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Bacterial overgrowth and diversification of

microbiota in gastric cancer
Lili Wang?, Jianhua Zhou®, Yongning Xin?, Changxin Geng?, Zibin Tian®, Xinjuan Yu® and Quanjiang Dong®

Objective Microbiota is potentially linked to the development of cancer. However, the features of microbiota in gastric ca@
remain unclear. The aim of this study was to characterize the gastric microbiota in cancer.

Methods A total of 315 patients, including 212 patients with chronic gastritis and 103 patients with gastric cancer, were enrolled
in the study. The bacterial load of gastric mucosa was determined using quantitative PCR. To analyze the biodiversity, structure,
and composition of microbiota, amplicons of the 16S rRNA gene from 12 patients were pyrosequenced. The sequences were
processed and subsequently analyzed.

Results The amount of bacteria in gastric mucosa was estimated to be 6.9 x 10% per gram tissue on average. It was higher in
Helicobacter pylori-infected patients (7.80+0.71) compared with those uninfected (7.59 +0.57, P=0.005). An increased
bacterial load up to 7.85+0.70 was detected in gastric cancer compared with chronic gastritis (P=0.001). The unweighted
principal coordinate analysis showed that the structure of microbiota in gastric cancer was more diversified. Five genera of
bacteria with potential cancer-promoting activities were enriched in gastric cancer. The weighted principal coordinate analysis
showed that the presence of Helicobacter pylori markedly altered the structure of microbiota, but had little influence on the

relative proportions of the other members in the microbiota.

Conclusion Findings from this study indicated an altered microbiota in gastric cancer with increased quantity of bacteria,
diversified microbial communities, and enrichment of bacteria with potential cancer-promoting activities. These alterations could
contribute toward the gastric carcinogenesis. Eur J Gastroenterol Hepatol 28:261-266

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

Introduction

The human gut microbiota consists of a huge amount of
bacteria [1]. Under physiological conditions, microbiota is
vital to human health. It participates in energy metabolism,
absorption of nutrients, maturation of the intestinal
immune system, and protection from infection of patho-
gens [2,3]. Alterations in microbiota are potentially linked
to cancer. Bacteria with potential cancer-inducing activ-
ities, including Fusobacteria and Escherichia coli, have
been found to be increased in colorectal cancer [4,5].
The human stomach harbors a large number of bacteria
in addition to Helicobacter pylori [6]. Proteobacteria,
Firmicutes, Bacteroidetes, Fusobacteria, and Actino-
bacteria are predominant in gastric microbiota, although
there is considerable variation in the most abundant bac-
teria between individuals [7,8]. Gastric microbiota are
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potentially linked to the development of gastric cancer.
Germ-free transgenic mice had a delayed onset of
H. pylori-induced gastric cancer compared with specific
pathogen-free mice [9]. Intervention with antimicrobial
therapies delayed the onset of gastric cancer in transgenic
mice irrespective of H. pylori infection [10]. Feeding of
germ-free transgenic mice with an artificial intestinal
microbiota accelerated the occurrence of cancer [9].

Gastric cancer is one of leading causes of cancer-related
death. It develops through a multifactorial, multistep pro-
cess [11]. H. pylori, a major carcinogenic pathogen of
the stomach [12], initiate the mucosal inflammation, leading
to mucosal atrophy and finally cancer. Using culture-
dependent approaches, bacterial overgrowth in the stomach
has been found with a lowered acid output [13,14].
These bacteria potentially promote the production of nitrite,
leading to accumulation of carcinogenic N-nitroso com-
pounds [15,16]. Thus, it has been supposed that over-
growth of bacteria contributes toward the development of
gastric cancer [17]. However, microbiota in gastric cancer
has not been well studied. The microbial diversity, structure,
and composition in gastric cancer remain poorly under-
stood. The aim of the present study was to characterize the
microbial community in gastric cancer and explore its
potential associations with the carcinogenesis.

Methods
Patients and sample collection

A total of 315 patients, including 212 patients with chronic
gastritis and 103 patients with gastric cancer, were enrolled
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in the study. Of these, 190 were men. The average age of the
patients was 55.8+13.5 vyears. All participants were
selected from among those who underwent endoscopy
in our hospital from March 2012 to August 2014.
A written informed consent was obtained from all the
participants and the study protocol was approved by the
Medical Research Ethical Committee of Qingdao
Municipal Hospital. To minimize the potential influence on
the microbiota, all patients enrolled had not received anti-
biotics or proton pump inhibitors treatments 4 weeks before
sample collection. For patients with chronic gastritis, those
enrolled in the study had an endoscopic finding of super-
ficial gastritis only. Those with endoscopic findings of peptic
ulcer, polyps, or any other local lesions were excluded.
Patients who showed histological evidence of atrophy or
intestinal metaplasia were further excluded from this study.
These inclusion/exclusion criteria minimized the potential
compounding factors for the purpose of the study. For the
enrollment of patients with gastric cancer, only those with
an endoscopic finding of noncardia cancer were included.
Histologically, these 103 gastric cancer cases consisted of 87
intestinal-type and 16 diffuse-type cancer. Two antral
biopsies were taken from patients who underwent the
endoscopy examination. For gastric cancer, biopsies were
obtained from the antrum if possible or 5 cm away from the
cancerous lesions. One biopsy was used for routine histo-
logical examination, whereas the other biopsy was stored at
-80°C for DNA extraction. The status of H. pylori was
determined using a modified Giemsa staining [18].

DNA extraction

To extract genomic DNA, biopsies were ground and then
treated with 1U of DNase I to eliminate any potentially
foreign bacterial DNA. To increase the yield of bacterial
DNA, samples were treated with lysozyme at a final con-
centration of 50 mg/ml. Genomic DNA was then extracted
using a Qiagen DNeasy blood and tissue kit (Qiagen,
Hilden, Germany).

Quantitative PCR

To determine the bacterial load in gastric mucosa, real-
time quantitative PCR (qPCR) was performed to amplify
the bacterial 16S rRNA gene according to the report by
Harms et al. [19]. The following primers or probes were
used in the amplification: Forward primer, 1055F
(5-ATGGCTGTCGTCAGCT-3’), the reverse primer 1329R
(5'-ACGGGCGGTGTGTAC-3"), probe 16STaql115
[5'-(6-FAM)-CAACGAGCGCAACCC-TAMRA)-3'] [19].
The PCR reaction consisted of a total volume of 25 ul
containing 1 XPremix Ex Taq (Takara, Dalian, China),
0.2 umol/l each of primers, 0.2 umol/l probe, and 20 ng
DNA template. Cycling conditions included an initial
denaturation at 95°C for 30 s, followed by 50 cycles of 95°
C for 5s and 60°C for 30s. Standard curves were con-
structed with a serial dilution of a plasmid containing the
full length of the 16S rRNA gene. The bacterial load was
calculated as copy numbers of the 16S rRNA gene per
microgram DNA. To estimate the bacterial amount in the
stomach, the biopsies were weighted. The amount was
calculated as the bacterial number per gram of tissue, given
that the average copy number of the 16S rRNA gene in
each bacterium was 3.6 [20].
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To quantify H. pylori in the gastric mucosa, qQPCR was
performed essentially as described previously [21]. The
sequence of primers used to amplify ureB was 5-CAAAA
TCGCTGGCATTGGT-3’ and 5’-CTTCACCGGCTAAGG
CTTCA-3', respectively. The probe sequence was 5'-
(6-FAM)-AACAAAGACATGCAAGATGGCGTTAAAAA
CA-(TAMRA)-3'. Standard curves were constructed with a
serial dilution of a plasmid containing the full length of
ureB from H. pylori. The amount of the bacterium was
calculated as copy numbers of 16S rRNA gene per
microgram of DNA.

Pyrosequencing and data analysis

To analyze the microbial communities of gastric mucosa,
the variable V1-V3 region of the 165 rRNA gene was PCR
amplified with primers 8F/533R, which had adapters and
barcode. Amplification was carried out with 25 PCR cycles
using QS5 high-fidelity DNA polymerase. Subsequently,
amplicons were sequenced on a 454 GS-FLX system
(Roche, Mannheim, Germany). These sequences were
trimmed of sequencing primers, barcode, and adapters and
filtered using the following criteria: length>200 nt,<9
homopolymers, <0 ambiguous bases, and Q,,,<25.
Thus, a total of 147 001 reads were produced for these 12
samples. These reads were aligned. UCHIME was used to
detect and remove chimeras. Sequences with an identity
more than or equal to 97% were defined as an operational
taxonomic unit. They were classified using the Ribosomal
Database Project Naive Bayes Classifier [22]. Rarefaction
curves, alpha diversity, and beta diversity were analyzed
using QIIME (University of Colorado, Boulder, Colorado,
USA) [23]. The richness of gastric microbiota was eval-
uated with the Chaol index, which reflects the theoretical
number of species in a microbiota. The Shannon index,
which took into account the number of species and the
abundance of a species as well, was calculated to estimate
the biodiversity of gastric microbiota [23]. Using Fast
UniFrac analysis, both weighted and unweighted principal
coordinate analysis (PCoA) were carried out to determine
the similarity among the microbial communities [24]. This
analysis was used to measure the phylogenetic distance
between sets of taxa in a phylogenetic tree. The short read
sequences are available at the website of the National
Center for Biotechnology Information (study accession
number: SRP060550).

Statistical analyses

SPSS and Prism (GraphPad Software Inc., La Jolla,
California, USA) were used for statistical analyses and
graph production. Student’s -test or y*-test was used for
statistical analyses where appropriate. A P-value less than
0.05 was considered to be significant.

Results
Increased bacterial load in gastric cancer

The averaged log value of bacterial load in the gastric
mucosa was 7.69 £ 0.64 copies per microgram of DNA. To
measure the total bacterial number in gastric mucosa, all
biopsies were weighted. Given that the average copy
number of 16S rRNA in a bacterial cell was 3.6 [20], the
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amount of bacteria in gastric mucosa was determined to be
6.9 % 10® per gram of tissue. For those 212 cases of chronic
gastritis, the bacterial load in mild, moderate, and severe
gastritis was 7.53+0.57, 7.61+0.41, and 7.69+0.81,
respectively. Student’s t-test showed no significant differ-
ence (P> 0.05), suggesting that there was no association of
the amount of bacteria with the severity of the inflamma-
tion. For gastric cancer, there was no significant difference
in the bacterial load between intestinal type (7.73+0.46)
and diffuse type (7.87+0.73) of cancer (P> 0.05).

Multivariable linear regression analysis showed that the
presence of H. pylori infection had a significant impact on
the bacterial load (P <0.05), but age or sex had no influ-
ence (both P>0.05). In these patients, the prevalence of
H. pylori was 46.7% (147/315). The bacterial load in
H. pylori-positive patients was 7.80+0.71, which was
significantly increased compared with H. pylori-negative
patients (7.59+0.57, P=0.005). Moreover, the bacterial
load of gastric mucosa was correlated positively with the
amount of H. pylori (R=0.38, P<0.001) (Fig. 1). This
suggested that the infection of H. pylori was a determinant
of the bacterial amount of gastric microbiota.

The prevalence of H. pylori in chronic gastritis was
45.3% (96/212), which did not differ from that in gastric
cancer (49.5%, 51/103) (P>0.05). Compared with
chronic gastritis, the bacterial load in gastric cancer was
significantly increased (P=0.001) (Fig. 2). These results
showed that overgrowth of bacteria occurred in gastric
cancer.

Alterations of microbiota in gastric cancer

The microbial communities of gastric mucosa from 12
patients were analyzed using high-throughput sequencing of
16S rRNA amplicons. These included six patients with
chronic gastritis and six patients with gastric cancer. The
Chao 1-estimated richness in gastric cancer (985.3+242.6)
was slightly higher than that in chronic gastritis
(920.5+198.7). However, the difference was not statisti-
cally significant (P> 0.05). Shannon’s diversity index in

Bacterial load (log)

Quantity of H. pylori (log)

Fig. 1. Correlation of the bacterial load in gastric mucosa with H. pylori.
Bacterial load and quantity of H. pylori were determined using quantitative
PCR. The amount was calculated as copy numbers of the 16S rRNA gene
(or ureB for H. pylori) per microgram DNA. Linear regression analysis found
that the bacterial load was positively, although weakly, correlated with the
quantity of H. pylori in gastric mucosa (R=0.38, P<0.001). H. pylori,
Helicobacter pylori.
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gastric cancer (1.9340.52) was similar to that in chronic
gastritis (2.07£0.78) (P> 0.05). The structure of micro-
biota was explored by an unweighted unifraction analysis.
The results showed that the microbiota from chronic
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Fig. 2. The bacterial load in gastric cancer. The bacterial load of eubacteria
in gastric cancer and chronic gastritis was determined using quantitative
PCR. The amount was calculated as copy numbers of 16S rRNA gene per
microgram of DNA.
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Fig. 3. The unweighted (a) and weighted (b) principal coordinate (PC) ana-
lysis of microbiota from gastric cancer and chronic gastritis using Fast
UniFrac analysis. H. pylori-positive individuals are indicated by filled circles or
triangles. H. pylori, Helicobacter pylori.
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Fig. 4. Compositions of gastric microbiota at the phylum level. High-
throughput sequencing of amplicons of the 16S rRNA gene was performed
on 12 samples from patients with chronic gastritis (201-206) and gastric
cancer (207-212).

gastritis tended to cluster together, whereas samples from
gastric cancer were scattered in the plot (Fig. 3a). This
suggested that the structure of microbial communities was
phylogenetically diversified in gastric cancer. Composi-
tional analyses showed that Proteobacteria, Firmicutes,
Bacteroidetes, Fusobacteria, and Actinobacteria were
dominant in microbiota (Fig. 4), although the most pre-
dominant phylum varied between individuals. At the genus
level, however, five genera of bacteria were enriched in
gastric cancer. These included Lactobacillus, Escherichia—
Shigella, Nitrospirae, Burkholderia fungorum, and
Lachnospiraceae uncultured. Of particular interest,
Nitrospirae was present in all patients with gastric cancer,
but absent in patients with chronic gastritis.

Influence of H. pylori on microbial communities

Of these 12 patients, three with chronic gastritis and three
with gastric cancer were determined to be H. pylori posi-
tive. In those H. pylori-negative patients, however, five of
six had a low level of the bacterium detected (from 0.04 to
0.67%). The Chaol-estimated richness of microbiota from
H. pylori-positive patients (999.5+262.7) was not sig-
nificantly different from that from H. pylori-negative
patients (906.3+163.2) (P>0.05). Shannon’s diversity
index was markedly increased in H. pylori-positive
patients (2.42+0.58) compared with H. pylori-negative
patients (1.56+£0.39) (P<0.05), suggesting that the
quantity of H. pylori could markedly influence the diver-
sity of gastric microbiota. Weighted PCoA analysis found
that H. pylori-negative patients tended to cluster together,
whereas those infected by the bacterium were scattered
(Fig. 3b). As both analyses of Shannon’s diversity index
and weighted PCoA analysis take into account the abun-
dance, these results indicated that the quantity of H. pylori
could alter the abundance of other bacteria in the micro-
biota. This would lead finally to an alteration of the
structure of microbiota. Compositional analysis of
microbiota showed no significant difference between
H. pylori-positive and H. pylori-negative patients.
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Discussion

In this study, we found that the bacterial load in the gastric
mucosa was determined to be 6.9 x 10% per gram of tissue.
It is much lower than the abundance of bacteria present in
the intestine [25], indicating that the human stomach is
relatively hostile to the bacterial colonization [26].
Findings from the present study, however, indicated a
markedly increased bacterial load in gastric cancer.
Bacterial overgrowth in the stomach has been found in
various precancerous conditions [13,27], including hypo-
chlorhydria and mucosal atrophy. It has been suggested
that microbes in the stomach are involved in the produc-
tion of carcinogens and promotion of inflammatory inju-
ries [15,28] Thus, bacterial overgrowth is a potential
cancer-promoting factor [17]. Nonetheless, further studies
are indicated to clarify whether the bacterial overgrowth is
a consequence of cancerous mucosa that generates envir-
onments favoring bacteria proliferation. Both Chaol-
estimated richness and Shannon’s diversity index reflect
the number of species in a microbial community [29]. Our
results found that they were similar between gastric cancer
and chronic gastritis, indicating that there is no alteration
in the number of bacterial species in the microbiota from
gastric cancer. The PCoA analysis takes into account the
bacteria phylogeny [29]. In contrast to chronic gastritis,
our results showed a scattered pattern in gastric cancer.
This indicated that members of microbiota in gastric
cancer were more distantly related, suggesting a diversified
microbiota harbored in gastric cancer. Taken together,
these results indicate bacterial overgrowth of diversified
microbiota in gastric cancer. The contribution of such
alterations toward the development of cancer requires
further investigations.

The results from this study found that at the phylum
level, the composition of microbiota in gastric cancer did
not differ significantly from chronic gastritis. Nonetheless,
enrichment of five bacterial genera was found in gastric
cancer. In agreement with recent studies [30,31],
Lactobacillus and Lachnospiraceae uncultured were found
to be more abundant in gastric cancer. This possibly
reflects the reduced bactericidal capacities resulting from
the lowered acid production in the stomach [32]. A num-
ber of species from Lactobacillus have been used as pro-
biotics functioning in the prevention of infection by
pathogens [33], alleviation of inflammation, and mod-
ulating the microbiota [34,35]. However, Lactobacillus is
also capable of inducing inflammatory injuries of epithelial
cells [36]. Thus, it requires further clarification with
respect to the relationship between increased abundance of
Lactobacillus and gastric cancer. Burkholderia colonizes
the stomach and other organs [37]. It is reportedly asso-
ciated with induction of inflammation [38,39]. Our results
also found an increased abundance of Escherichia-Shigella
in gastric cancer. A similar finding has been reported in
colorectal cancer [40]. E. coli produces a genotoxic toxin,
which promotes the development of colon cancer in mice
[41]. Therefore, E. coli could be involved in the develop-
ment of gastric cancer.

Nitrate/nitrite and their metabolites are associated with
a variety of functions. Acidified nitrite is capable of killing
bacteria [32]. Nitrate could shape the intestinal microbiota
when acting as a source of energy [42]. Nitric oxide, a final
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product of nitrite reduction, is intensively involved in the
protection of mucosal integrity [43]. Importantly,
N-nitroso compounds derived from metabolisms of
nitrate/nitrite are potent carcinogens [15,16]. E. coli,
Lactobacillus, and Nitrospirae are all known to play a role
in the metabolisms of nitrate/nitrite [42,44,45]. As the level
of nitrate/nitrite increases in the gastric cancer and its
precancerous conditions [46], it could be expected that the
production of N-nitroso compounds is possibly enhanced
by these bacteria. Thus, these enriched bacteria could
participate in the carcinogenesis.

H. pylori is a major risk factor for gastric cancer. The
influence of H. pylori on gastric microbiota has not been
fully understood. Our findings showed that H. pylori
infection was associated with an increased amount of
mucosa-associated bacteria. This is possibly caused by
changes in the gastric niche induced by H. pylori.
Otherwise, it is plausible that H. pylori-infected indivi-
duals have a gastric niche favoring bacterial colonization.
It has been found that H. pylori had a major impact on the
structure of gastric microbiota [31]. This is most likely
caused simply by a takeover of other bacteria by H. pylori.
When eliminating H. pylori from the analysis of micro-
biota, the abundance of other bacteria in H. pylori-positive
patients does not alter compared with H. pylori-negative
individuals [7,8]. In agreement with this, our study found
that the diversity and structure of microbiota altered in
H. pylori-infected stomach only when analyses took into
account bacterial abundance. These results showed that
the major influence of H. pylori on microbiota is the
increased amount of bacteria in the stomach.

Gastric microbiota in cancer has been analyzed in two
recent studies [30,31]. Results from this study have con-
firmed the findings from those studies that some bacteria
were enriched in gastric cancer. Nonetheless, our study
quantified the bacterial amount in gastric cancer and
found bacterial overgrowth in cancer. In this study as well
as in two other recent studies [30,31], microbiota has been
characterized only in a small number of cases. To elucidate
the nature of microbiota in gastric cancer, studies on a
large cohort are indicated. In addition, findings from this
study require further confirmation considering that only
one biopsy was taken from each patient. This could
underestimate the presence of focal atrophy, intestinal
metaplasia, and H. pylori in gastric mucosa. Individual
microbiota is potentially influenced by host BMI, smoking,
or different strains of H. pylori [47,48]. It would be
interesting to take these factors into account in future
studies.

Conclusion

In summary, findings from this study showed that the
microbiota in gastric cancer had an increased number of
diverse bacteria. It appears that the altered microbiota
potentially have cancer-promoting activities.  The
mechanisms and pathways by which these alterations are
generated remain to be investigated in the future.
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