treatment with these 
non-immunogenic oligonucleotides protected mice against 
endotoxin-induced septic shock (177).

DAMP and ev inhibitors
Anti-HMGB1 and DNase
Because of the interconnectedness and redundancy of TLR and 
PRR signaling, the inhibition of single TLR and PRR signal 
pathways may be ineffective in ameliorating disease progress. 
Targeting upstream of TLR and PRR signal pathways would 
be more therapeutically effective than targeting downstream. 

Treatment with anti-HMGB1 antibody protected mice against 
acute lung injury after fracture and hemorrhagic shock (163). 
DNase I inhibited NET formation, and treatment with DNase I 
protected hepatocytes from cell death after IRI and significantly 
reduced IRI-induced liver injury in mice (178). Furthermore, 
intrathecal injection of DNase I prevented pulmonary endothelial 
dysfunction in rats with ventilator-associated pneumonia (179).

EV Inhibitors
Circulating exosomes after septic shock induced a statistically 
significant decrease in in vitro myocardial contractility compared 
with normal exosomes (180). Furthermore, exosomes isolated 
from septic patients induced vascular dysfunction by inducing 
reactive oxygen species generation and endothelial cell apoptosis 
(181). GW4869 is a neutral sphingomyelinase inhibitor. GW4869 
inhibits sphingolipid ceramide-dependent release of exosomes 
from MVBs (182). Treatment with GW4869 prior to endotoxin 
challenge or cecal ligation and puncture in mice significantly 
reduced the levels of circulating exosomes and diminished 
sepsis-induced cardiac inflammation, myocardial dysfunction, 
and mortality (183).

Cationic Polymer-Based DAMP and EV Scavengers
Cationic polymers have been broadly used as nucleic acid trans-
fection or drug delivery agents over the last few decades (184, 
185). We have demonstrated that certain nucleic acid-binding 
cationic polymers (NABPs), e.g., polyamidoamine dendrimer, 
hexadimethrine bromide, and β-cyclodextrin-containing 
polymer, neutralized the ability of free DNA, RNA, and inor-
ganic polyphosphate to activate nucleic acid-sensing TLRs 
(TLRs 3, 7, 8, and 9) (186) and intrinsic coagulation cascade 
(127). These NABPs were systemically administered to prevent 

FiGURe 1 | Model of damage-associated molecular pattern (DAMP)- and extracellular vesicle (EV)-induced secondary organ failure (SOF) and potential therapeutics. 
(A), (1) Sterile insults cause primary tissue damage. (2) The damaged tissue releases various pro-inflammatory and pro-coagulative mediators, such as DAMPs and 
EVs. (3) Some mediators may not be cleared in the local damaged tissue and are released into the blood and circulated into remote organs. (4) These mediators will 
induce microthrombosis and local inflammation in the remote tissues, causing microinjuries. (5) The microinjured tissue subsequently releases de novo DAMPs and 
EVs, aggravating local tissue damages. Release of DAMPs and EVs and microinjuries in the remote tissues develops a vicious cycle and induces SOF. (b) Inhibition 
of inflammation and thrombosis using pattern recognition receptor (PRR) antagonists, PRR signaling inhibitor, DAMP inhibitor, EV biosynthesis inhibitors, and nucleic 
acid-binding cationic polymer (NABP) scavengers, thereby ameliorating and preventing SOF after tissue injury.
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TLR-mediated lethal liver injury (186). Furthermore, NABP-
immobilized membranes simultaneously inhibited nucleic acid 
and non-nucleic acid DAMPs released from dead or dying cells 
or circulating in the blood of trauma patients, thereby prevent-
ing DAMP-induced inflammation and occlusive thrombosis in 
mice (187). NABP-immobilized hemoperfusion has a potential 
use during extracorporeal membrane oxygenation, continuous 
veno-venous hemofiltration, and continuous renal replacement 
therapy in intensive care units. Removing pro-inflammatory and 
pro-coagulative mediators from circulation is an unmet need in 
the treatment of critically ill patients.

CONClUSiON

Patients with sterile insults produce a host of danger signals and 
high levels of pro-inflammatory and pro-thrombotic mediators 
after cellular injury and tissue damage. We postulate that circulat-
ing pro-inflammatory and pro-thrombotic mediators will cause 
the microinjury of organs remote from the primary site of injuries 
and de novo release of the pro-inflammatory and pro-thrombotic 
mediators, thereby developing a vicious cycle of the release of 

pro-coagulative and pro-inflammatory mediators and local tis-
sue damage and subsequent development of SOFs (Figure  1). 
Breaking the vicious cycle will prevent SOF. Furthermore, pro-
coagulative and pro-inflammatory mediators will develop as early 
prediction marker(s) for late-onset SOF in patients exposed to 
sterile insults.
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