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a b s t r a c t

Background: Long non-coding RNA (lncRNA) is one of the most essential forms of transcripts, playing crucial 
regulatory roles in the development of cancers and diseases without protein-coding ability. It was assumed 
that short ORFs (sORFs) in lncRNA were weak to translate proteins. However, recent research has shown 
that sORFs can encode peptides, which increases the difficulty to identify lncRNA. Therefore, identifying 
lncRNAs with sORFs facilitates finding novel regulatory factors.
Results: In this paper, we propose LncCat for identifying lncRNA based on category boosting (CatBoost) and 
ORF-attention features. LncCat combines five types of features to encode transcript sequences and employs 
CatBoost to build a prediction model. In addition, the visualization comparison reveals that the ORF-at
tention features between lncRNAs and protein-coding transcripts are significantly distinct. The comparison 
results show that LncCat outperforms competing methods on several benchmark datasets. For Matthew’s 
Correlation Coefficient (MCC), LncCat achieves 0.9503, 0.9219, 0.8591, 0.8672, and 0.9047 on the human, 
mouse, zebrafish, wheat, and chicken datasets, with improvements ranging from 1.90% to 7.82%, 
1.49–17.63%, 6.11–21.50%, 3.02–51.64% and 5.35–26.90%, respectively. Moreover, LncCat dramatically im
proves the MCC by at least 11.90%, 12.96% and 42.61% on sORF test datasets of human, mouse, and zebrafish, 
respectively.
Conclusions: Experiments indicate that LncCat performs better both on long ORF and sORF datasets, and 
ORF-attention features show positive effects on predicting lncRNA. In brief, LncCat is a reliable method for 
identifying lncRNA. Additionally, a user-friendly web server is developed for academics at http://cczu
bio.top/lnccat.

© 2023 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and 
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative

commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

According to the Encyclopedia of DNA Elements (ENCODE) pro
ject, 80% of the human genome have biochemical functions. Less 
than 2% of the genome can be translated into protein, and the re
maining 98% is non-coding [1,2]. Non-coding RNAs (ncRNAs) are 
divided into two categories based on their length: lncRNAs (Long 

non-coding RNAs, length above 200 nucleotides) and small ncRNAs 
[3]. LncRNA is an essential component of ncRNA, and approximately 
70% of non-coding sequences are transcribed into lncRNAs [4]. 
LncRNAs were once considered as “noise” of transcription because of 
their lower expression level and lower sequence conservation 
compared to message RNAs (mRNAs) [5]. However, the growing 
evidence indicates that lncRNAs are a vital part of the transcripts and 
widely exist in eukaryotes [6].

Researchers have attached much attention to lncRNAs because of 
their significant regulatory functions [7]. According to [8–12], 
lncRNAs play crucial roles in metabolic processes, chromosome dy
namics, and cell differentiation. Studies revealed that lncRNAs are 
relevant to a variety of complex human diseases, such as lung cancer 
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[13], Alzheimer’s disease [14], and cardiovascular diseases [15], 
which indicates a substantial linkage between lncRNAs and disease 
[16,17]. According to Wang and Chekanova [18], lncRNAs play crucial 
roles in various biological processes in plants, including flowering 
time control, organogenesis in roots, gene silencing, photo
morphogenesis in seedlings, and plant reproduction. These lncRNAs 
regulate gene expression through different mechanisms and play a 
significant role in plant growth and development. Overall, lncRNAs 
play crucial roles in most organisms and significantly impact life 
activities [19,20]. An open reading frame (ORF) is the nucleotide 
sequence between the start codon and the nearest stop codon. Small 
ORFs (sORFs) are defined as ORFs that are less than 300 nt in length. 
RNAs with sORFs are usually considered non-coding RNA because 
their small size does not typically allow for the production of a full- 
length protein. However, recent research has shown that sORFs can 
produce small peptides with significant biological functions [21]. 
Consequently, several sequences containing sORFs were previously 
assumed to be lncRNAs, but subsequent investigation revealed their 
coding potential.

With the latest genome-wide studies, biotechnologies such as 
high-throughput technology have provided thousands of un
classified transcripts. Identifying lncRNAs is a fundamental step to 
reveal their functions and mechanisms. Based on machine learning 
technology, numerous approaches for differentiating lncRNAs from 
protein-coding transcripts (PCTs) have been developed. CPC [22]
(Coding-Potential Calculator) is a method for evaluating the coding 
potential of nucleotide sequences by comparing the sequences with 
the protein database. However, the alignment process is extremely 
time-consuming and limited by the quality of the database. Hence, 
researchers have developed several alignment-free methods to avoid 
the disadvantages caused by alignment. CPAT [23] (Coding-Potential 
Assessment Tool) builds a logistic regression model with the Fickett 
TESTCODE score [24] and hexamer score of open reading frame 
(ORF) regions [25] to assess the differences in nucleotide positions 
and codon usage between non-coding transcripts and PCTs. CNCI 
[26] (Coding-Noncoding Index) is developed by using a support 
vector machine (SVM) with adjoining nucleotide triplets (ANTs) 
matrices and codon bias. PLEK [27] (predictor of long non-coding 
RNAs and messenger RNAs based on an improved k-mer scheme) 
utilizes an improved k-mer scheme and selects SVM as its model to 
classify the sequences. CPC2 [28] is an upgrade of CPC, an alignment- 
free method based on the sequence intrinsic features. CPC2 employs 
SVM to learn the different patterns between lncRNA and PCTs. 
LncFinder [29] combines SVM with sequence intrinsic features, 
secondary structure features and EIIP-derived physicochemical fea
tures [30] to identify lncRNAs. mRNN [31] encodes RNA sequences 
with one-hot and adopts the deep learning model called Recursive 
Neural Network (RNN) to recognize lncRNA. And RNAsamba [32] is a 
neural network model to detect lncRNA by whole sequence and ORF 
information. In addition, RNAsamba can predict transcripts with 
small ORFs.

On long ORF datasets, several methods have achieved promising 
results. However, the properties of sORFs make it challenging to 
distinguish lncRNAs and PCTs, some of these approaches perform 
poorly on sORF datasets. It is necessary to develop a more accurate 
and effective model to discover new lncRNAs, especially those with 
sORFs. The discovery of new lncRNAs and their functions can help to 
better understand the novel functions of transcripts and improve our 
knowledge of gene regulation and cellular processes.

Ensemble learning is a branch of machine learning that employs 
and combines multiple learners to improve accuracy [33,34]. It can 
be divided into the Bagging algorithm [35] and Boosting algorithm. 
Bagging algorithm increases the generalizability of a model by re
ducing its variance. The Boosting algorithm transforms weak lear
ners into strong learners to improve the model’s accuracy. Boosting 
algorithm includes adaptive boosting (AdaBoost) [36], gradient 

boosting decision tree (GBDT), extreme gradient boosting (XGBoost) 
[37], light gradient boosting machine (LightGBM) [38], and catego
rical boosting (CatBoost) [39]. GBDT and AdaBoost are the most 
popular boosting algorithms. XGBoost and CatBoost are the im
provements of GBDT and show promising performance in biology 
and medicine [40–42]. Although many studies have attempted to 
apply these methods for bioinformatics, CatBoost is faster, more 
flexible, and more sensitive.

In this article, we propose a new method named LncCat, which 
fuses multiple sequence features and employs the CatBoost to build 
the prediction model to distinguish lncRNAs from PCTs. First, four 
types of sequence-derived features are collected, including codons- 
related, GC-related, sequence-related, and peptide-related features. 
Additionally, LncCat introduces ORF-attention features derived from 
ORFs. Second, the prediction model is constructed by using the 
CatBoost algorithm and the above sequence-based and ORF-atten
tion features. And then, to validate the model, LncCat is compared 
with eight state-of-the-art methods (CPAT, CNCI, PLEK, CPC2, 
LncFinder, CPPred, mRNN, and RNAsamba) on five species datasets. 
In addition, LncCat is validated on three datasets with sORFs. In 
terms of Matthew’s Correlation Coefficient (MCC), the compared 
results show that LncCat outperforms other methods on five species 
datasets and achieves improving MCC by at least 11.90%, 12.96%, and 
42.61% on the human-sORF dataset, mouse-sORF dataset, and zeb
rafish-sORF dataset, respectively. Finally, a web server is developed 
and deployed on http://cczubio.top/lnccat/. The source code and 
datasets are accessible at https://github.com/a525076133/LncCat.

2. Materials and methods

2.1. Datasets

Previous research suggests that a rigorous dataset is essential for 
building a reliable prediction model. The datasets of this study are 
sourced from Han’s [29] and Tong’s [43] studies. In Tong’s study, 
human coding sequences are collected from NCBI RefSeq [44], and 
human ncRNAs, mouse, and zebrafish datasets are downloaded from 
Ensembl [45]. In Han’s study, human and mouse datasets are ob
tained from GENCODE [46], and zebrafish and wheat datasets are 
obtained from Ensembl. Both databases contain ncRNAs and PCTs 
annotated manually. Since datasets between or within two data
bases may overlap, the open-source program CD-HIT [47] is used to 
reduce the redundancy of the datasets by a threshold of 80% to get a 
rigorous dataset. After that, ncRNAs with the length shorter than 200 
nt are eliminated. Finally, the dataset is divided into training, vali
dation, and test datasets, which account for 70%, 10%, and 20% of the 
total, respectively. All datasets are summarized in Table 1.

2.2. Sequence encoding methods

In this experiment, five types of features are introduced to con
struct the prediction model. First, codon-related, guanine-cytosine 
(GC)-related, and sequence-related features are extracted, which can 
be calculated directly from the sequence. Second, the peptide-re
lated features are extracted from PCT- or lncRNA-encoded peptides 
or putative peptides. Third, because of the significance of ORF in 
coding sequences, ORF-related features are extracted, such as ORF 
length and ORF coverage. Finally, to investigate the efficacy of ORF- 
attention features, 1) the codon-related, GC-related, sequence-re
lated, and peptide-related features of the top three longest ORFs are 
extracted, and 2) pre-training model based on Bidirectional Encoder 
Representations from Transformers (BERT) is used to enhance ORF 
information by encoding whose translating peptide sequences.
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2.2.1. Codon-related features
In molecular biology, a codon is a nucleotide triplet in RNA. 

Panwar B et al. [48] have revealed that codons of lncRNAs and PCTs 
are typically distinct, and several codon-related features have been 
utilized to predict lncRNA. A stop codon is a codon that indicates the 
end of protein translation. Stop codon count is the number of stop 
codons in the transcript. Stop codon frequency is calculated by di
viding the number of stop codons in the transcript by the length of 
the transcript. Another frequently used codon-related feature is the 
Fickett TESTCODE score [24], also known as the Fickett score. The 
Fickett score for a particular transcript is derived from the weighted 
nucleotide frequency of the entire transcript.

2.2.2. GC-related features
GC content is the proportion of guanine (G) or cytosine (C) ni

trogenous base in an RNA or DNA sequence. A previous study has 
revealed that the GC content of coding regions is typically higher 
than non-coding sequences [49]. GC1, GC2, and GC3 can be calcu
lated as the proportion of G and C in the first, second, and third 
codon positions, respectively. GC frame score refers to the variance 
of the number of GCs content in the three ORFs. The same method 
can get the GC1 frame score, GC2 frame score, and GC3 frame score.

2.2.3. Sequence-related features
Recent research has shown the feasibility of transcript-derived 

features for lncRNA identification [50]. The sequence length is cal
culated directly from the sum of the nucleotides in the sequence. K- 
mer refers to a specific subsequence comprising k nucleotides, which 
is one of the most frequently used features in lncRNA identification. 
Composition, Transition, and Distribution (CTD) refer to the de
scriptors of the entire transcript sequence based on the nucleotides’ 
composition, transition, and distribution. Hexamer-based features 
are variants of the k-mer features. Hexamer-based features measure 
the hexamer usage bias between coding and non-coding sequences, 
including hexamer usage bias or hexamer score, distance to PCTs, 
and distance ratio.

2.2.4. Peptide-related features
Peptide-related features refer to the properties of the peptide or 

putative peptide encoded by the ORF or putative ORF of the RNA 
sequence. Peptide-related features are important indicators because 
there are numerous different properties in terms of the sequence 
structure between lncRNAs and PCTs. For instance, Kang et al. [30]
assume that the chemical properties of peptides encoded by coding 
sequences differ from those of putative peptides generated by non- 
coding sequences. Therefore, Some of these features, including 
molecular weight (Mw), theoretical isopotential point (PI), and 
measures of hydrophilicity (Gravy) and stability (Instability index), 
are introduced to identify lncRNA.

2.2.5. ORF-attention features
ORF is a reading frame that has translated potential. ORF-related 

features are one of the most important features to identify lncRNA 
because the PCT’s ORFs are generally longer than lncRNA’s. And 
many ORF-related features are explored and employed for lncRNA 
identification. ORF length is an essential feature for distinguishing 
lncRNAs and PCTs since long putative ORFs are few in lncRNA se
quences. ORF coverage is the ratio between the length of the longest 
ORF and the transcript length. Besides the above features, ORF-at
tention features are also introduced. The ORF-attention features are 
derived from the codon-related, GC-related, sequence-related, and 
peptide-related features of the longest ORFs or putative ORFs. 
Furthermore, a recently proposed ORF-dominance feature [51] has 
been proven effective for classifying LncRNAs and PCTs, which is 
used to build models on small ORF datasets.

Orfipy [52] is a tool written in Python programming language 
that can extract ORF more efficiently. Orfipy implements a core ORF 
search algorithm implemented by Cython technology. The entire 
sequence is input to extract ORFs by the default parameters. Gen
erally, the translation of eukaryotes starts from the ATG. In rare 
cases, translation in eukaryotes can be initiated from codons other 
than ATG. A well-documented case is the GTG start of a ribosomal P 
protein of the fungus [53]. Other examples, such as [54–57], can start 
from ATG and TTG. Orfipy utilized Standard Code (transl table=1), 
which included the start codons (ATG, TTG, and CTG) and the stop 
codons (TAA, TAG, and TGA). All translation tables provided by Orfipy 
are accessible at https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/ 
wprintgc.cgi?chapter=cgencodes.

2.2.6. Pre-trained ORF BERT
BERT is a machine learning technique based on a transformer for 

natural language processing (NLP), which has achieved state-of-the- 
art performance in various fields [58]. In addition, BERT comprises 
stacked transformer encode layers. BERT can accurately capture the 
bidirectional contextual information of texts to encode raw se
quences. However, an ORF may be longer than 1000 nt, and BERT is 
not good at processing long sequences because of the increased 
memory and time consumption. The peptide sequences translated 
by the longest ORF in lncRNAs or PCTs sequences are used, which 
reduces the sequence length to one-third so that BERT can effectively 
process it. The pre-trained BERT model can get the vector re
presentation of the sequence by contextual information, which can 
help capture the potential information of ORF and improve the ac
curacy of the prediction.

2.3. Constructing LncCat model

CatBoost is a new gradient-boosting decision tree (GBDT) algo
rithm that can handle the features in the training phase. CatBoost 
employs unbiased gradient estimation to solve the over-fitting issue. 
In addition, CatBoost can work with categorical features with 
minimal information loss. Moreover, CatBoost can be executed on 

Table 1 
Summary of the five species datasets. 

Species Database Coding sequences LncRNAs

Training Validation Test Training Validation Test

Human RefSeq, 
Ensembl, 
GENCODE

16, 072 2, 296 4, 592 14, 756 2, 108 4, 217

Mouse Ensembl, 
GENCODE

14, 494 2, 071 4, 142 7, 494 1, 071 2, 142

Zebrafish Ensembl 11, 123 1, 589 3, 179 3, 066 439 877
Wheat Ensembl 3, 284 470 939 3, 763 538 1, 076
Chicken Ensembl 4, 706 673 1, 345 2, 727 390 780
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GPU to accelerate the training process. Because of the above ad
vances, CatBoost is implemented as a classifier for lncRNA identifi
cation. In this experiment, CatBoost is used to build the classification 
model using the five types of features listed above. The framework of 
this study is displayed in Fig. 1. First, RNA sequences of five different 
species are collected from NCBI RefSeq, GENCODE, and Ensembl. 
Second, five types of features are calculated from the sequences, 
including codon-related, GC-related, sequence-related, peptide-re
lated features, and ORF-attention features. Next, LncCat is built by 
CatBoost with the above features to identify lncRNAs. And then, 
LncCat is compared with eight different methods and evaluated by 
seven standard metrics. Finally, a user-friendly web server is de
veloped and freely available for academics.

2.4. Evaluation metrics

To comprehensively evaluate the performance of LncCat, seven 
commonly used evaluation metrics are employed, including accu
racy (ACC), sensitivity (SEN/Recall), specificity (SPE), F-measure (F1), 
precision (PRE), Matthew’s correlation coefficient (MCC), and area 
under the ROC curve (AUC). And the metrics are calculated by the 
following equations:

=
+

SEN
TP

TP FN (1) 

=
+

SPE
TN

TN FP (2) 

= +
+

ACC
TP TN

P N (3) 

= ×
× + +

F1
2 TP

2 TP FP FN (4) 

=
+

PRE
TP

TP FP (5) 

= × ×
+ × + × + × +

MCC
TP TN FP FN

(TP FP) (TP FN) (TN FP) (TN FN) (6) 

Where TP, TN, FP, and FN represent the number of true positives, true 
negatives, false positives, and false negatives, respectively. In our 
evaluation, lncRNAs are labeled as the positive class, and PCTs are 
labeled as the negative class. ACC is used to evaluate the overall 
predictive capability of the prediction model. And MCC is a more 
reliable indicator [59] that produces a high score only when the 

Fig. 1. The framework of LncCat. First, lncRNAs and PCTs of five species are collected from GENCODE, Ensembl, and RefSeq. And then, sequences with similarity >  80% are removed 
by CD-HIT; Second, transcripts are encoded by codon-related, GC-related, sequence-related, peptide-related, and ORF-attention features; Third, build a CatBoost classifier with the 
above five types of features; Finally, LncCat is compared with eight state-of-the-art methods on seven main metrics; A user-friendly web server is developed and freely available 
for academics.
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prediction performs well in all four confusion matrix categories (true 
positive, false negative, true negative, and false positive), which is 
proportional to the size of both the positive and negative elements in 
the dataset. The receiver operating characteristic (ROC) curves are 
generated by plotting the false positive rate (1-SP) versus the 
number of false positives (SN) for different cutoff thresholds. The 
AUC score is the area under the ROC curve. The ROC curve serves as a 
visual representation of the overall performance.

2.5. The methods used in experiments

The methods involved in the comparison include CPAT [23], CNCI 
[26], CPC2 [28], LncFinder [29], PLEK [27], CPPred [43], mRNN [31], 
and RNAsamba [32]. SVM is used by the CNCI, PLEK, CPC2, LncFinder, 
and CPPred algorithms. CPAT employs logistic regression. RNAsamba 
and mRNN are based on deep learning methods. According to their 
respective manuals, CPPred and RNAsamba can process the sORF 
dataset. Table 2 lists the version and website.

3. Experimental result

3.1. Feature visualization on five species datasets with and without 
ORF-attention

The features used by LncCat have been described previously. To 
better demonstrate the impact of ORF-attention features on the 
model, Uniform Manifold Approximation and Projection (UMAP) is 
used to visualize the distribution of lncRNAs and PCTs to illustrate 
the effect of ORF-attention features. The features are mapped into 
two-dimensional spaces. The distributions of five species sequences 
without ORF-attention features are shown in Fig. 2-(1)s. The dis
tributions of five species sequences with ORF-attention features are 
shown in Fig. 2-(2)s. It can be observed that sequences without ORF- 
attention features are not adequately divided into two clusters. With 
the addition of ORF-attention features, LncCat can effectively dif
ferentiate between lncRNAs and PCTs, which demonstrates the ef
fectiveness of ORF-attention features. In addition, Supplementary 
Table S1–1 provides a comprehensive description of all features of 
this experiment. Figs. S1–1 to Figs. S1–S5 show the feature im
portance of each feature.

3.2. Evaluations by comparison with state-of-the-art methods on five 
datasets

In this section, LncCat is compared with eight methods, including 
CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN and RNAsamba on 
five species datasets, including human (Homo sapiens), mouse (Mus 
musculus), zebrafish (Danio rerio), wheat (Triticum aestivum), and 
chicken (Gallus gallus). For CPAT, CNCI, LncFinder and PLEK, the re- 
trained models are constructed by the same datasets as LncCat for a 
comprehensive and fair comparison.

The first comparison is on the human dataset. Table 3 displays 
the main metrics for each method.

From Table 3, LncCat outperforms other methods with F1 of 
0.9742 and MCC of 0.9503, followed by PLEK (F1: 0.9645; MCC: 
0.9313). In addition, LncCat achieves the highest ACC and AUC (ACC: 
0.9751; AUC: 0.9966). CNCI achieves an MCC of 0.8721, which is 
slightly inferior to CPAT. PLEK reaches the highest SEN of 0.9825, 
indicating its strong ability to predict positive classes. CPPred has a 
0.33% advantage over CPC2 in F1 and a 0.06% advantage in MCC. In 
terms of deep learning methods, RNAsamba achieves greater MCC 
and F1 than mRNN (RNAsamba: F1, 0.9628, MCC, 0.9308; mRNN: F1, 
0. 9540, MCC, 0. 9122).

In addition, nine methods are evaluated on the mouse dataset, as 
it is one of the most important species. CPC2 is a species-neutral 
classification method that can be applied to the transcriptions of 
non-model organisms. Table 4 displays the performance of the dif
ferent methods on the mouse dataset. For the mouse dataset, LncCat 
achieves the best performance among these methods with F1 of 
0.9487 and MCC of 0.9219. In addition, ACC and AUC are the highest 
as well. PLEK performs poorly on the mouse dataset, obtaining only 
an MCC of 0.7456. The MCC of CPC2 and CNCI is comparable. The 
MCC of CPC2 is 0.8661, while the MCC of CNCI is 0.8687. LncFinder is 
inferior to LncCat but superior to other methods, with F1 of 0.9391 
and MCC of 0.9070. Neither mRNN nor RNAsamba is satisfactory, 
with MCC values of 0.5971 and 0.6664, respectively.

To visually demonstrate the performance of each method, the 
ROC curves of the nine methods on the human and mouse datasets 
are shown in Fig. 3. LncCat achieves the highest AUC on human and 
mouse datasets, with an AUC score of 0.9966 and 0.9920, respec
tively. On the human dataset, PLEK achieves an AUC of 0.9918, which 
is the second-best method; however, on the mouse dataset, it only 
achieves 0.9532. CPPred achieves an AUC of 0.9843, which is 0.0210 
greater than LncFinder. But in MCC, LncFinder is 0.0207 higher than 
CPPred. RNAsamba gets the second highest AUC (AUC: 0.9943) on 
the human dataset but only gets an AUC of 0.9021 on the mouse 
dataset. MCC and F1 are more reliable metrics for unbalanced da
tasets. Therefore, F1 and MCC bar charts of human and mouse da
tasets are plotted and displayed in Fig. S1–6 and Figs. S1–S7.

The comparison methods are evaluated on the other three spe
cies: zebrafish, wheat, and chicken. The MCC and F1 of nine methods 
on three datasets are shown in Fig. 4 (A, B). On zebrafish, wheat, and 
chicken datasets, the MCC of LncCat achieves 0.8858, 0.7971, and 
0.8735, showing an improvement ranging from 6.11% to 21.50%, 
3.02–60.60%, and 5.34–26.91%, respectively. On wheat datasets, 
LncFinder achieves the highest SEN with 0.9582, while CPPred 
achieves the highest SPE with 0.9286. However, LncCat is more 
comprehensive, with the highest MCC and F1. RNAsamba does not 
perform well on wheat, possibly because it is unsuitable for the 
plant. As shown in Fig. 4 (C, D, and E), LncCat outperforms the other 
eight methods with an AUC of 0.9827 for zebrafish, 0.9780 for wheat, 
and 0.9882 for chicken, which is 3.16%, 2.16%, and 1.64% higher than 
the second-best method, respectively. More detailed metrics for 
each method are shown in Table S1–2 to Tables S1–S5.

3.3. Distribution of the predicting score

The predicting score indicates the possibility that a transcript is a 
lncRNA or PCT. A heatmap of prediction scores provides a visual 
representation of each method’s classification capability. As shown 
in Fig. 5, the darker color indicates a higher probability that the 
transcript is lncRNA, whereas a lighter color means a higher prob
ability that the transcript is PCT. LncCat is in the last column with a 
clear distinction between lncRNAs and PCTs.

Table 2 
The version and website of eight compared methods. 

Methods Version Website

CPAT v3.0.0 http://cpat.readthedocs.io/en/latest
CNCI version 2 http://www.bioinfo.org/software/cnci
CPC2 v1.0.1 http://cpc2.cbi.pku.edu.cn
LncFinder v1.1.5 http://github.com/HAN-Siyu/LncFinder
PLEK v1.2 http://sourceforge.net/projects/plek
CPPred - http://www.rnabinding.com/CPPred
mRNN - http://github.com/hendrixlab/mRNN
RNAsamba - http://github.com/apcamargo/RNAsamba
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Fig. 2. Distribution of lncRNAs and PCTs on five datasets. (1)s represent the distribution of RNA sequences without ORF-attention on human, mouse, zebrafish, wheat, and chicken 
datasets. (2)s represent the distribution of RNA sequences with ORF-attention on human, mouse, zebrafish, wheat, and chicken datasets.
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3.4. The comparison of different cutoff values

The optimal cutoff values for predicting scores may vary in dif
ferent species, and utilizing inappropriate cutoff values can cause 
poor results. The MCC and F1 corresponding to different cutoff va
lues for five species datasets are presented in Tables 5 and 6. When 
MCC and F1 achieve optimum, the cutoff varies between 0.4 and 0.6. 
In this experiment, the cutoff value is set at 0.5, which means that 
the prediction score is greater than or equal to 0.5 for lncRNA and 
less than 0.5 for PCT. Detailed evaluation results of cutoff values are 
shown in Table S1–7 to Tables S1–S11.

3.5. The performance of LncCat on cross-species datasets

The cross-species experiments are conducted to validate the 
generalization of LncCat. Fig. 6 shows the MCC of five species models 
validated on five species datasets. The vertical coordinate refers to 
the different species models, and the horizontal coordinate indicates 
different species datasets. The intersection indicates the MCC of a 
species model on a species dataset. From Fig. 6, the model performs 
best when the dataset is the same species as the model. The human 
model is validated on mouse and zebrafish datasets, achieving an 
MCC of 0.93 and 0.90, respectively. Human, mouse, and zebrafish 

Table 3 
Comparison of LncCat and eight methods on the human dataset. 

Methods PRE SEN SPE ACC F1 MCC AUC

CPAT 0.9330 0.9405 0.9379 0.9392 0.9367 0.8782 0.9835
CNCI 0.8967 0.9753 0.8968 0.9344 0.9343 0.8721 0.9271
CPC2 0.9391 0.9476 0.9436 0.9455 0.9433 0.8909 0.9865
LncFinder 0.9515 0.9675 0.9547 0.9608 0.9594 0.9217 0.9873
PLEK 0.9472 0.9825 0.9497 0.9654 0.9645 0.9313 0.9918
CPPred 0.9389 0.9545 0.9429 0.9485 0.9466 0.8969 0.9872
mRNN 0.9592 0.9488 0.9630 0.9562 0.9540 0.9122 0.9774
RNAsamba 0.9837 0.9429 0.9856 0.9651 0.9628 0.9308 0.9943
LncCat 0.9666 0.9819 0.9688 0.9751 0.9742 0.9503 0.9966

Table 4 
Comparison of LncCat and eight methods on the mouse dataset. 

Methods PRE SEN SPE ACC F1 MCC AUC

CPAT 0.9138 0.9099 0.9556 0.9400 0.9119 0.8664 0.9796
CNCI 0.8687 0.9641 0.9247 0.9381 0.9139 0.8687 0.9473
CPC2 0.8871 0.9393 0.9382 0.9386 0.9125 0.8661 0.9805
LncFinder 0.9183 0.9608 0.9558 0.9575 0.9391 0.9070 0.9822
PLEK 0.7754 0.9057 0.8643 0.8784 0.8355 0.7456 0.9532
CPPred 0.8953 0.9580 0.9421 0.9475 0.9256 0.8863 0.9843
mRNN 0.7384 0.9466 0.6064 0.7901 0.8297 0.5971 0.8460
RNAsamba 0.8081 0.9074 0.7470 0.8336 0.8548 0.6676 0.9021
LncCat 0.9296 0.9687 0.9620 0.9643 0.9487 0.9219 0.9920

Fig. 3. Comparison of CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba and LncCat by ROC curves. (A) ROC curves on the human dataset. (B) ROC curves on the mouse 
dataset.
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models perform well on each other’s datasets but poorly on wheat, 
with MCC of 0.67, 0.63, and 0.66. One hypothesis is that the plant 
and animal RNAs are far from homology. When species differ sig
nificantly, re-training with new datasets is necessary. When species 
differ significantly, it is necessary to re-training the model with new 
datasets.

3.6. The comparison on the small ORFs datasets

LncCat outperforms other methods on the above five datasets, 
and other methods also achieve acceptable results. But most of them 
are not designed for the datasets with sORFs. In addition, LncCat and 
eight methods were validated on three sORF datasets. The sORF test 
datasets of human, mouse, and zebrafish are collected from [43], 
which are derived from Ensembl. Human-sORF test dataset contains 
639 lncRNAs and 641 PCTs. The mouse-sORF test dataset contains 
993 lncRNAs and 846 PCTs. The zebrafish-sORF test dataset contains 
497 lncRNAs and 387 PCTs. The sORF test datasets do not overlap 
with the preceding long ORFs datasets and can be used as in
dependent test datasets. The summary of the sORF test datasets is 
shown in Table 7.

The MCC and F1 of nine methods on three sORF datasets are 
shown in Tables 8 and 9. Two bar charts are plotted in Fig. 7 (A, B). 
LncCat exhibits significant advantages on three sORF datasets, with 
MCC leading by at least 11.90%, 12.95%, and 42.61% on human-sORF, 
mouse-sORF, and zebrafish-sORF datasets, respectively. CPC2 per
forms poorly on sORF datasets and even achieves a negative MCC on 
the zebrafish-sORF dataset. PLEK performs adequately on the 
human-sORF dataset but poorly on the other two datasets. RNA
samba achieves the second-best MCC on the mouse-sORF dataset, 
but the MCC is still 12.95% lower than LncCat. On the zebrafish-sORF 

dataset, the MCC between LncCat and the second-best method 
comes to 42.61%. The F1 of LncCat on the human-sORF dataset is 
11.90% higher than PLEK. The F1 of LncCat improves by 5.49% and 
20.14% for the mouse-sORF dataset and zebrafish-sORF dataset, re
spectively. Detailed metrics are displayed in Tables S12 to S14.

Fig. 7 (C, D, E) shows the ROC curves of nine methods on three 
sORF datasets. LncCat acquires the best AUC. On the human-sORF 
dataset, PLEK is 3.00% inferior to LncCat and outperforms the other 
methods with an AUC of 0.9553. The ROC curve of PLEK is steeper 
than LncCat’s initially, but the inflection point appears earlier, and 
the AUC score is lower than LncCat’s. On the mouse-sORF dataset, 
LncCat achieves a 7.56% advantage over the second-best method 
(LncCat: 0.9777; RNAsamba: 0.9021). CNCI performs poorly on three 
sORFs datasets, achieving 0.5847, 0.6221, and 0.5876 for the human- 
sORF, mouse-sORF, and zebrafish-sORF datasets, respectively. On the 
mouse-sORF dataset, the ROC curve of CPAT is nearly a straight line. 
Consequently, LncCat is a stable and efficient method and performs 
well on long ORFs and sORF datasets.

The heat maps of predicting scores on three datasets are shown 
in Fig. 8. It can be observed that LncCat can effectively distinguish 
lncRNAs and PCTs. The method with poor performance does not 
show a clear boundary between lncRNAs and PCTs.

3.7. Comparison Ribo-seq datasets

In some public datasets, the annotation of LncRNAs is simple, and 
transcripts are considered LncRNAs because of lacking sufficient long 
ORFs. Many of these transcripts are subsequently discovered to have 
coding potential or even to contain functional sORFs. Some peptides 
translated by sORFs are much shorter than most known proteins but 
play vital functional roles in various organisms. The emergence of 

Fig. 4. (A) MCC of CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba, and LncCat on zebrafish, wheat, and chicken datasets. (B) F1 of nine methods on zebrafish, wheat, 
and chicken datasets. ROC curves of nine methods on (C) zebrafish, (D) wheat, and (E) chicken datasets.
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Fig. 5. The distribution of predicting score heatmaps on (A) human, (B) mouse, (C) zebrafish, (D) wheat, and (E) chicken datasets. 

Table 5 
MCC corresponding to different cutoff values on five species datasets. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Human 0.9393 0.9462 0.9486 0.9507 0.9503 0.9493 0.9479 0.9457 0.9368
Mouse 0.9081 0.9171 0.9203 0.9209 0.9219 0.9250 0.9228 0.9213 0.9103
Zebrafish 0.8368 0.8421 0.8462 0.8535 0.8521 0.8450 0.8466 0.8465 0.8435
Wheat 0.8447 0.8536 0.8613 0.8629 0.8672 0.8649 0.8634 0.8624 0.8465
Chicken 0.8789 0.8950 0.9012 0.9051 0.9047 0.9043 0.9009 0.8994 0.8851
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ribosome profiling (also known as ribosome sequencing, Ribo-seq) 
[60] has significantly facilitated the comprehension of the transla
tional dynamics within the cell. Ribo-seq can systematically monitor 
the cell translation process, identify which regions of a message are 
being translated, and help to determine the proteome of complex 

organisms. Therefore, using the data validated by Ribo-seq is more 
persuasive.

Study [61] provides 7264 Ribo-seq ORFs, involving a consensus 
set of Ribo-seq ORFs identified by seven recent experimental pub
lications mapped to GENCODE version 35 annotations. The tran
scripts (LncRNAs and PCTs) are obtained by mapping the transcript 
IDs from the annotation files to the GENCODE version 35. The 
transcripts are divided into the training dataset, test dataset, and 
validation dataset in the proportion of 7:2:1. Table 10 provides the 
details of the datasets.

From Table 11 and Fig. 9, LncCat obtains an MCC of 0.8004, which 
is 6.34% higher than the second-best method mRNN. The deep 
learning methods mRNN achieves an MCC of 0.7370, and RNAsamba 
achieves an MCC of 0.7254. But CPAT misclassifies many coding se
quences into non-coding sequences. Although CPPred obtains the 
highest SEN, it misclassifies many coding sequences, which leads to 
poor performance. LncFinder achieves an ACC of 0.8877, which is 
higher than mRNN and RNAsamba (mRNN: 0.8816; RNAsamba: 
0.8840), but its MCC is only 0.6983.

K-fold cross-validation can ensure that all points are considered 
at least once. We validate LncCat with 5-fold cross-validation and 
10-fold cross-validation on the Ribo-seq dataset. The performance of 
each fold is shown in Tables 12 and 13. Overall, LncCat can achieve a 
stable and satisfactory performance for each fold.

3.8. Integration model

There is insufficient data to construct a prediction model for 
unexplored and unannotated species. A multi-species integrated 
model is built for these underexplored species as a reference. The 
training dataset combines human, mouse, zebrafish, wheat, and 
chicken training datasets. And LncCat is compared with CPAT, CNCI, 
CPC2, LncFinder, PLEK, CPPred, mRNN, and RNAsamba on integrated 
test datasets and sORF integrated test datasets. Table 14 and Table 15
show the main metrics of the nine methods.

As shown in Table 14, LncCat achieves MCC of 0.9236 and F1 of 
0.9537, which improves the MCC and F1 from 4.58% to 15.82% and 
2.80–9.41%, respectively. Table 15 shows that the performance of 
LncCat on the sORF-integrated dataset is also satisfactory.

Table 6 
F1 corresponding to different cutoff values on five species datasets. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Human 0.9685 0.9721 0.9734 0.9744 0.9742 0.9737 0.9728 0.9715 0.9664
Mouse 0.9393 0.9454 0.9476 0.9481 0.9488 0.9508 0.9492 0.9480 0.9402
Zebrafish 0.8716 0.8763 0.8798 0.8856 0.8846 0.8789 0.8796 0.8786 0.8744
Wheat 0.9291 0.9333 0.9368 0.9375 0.9393 0.9381 0.9371 0.9360 0.9266
Chicken 0.9236 0.9340 0.9379 0.9404 0.9401 0.9397 0.9373 0.9358 0.9255

Fig. 6. The MCC of LncCat on cross-species datasets. 

Table 7 
Summary of the sORF datasets. 

Datasets LncRNAs PCTs

Human-sORF 639 641
Mouse-sORF 993 846
Zebrafish-sORF 497 387

Table 8 
MCC of nine methods on three small ORF datasets. 

Species CPAT CNCI CPC2 LncFinder PLEK CPPred mRNN RNAsamba LncCat

Human 0.2866 0.3982 0.1344 0.2390 0.7668 0.4484 0.6044 0.7404 0.8858
Mouse 0.2884 0.4101 0.1404 0.4754 0.4019 0.4868 0.5971 0.6676 0.7971
Zebrafish 0.1965 0.1968 -0.0869 0.3824 0.3549 0.2783 0.2812 0.4473 0.8735

Table 9 
F1 of nine methods on three small ORF datasets. 

Species CPAT CNCI CPC2 LncFinder PLEK CPPred mRNN RNAsamba LncCat

Human 0.7049 0.7362 0.6722 0.6934 0.8871 0.7543 0.8153 0.8751 0.9431
Mouse 0.7302 0.7665 0.7056 0.7868 0.7626 0.7907 0.8297 0.8548 0.9098
Zebrafish 0.6874 0.7033 0.6544 0.7435 0.7423 0.7120 0.6715 0.7043 0.9449
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Fig. 10 shows the ROC curves for the integrated and sORF-in
tegrated datasets. LncCat achieves an AUC of 0.9915, which is higher 
than other methods on the integrated dataset ranging from 1.64% to 
6.30%. On the sORF-integrated dataset, The AUC of LncCat outper
forms the second-best method by 13.05%.

The comparison results demonstrate that LncCat can provide fa
vorable overall performance, and we expect LncCat will provide a 
reliable reference for underexplored species. The detailed results are 
shown in Tables S1–15 and S1-S16. The MCC and F1 of nine methods 

Fig. 7. MCC (A) and F1 (B) of CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba and LncCat on three small ORF datasets. ROC curves of nine methods on (C) human- 
sORF, (D) mouse-sORF and (E) zebrafish-sORF datasets.

Fig. 8. The distribution of predicting score heatmaps on (A) human-sORF dataset, (B) mouse-sORF dataset, and (C) zebrafish-sORF dataset. 

H. Feng, S. Wang, Y. Wang et al. Computational and Structural Biotechnology Journal 21 (2023) 1433–1447

1443



on integrated and sORF-integrated datasets are shown in Figs. S1-S8
and S1–S9.

4. Discussion

Many new lncRNAs and PCT have been generated since the ad
vance of sequencing technology. Previous research has shown that 
lncRNAs are linked to human diseases and play roles in various 
cancers. The identification of lncRNAs is an important first step in 
exploring their functions and mechanisms. Previous methods have 
produced satisfactory results on long ORF datasets, but identifying 
sequences with sORFs remains challenging.

In previous studies, ORF length and ORF coverage have shown 
strong classification ability and are wildly used to predict lncRNA 
with long ORFs. Based on the clues, the ORF-attention features are 
constructed from the top three longest ORFs, including codons-re
lated, GC-related, sequence-related, and peptide-related features. 
Additionally, the pre-trained BERT model has shown effectiveness in 
representing protein sequences. The attention mechanism in BERT 
allows it to capture the dependencies between the amino acids in a 
peptide sequence. Therefore, LncCat employs the BERT model to 
represent peptide sequences encoded by ORFs as a part of ORF-at
tention features. Furthermore, to enhance the feature abundance, 
ORF-attention features source from the top three longest ORFs. The 
comparison results indicate ORF-attention features can deeply ex
cavate potential information in the ORFs. Moreover, to cover the 
non-ORF region, widely used lncRNA features are merged to gen
erate the final feature spaces. Finally, a 599-dimensional feature 
vector is obtained to identify lncRNA.

CatBoost is a high-performance gradient boosting implementa
tion. LncCat employs CatBoost to construct the prediction model 
with the above features to identify lncRNA on five species datasets 
and the Ribo-seq dataset. According to comparison experimental 
results, LncCat improves MCC by at least 1.90%, 1.49%, 6.11%, 3.02% 
and 5.34% on the human, mouse, zebrafish, wheat and chicken da
tasets. For sORF datasets, LncCat achieves a considerable improve
ment and increases the MCC by at least 11.90%, 12.96%, and 42.61% 
on the human-sORF dataset, mouse-sORF dataset, zebrafish-sORF 
dataset. The stable performance of LncCat on the long ORFs datasets 
and the sORF datasets indicates that ORF-attention features are ef
fective and reliable.

LncCat still gets the preferable MCC in cross-species experi
ments. The human model and mouse model perform tightly on the 
other three species datasets because of similar homology. Chicken 
and zebrafish are oviparous, and their models perform similarly on 

the other three species datasets. Animal models, such as human, 
mouse, zebrafish and chicken, show slightly lower performances on 
the plant dataset because of the poor genomic homology between 
animals and plants. The cross-species experiments between animal 
and plant species reflect that LncCat performs better on 

Table 10 
The details of the Ribo-seq dataset. 

Datasets LncRNAs PCTs

Training dataset 3668 10,783
Test dataset 1049 3082
Validation dataset 525 1541

Table 11 
Comparison of LncCat and CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba on Ribo-seq dataset. 

PRE SEN SPE ACC F1 MCC AUC

CPAT 0.7637 0.4120 0.9565 0.8180 0.5352 0.4664 0.9035
CNCI 0.5303 0.9828 0.7038 0.7746 0.6889 0.5987 0.8325
CPC2 0.4747 0.9285 0.6502 0.7209 0.6282 0.5038 0.8382
LncFinder 0.8000 0.7436 0.9367 0.8877 0.7708 0.6973 0.9362
PLEK 0.4815 0.9066 0.6674 0.7282 0.6290 0.5003 0.8469
CPPred 0.5104 0.9590 0.6869 0.7560 0.6662 0.5629 0.8755
mRNN 0.6972 0.9438 0.8605 0.8816 0.8019 0.7370 0.9531
RNAsamba 0.7182 0.8942 0.8806 0.8840 0.7966 0.7253 0.9513
LncCat 0.8716 0.8284 0.9585 0.9254 0.8495 0.8004 0.9739

Fig. 9. ROC curves of CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba, 
and LncCat on the Ribo-seq dataset.

Table 12 
Metrics of LncCat on Ribo-seq dataset by 5-fold cross-validation. 

PRE SEN SPE ACC F1 MCC AUC

Fold1 0.8690 0.8194 0.9578 0.9225 0.8434 0.7926 0.9717
Fold2 0.8787 0.8170 0.9600 0.9225 0.8467 0.7959 0.9728
Fold3 0.8601 0.8074 0.9565 0.9194 0.8329 0.7805 0.9705
Fold4 0.8761 0.8508 0.9595 0.9322 0.8633 0.8184 0.9786
Fold5 0.8800 0.8098 0.9628 0.9242 0.8434 0.7947 0.9720

Table 13 
Metrics of LncCat on Ribo-seq dataset by 10-fold cross-validation. 

PRE SEN SPE ACC F1 MCC AUC

Fold1 0.8780 0.8362 0.9604 0.9288 0.8566 0.8097 0.9755
Fold2 0.8672 0.8178 0.9571 0.9215 0.8418 0.7903 0.9693
Fold3 0.8770 0.8086 0.9601 0.9206 0.8414 0.7897 0.9754
Fold4 0.8797 0.8199 0.9599 0.9230 0.8487 0.7981 0.9722
Fold5 0.8526 0.8143 0.9562 0.9225 0.8330 0.7829 0.9735
Fold6 0.8706 0.8253 0.9568 0.9225 0.8473 0.7960 0.9709
Fold7 0.8765 0.8629 0.9593 0.9351 0.8696 0.8265 0.9783
Fold8 0.8743 0.8407 0.9592 0.9293 0.8571 0.8105 0.9788
Fold9 0.8926 0.8060 0.9660 0.9244 0.8471 0.7989 0.9739
Fold10 0.8560 0.8238 0.9551 0.9230 0.8396 0.7891 0.9714
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homologous species and achieves relatively satisfactory results for 
non-homologous species. Besides, for the other species models, 
LncCat also achieves favorable results, which shows the higher 
generalization on cross-species datasets rather than one species 
dataset alone.

Species may lack annotations, and it is impossible to build models 
for all species. We build a multi-species integrated model by the 
training dataset of five species. The MCC of LncCat is 0.9236 on the 
long ORF integration dataset, which is 4.58∼15.82% higher than the 
compared models. The MCC on the sORF dataset is 20.32% higher than 
the second-best model. Additionally, LncCat has been deployed on the 
web server and can provide a reference for under-explored species.

The source code and datasets of this experiment are available for 
academics at https://github.com/a525076133/LncCat. The model can 

be re-trained by the user’s data. Moreover, a user-friendly web 
server is developed with free accessibility at http://cczubio.top/ 
lnccat/. The web server provides the identification of lncRNA for 
multiple species with FASTA format sequences as input. Users can 
upload a FASTA file or input sequences in the text area. Currently, 
five species and integrated species are available on this web server, 
including human, mouse, wheat, chicken and zebrafish. The results 
will be replied to the user’s email.

sORFs may translate peptides, and peptides have been one of the 
most promising cures for cancer in recent years [62]. In the following 
work, we will collect the sORF-translated peptide sequences and 
annotate the functions of peptides on a large scale by protein fa
mily’s alignment and modeling to drive the process of peptides in 
cancer therapy.

In summary, the experimental results show that ORF-attention 
features are crucial and effective in identifying lncRNA on both long 
ORF and sORF datasets. In all, LncCat is an effective method for 
lncRNA identification.

5. Conclusion

LncRNA identification is a very significant task in bioinformatics. 
Although researchers have achieved satisfactory results on long 
ORFs datasets, there is still considerable space for improvement on 
the sORF datasets. In this study, we propose a method called LncCat, 
based on ensemble learning called CatBoost. Five types of features 
are used to encode transcripts into vectors, and CatBoost is em
ployed to construct the prediction model. The extensive experi
mental results on five species show that LncCat performs well on 
five datasets and three sORF datasets. In terms of MCC, LncCat 
achieved 0.9503, 0.9219, 0.8591, 0.8672, and 0.9047 on human, 
mouse, zebrafish, wheat, and chicken datasets, with improvement 
ranging from 1.90% to 7.82%, 1.49–17.63%, 6.11–21.50%, 3.02–51.64% 
and 5.35–26.90%, respectively. In addition, LncCat increases MCC by 
at least 6.88%, 22.98%, and 39.43 on the human-sORF dataset, 
mouse-sORF dataset, and zebrafish-sORF dataset compared with the 
other eight methods. Moreover, the feature comparing results show 
that the ORF-attention features effectively differentiate lncRNAs 
from PCTs. In all, the ORF-attention feature we proposed can help 
distinguish LncRNAs from PCTs, especially for the sORF dataset. 
LncCat is a reliable and robust machine learning model for 

Table 14 
Comparison on the integrated dataset. 

Methods PRE SEN SPE ACC F1 MCC AUC

CPAT 0.8857 0.8917 0.9262 0.9127 0.8887 0.8169 0.9627
CNCI 0.8747 0.9402 0.9137 0.9240 0.9062 0.8441 0.9285
CPC2 0.9054 0.8856 0.9408 0.9192 0.8954 0.8298 0.9709
LncFinder 0.9234 0.9280 0.9507 0.9418 0.9257 0.8779 0.9741
PLEK 0.8272 0.8946 0.8803 0.8859 0.8596 0.7654 0.9510
CPPred 0.9166 0.8969 0.9477 0.9279 0.9067 0.8481 0.9751
mRNN 0.9410 0.8492 0.9659 0.9203 0.8928 0.8324 0.9574
RNAsamba 0.9704 0.7907 0.9846 0.9089 0.8714 0.8121 0.9810
LncCat 0.9425 0.9651 0.9623 0.9634 0.9537 0.9236 0.9915

Table 15 
Comparison on the sORF integrated dataset. 

Methods PRE SEN SPE ACC F1 MCC AUC

CPAT 0.5755 0.9202 0.2289 0.5966 0.7081 0.2085 0.7482
CNCI 0.6171 0.9347 0.3410 0.6568 0.7434 0.3477 0.6050
CPC2 0.5445 0.9192 0.1265 0.5481 0.6839 0.0753 0.7617
LncFinder 0.6186 0.9347 0.3453 0.6588 0.7445 0.3517 0.7640
PLEK 0.7091 0.9023 0.5784 0.7509 0.7941 0.5131 0.8412
CPPred 0.6537 0.9150 0.4493 0.6970 0.7626 0.4167 0.8385
mRNN 0.7219 0.8793 0.6153 0.7557 0.7929 0.5166 0.7961
RNAsamba 0.8146 0.8483 0.7807 0.8166 0.8311 0.6314 0.8740
LncCat 0.8786 0.9756 0.8469 0.9153 0.9245 0.8346 0.9717

Fig. 10. ROC curves of LncCat and CPAT, CNCI, CPC2, LncFinder, PLEK, CPPred, mRNN, RNAsamba on (A) integrated dataset and (B) sORF integrated dataset. 
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identifying lncRNAs. A user-friendly web server is available at http:// 
cczubio.top/lnccat/.

Funding

This research was funded by the National Natural Science 
Foundation of China (No. 62072212).

CRediT authorship contribution statement

Shaocong Wang conceived the algorithm, developed the pro
gram, and wrote the manuscript. Sen Yang, Hongqi Feng, Yan Wang 
and Xinye Ni helped with manuscript editing and design. Zixi Yang 
and Sen Yang prepared the datasets. All authors have read and 
agreed to the published version of the manuscript.

Data Availability Statement

Publicly available datasets were analyzed in this study. Codes and 
data are available at http://cczubio.top/lnccat/ and https://github. 
com/a525076133/LncCat.

Declaration of Competing Interest

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared 
to influence the work reported in this paper.

Appendix A. Supporting information

Supplementary data associated with this article can be found in 
the online version at doi:10.1016/j.csbj.2023.02.012.

References

[1] Pennisi E. ENCODE project writes eulogy for junk DNA. Science 
2012;337:1159–61. https://doi.org/10.1126/science.337.6099.1159

[2] Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, et al. Landscape 
of transcription in human cells. Nature 2012;489:101–8. https://doi.org/10.1038/ 
nature11233

[3] Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, et al. The 
transcriptional landscape of the mammalian genome. Sci, N Ser 
2005;309:1559–63.

[4] The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in 
the human genome. Nature 2012;489:57–74. https://doi.org/10.1038/ 
nature11247

[5] Struhl K. Transcriptional noise and the fidelity of initiation by RNA polymerase II. 
Nat Struct Mol Biol 2007;14:103–5. https://doi.org/10.1038/nsmb0207-103

[6] Lee JT. Epigenetic regulation by long noncoding RNAs. Science 2012;338:1435–9. 
https://doi.org/10.1126/science.1231776

[7] Li R, ZHu H, Luo Y. Understanding the long non-coding RNA biological function 
through its structure conservation. Int J Mol Sci 2016;17:702.

[8] Bhartiya D, Kapoor S, Jalali S, Sati S, Kaushik K, Sachidanandan C, et al. 
Conceptual approaches for lncRNA drug discovery and future strategies. Expert 
Opin Drug Discov 2012;7:503–13. https://doi.org/10.1517/17460441.2012.682055

[9] Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev 
Biochem 2012;81:145–66. https://doi.org/10.1146/annurev-biochem-051410- 
092902

[10] da Rocha ST, Boeva V, Escamilla-Del-Arenal M, Ancelin K, Granier C, Matias NR, 
et al. Jarid2 Is Implicated in the Initial Xist-Induced Targeting of PRC2 to the 
Inactive X Chromosome. Mol Cell 2014;53:301–16. https://doi.org/10.1016/j. 
molcel.2014.01.002

[11] Zhang Y, Tao Y, Liao Q. Long noncoding RNA: a crosslink in biological regulatory 
network. Brief Bioinforma 2018;19:930–45. https://doi.org/10.1093/bib/bbx042

[12] O’Leary VB, Ovsepian SV, Carrascosa LG, Buske FA, Radulovic V, Niyazi M, et al. 
PARTICLE, a Triplex-Forming Long ncRNA, Regulates Locus-Specific Methylation 
in Response to Low-Dose Irradiation. Cell Rep 2015;11:474–85. https://doi.org/ 
10.1016/j.celrep.2015.03.043

[13] Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F, et al. A critical role for the long non- 
coding RNA GAS5 in proliferation and apoptosis in non-small-cell lung cancer: 
GAS5 REGULATES PROLIFERATION AND APOPTOSIS OF NSCLC. Mol Carcinog 
2015;54:E1–12. https://doi.org/10.1002/mc.22120

[14] Ng S-Y, Lin L, Soh BS, Stanton LW. Long noncoding RNAs in development and 
disease of the central nervous system. Trends Genet 2013;29:461–8. https://doi. 
org/10.1016/j.tig.2013.03.002

[15] Congrains A, Kamide K, Oguro R, Yasuda O, Miyata K, Yamamoto E, et al. Genetic 
variants at the 9p21 locus contribute to atherosclerosis through modulation of 
ANRIL and CDKN2A/B. Atherosclerosis 2012;220:449–55. https://doi.org/10. 
1016/j.atherosclerosis.2011.11.017

[16] Ning S, Zhang J, Wang P, Zhi H, Wang J, Liu Y, et al. Lnc2Cancer: a manually curated 
database of experimentally supported lncRNAs associated with various human 
cancers. Nucleic Acids Res 2016;44:D980–5. https://doi.org/10.1093/nar/gkv1094

[17] Chen G, Wang Z, Wang D, Qiu C, Liu M, Chen X, et al. LncRNADisease: a database 
for long-non-coding RNA-associated diseases. Nucleic Acids Res 
2012;41:D983–6. https://doi.org/10.1093/nar/gks1099

[18] Wang H-LV, Chekanova JA. Long Noncoding RNAs in Plants. In: Rao MRS, editor. 
Long Non Coding RNA Biology, vol. 1008. Singapore: Springer Singapore; 2017. p. 
133–54. https://doi.org/10.1007/978-981-10-5203-3_5

[19] Hu R, Sun X. lncRNATargets: A platform for lncRNA target prediction based on 
nucleic acid thermodynamics. J Bioinform Comput Biol 2016;14:1650016. 
https://doi.org/10.1142/S0219720016500165

[20] Ma L, Bajic VB, Zhang Z. On the classification of long non-coding RNAs. RNA Biol 
2013;10:924–33. https://doi.org/10.4161/rna.24604

[21] Röhrig H, Schmidt J, Miklashevichs E, Schell J, John M. Soybean ENOD40 encodes 
two peptides that bind to sucrose synthase. Proc Natl Acad Sci USA 
2002;99:1915–20. https://doi.org/10.1073/pnas.022664799

[22] Kong L, Zhang Y, Ye Z-Q, Liu X-Q, Zhao S-Q, Wei L, et al. CPC: assess the protein- 
coding potential of transcripts using sequence features and support vector machine. 
Nucleic Acids Res 2007;35:W345–9. https://doi.org/10.1093/nar/gkm391

[23] Wang L, Park HJ, Dasari S, Wang S, Kocher J-P, Li W. CPAT: Coding-Potential 
Assessment Tool using an alignment-free logistic regression model. e74–e74 
Nucleic Acids Res 2013;41. https://doi.org/10.1093/nar/gkt006

[24] Fickett JW. Recognition of protein coding regions in DNA sequences. Nucleic 
Acids Res 1982;10:5303–18. https://doi.org/10.1093/nar/10.17.5303

[25] Fickett JW, Tung C-S. Assessment of protein coding measures. Nucleic Acids Res 
1992;20:6441–50. https://doi.org/10.1093/nar/20.24.6441

[26] Sun L, Luo H, Bu D, Zhao G, Yu K, Zhang C, et al. Utilizing sequence intrinsic 
composition to classify protein-coding and long non-coding transcripts. 
e166–e166 Nucleic Acids Res 2013;41. https://doi.org/10.1093/nar/gkt646

[27] Li A, Zhang J, Zhou Z. PLEK: a tool for predicting long non-coding RNAs and 
messenger RNAs based on an improved k-mer scheme. BMC Bioinforma 
2014;15:311. https://doi.org/10.1186/1471-2105-15-311

[28] Kang Y-J, Yang D-C, Kong L, Hou M, Meng Y-Q, Wei L, et al. CPC2: a fast and 
accurate coding potential calculator based on sequence intrinsic features. 
Nucleic Acids Res 2017;45:W12–6. https://doi.org/10.1093/nar/gkx428

[29] Han S, Liang Y, Ma Q, Xu Y, Zhang Y, Du W, et al. LncFinder: an integrated 
platform for long non-coding RNA identification utilizing sequence intrinsic 
composition, structural information and physicochemical property. Brief 
Bioinforma 2019;20:2009–27. https://doi.org/10.1093/bib/bby065

[30] Nair AS, Sreenadhan SP. A coding measure scheme employing electron-ion in
teraction pseudopotential (EIIP). Bioinformation 2006;1:197–202.

[31] Hill ST, Kuintzle R, Teegarden A, Merrill E, Danaee P, Hendrix DA. A deep re
current neural network discovers complex biological rules to decipher RNA 
protein-coding potential. Nucleic Acids Res 2018;46:8105–13. https://doi.org/10. 
1093/nar/gky567

[32] Camargo AP, Sourkov V, Pereira GAG, Carazzolle MF. RNAsamba: neural net
work-based assessment of the protein-coding potential of RNA sequences. NAR 
Genom Bioinforma 2020;2:lqz024. https://doi.org/10.1093/nargab/lqz024

[33] Griffiths P, Nendel C, Pickert J, Hostert P. Towards national-scale characterization 
of grassland use intensity from integrated Sentinel-2 and Landsat time series. 
Remote Sens Environ 2020;238:111124. https://doi.org/10.1016/j.rse.2019.03.017

[34] Gomez C, Mangeas M, Petit M, Corbane C, Hamon P, Hamon S, et al. Use of high- 
resolution satellite imagery in an integrated model to predict the distribution of 
shade coffee tree hybrid zones. Remote Sens Environ 2010;114:2731–44. https:// 
doi.org/10.1016/j.rse.2010.06.007

[35] Chrysafis I, Mallinis G, Gitas I, Tsakiri-Strati M. Estimating Mediterranean forest 
parameters using multi seasonal Landsat 8 OLI imagery and an ensemble 
learning method. Remote Sens Environ 2017;199:154–66. https://doi.org/10. 
1016/j.rse.2017.07.018

[36] Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning 
and an application to boosting. J Comput Syst Sci 1997;55:119–39. https://doi. 
org/10.1006/jcss.1997.1504

[37] Chen T, Guestrin C. XGBoost: a scalable tree boosting system. Proceedings of the 
22nd ACM SIGKDD International Conference on Knowledge Discovery and Data 
Mining. San Francisco California USA: ACM,; 2016. p. 785–94. https://doi.org/10. 
1145/2939672.2939785

[38] Sun X, Liu M, Sima Z. A novel cryptocurrency price trend forecasting model 
based on LightGBM. Financ Res Lett 2020;32:101084. https://doi.org/10.1016/j. 
frl.2018.12.032

[39] Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A. CatBoost: unbiased 
boosting with categorical features. ArXiv 2019. 170609516 [Cs].

[40] Huang G, Wu L, Ma X, Zhang W, Fan J, Yu X, et al. Evaluation of CatBoost method 
for prediction of reference evapotranspiration in humid regions. J Hydrol 
2019;574:1029–41. https://doi.org/10.1016/j.jhydrol.2019.04.085

[41] Fan J, Wang X, Zhang F, Ma X, Wu L. Predicting daily diffuse horizontal solar 
radiation in various climatic regions of China using support vector machine and 
tree-based soft computing models with local and extrinsic climatic data. J Clean 
Prod 2020;248:119264. https://doi.org/10.1016/j.jclepro.2019.119264

[42] Waqas Khan P, Byun Y-C, Lee S-J, Park N. Machine learning based hybrid system 
for imputation and efficient energy demand forecasting. Energies 2020;13:2681. 
https://doi.org/10.3390/en13112681

H. Feng, S. Wang, Y. Wang et al. Computational and Structural Biotechnology Journal 21 (2023) 1433–1447

1446



[43] Tong X, Liu S. CPPred: coding potential prediction based on the global descrip
tion of RNA sequence. e43–e43 Nucleic Acids Res 2019;47. https://doi.org/10. 
1093/nar/gkz087

[44] O’Leary NA, Wright MW, Brister JR, Ciufo S, Haddad D, McVeigh R, et al. 
Reference sequence (RefSeq) database at NCBI: current status, taxonomic ex
pansion, and functional annotation. Nucleic Acids Res 2016;44:D733–45. https:// 
doi.org/10.1093/nar/gkv1189

[45] Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, et al. Ensembl 
2018. Nucleic Acids Res 2018;46:D754–61. https://doi.org/10.1093/nar/gkx1098

[46] Frankish A, Diekhans M, Ferreira A-M, Johnson R, Jungreis I, Loveland J, et al. 
GENCODE reference annotation for the human and mouse genomes. Nucleic 
Acids Res 2019;47:D766–73. https://doi.org/10.1093/nar/gky955

[47] Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of 
protein or nucleotide sequences. Bioinformatics 2006;22:1658–9. https://doi. 
org/10.1093/bioinformatics/btl158

[48] Panwar B, Arora A, Raghava GP. Prediction and classification of ncRNAs using 
structural information. BMC Genom 2014;15:127. https://doi.org/10.1186/1471- 
2164-15-127

[49] Pozzoli U, Menozzi G, Fumagalli M, Cereda M, Comi GP, Cagliani R, et al. Both 
selective and neutral processes drive GC content evolution in the human 
genome. BMC Evolut Biol 2008;8:99. https://doi.org/10.1186/1471-2148-8-99

[50] Yang C, Yang L, Zhou M, Xie H, Zhang C, Wang MD, et al. LncADeep: an ab initio 
lncRNA identification and functional annotation tool based on deep learning. 
Bioinformatics 2018;34:3825–34. https://doi.org/10.1093/bioinformatics/bty428

[51] Suenaga Y, Kato M, Nagai M, Nakatani K, Kogashi H, Kobatake M, et al. Open 
reading frame dominance indicates protein‐coding potential of RNAs. EMBO Rep 
2022:23. https://doi.org/10.15252/embr.202154321

[52] Singh U, Wurtele ES. orfipy: a fast and flexible tool for extracting ORFs. 
Bioinformatics 2021;37:3019–20. https://doi.org/10.1093/bioinformatics/ 
btab090

[53] Abramczyk D, Tchórzewski M, Grankowski N. Non-AUG translation initiation of 
mRNA encoding acidic ribosomal P2A protein in Candida albicans: Alternative 

start codon of P-protein gene from Candida albicans. Yeast 2003;20:1045–52. 
https://doi.org/10.1002/yea.1020

[54] Sugihara H, Andrisani V, Salvaterra PM. Drosophila choline acetyltransferase 
uses a non-AUG initiation codon and full length RNA is inefficiently translated. J 
Biol Chem 1990;265:21714–9.

[55] Prats H, Kaghad M, Prats AC, Klagsbrun M, Lélias JM, Liauzun P, et al. High 
molecular mass forms of basic fibroblast growth factor are initiated by alter
native CUG codons. Proc Natl Acad Sci USA 1989;86:1836–40. https://doi.org/10. 
1073/pnas.86.6.1836

[56] Takahashi K, Maruyama M, Tokuzawa Y, Murakami M, Oda Y, Yoshikane N, et al. 
Evolutionarily conserved non-AUG translation initiation in NAT1/p97/DAP5 
(EIF4G2). Genomics 2005;85:360–71. https://doi.org/10.1016/j.ygeno.2004.11.012

[57] Hann SR, King MW, Bentley DL, Anderson CW, Eisenman RN. A non-AUG 
translational initiation in c-myc exon 1 generates an N-terminally distinct pro
tein whose synthesis is disrupted in Burkitt’s lymphomas. Cell 1988;52:185–95. 
https://doi.org/10.1016/0092-8674(88)90507-7

[58] Devlin J., Chang M.-W., Lee K., Toutanova K. BERT: Pre-training of Deep 
Bidirectional Transformers for Language Understanding, 2018. https://doi.org/ 
10.48550/ARXIV.1810.04805.

[59] Chicco D, Jurman G. The advantages of the Matthews correlation coefficient 
(MCC) over F1 score and accuracy in binary classification evaluation. BMC 
Genom 2020;21:6. https://doi.org/10.1186/s12864-019-6413-7

[60] Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide ana
lysis in vivo of translation with nucleotide resolution using ribosome profiling. 
Science 2009;324:218–23. https://doi.org/10.1126/science.1168978

[61] Mudge JM, Ruiz-Orera J, Prensner JR, Brunet MA, Calvet F, Jungreis I, et al. 
Standardized annotation of translated open reading frames. Nat Biotechnol 
2022;40:994–9. https://doi.org/10.1038/s41587-022-01369-0

[62] Zhu L, Ye C, Hu X, Yang S, Zhu C. ACP-check: An anticancer peptide prediction 
model based on bidirectional long short-term memory and multi-features fusion 
strategy. Comput Biol Med 2022:105868. https://doi.org/10.1016/j.compbiomed. 
2022.105868

H. Feng, S. Wang, Y. Wang et al. Computational and Structural Biotechnology Journal 21 (2023) 1433–1447

1447


	LncCat: An ORF attention model to identify LncRNA based on ensemble learning strategy and fused sequence information
	1. Introduction
	2. Materials and methods
	2.1. Datasets
	2.2. Sequence encoding methods
	2.2.1. Codon-related features
	2.2.2. GC-related features
	2.2.3. Sequence-related features
	2.2.4. Peptide-related features
	2.2.5. ORF-attention features
	2.2.6. Pre-trained ORF BERT

	2.3. Constructing LncCat model
	2.4. Evaluation metrics
	2.5. The methods used in experiments

	3. Experimental result
	3.1. Feature visualization on five species datasets with and without ORF-attention
	3.2. Evaluations by comparison with state-of-the-art methods on five datasets
	3.3. Distribution of the predicting score
	3.4. The comparison of different cutoff values
	3.5. The performance of LncCat on cross-species datasets
	3.6. The comparison on the small ORFs datasets
	3.7. Comparison Ribo-seq datasets
	3.8. Integration model

	4. Discussion
	5. Conclusion
	Funding
	CRediT authorship contribution statement
	Data Availability Statement
	Declaration of Competing Interest
	Appendix A. Supporting information
	References




