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Abstract

It is well established that individuals age differently. Yet the nature of these inter-individual differences is still largely
unknown. For humans, two main hypotheses have been recently formulated: individuals may experience differences in
aging rate or aging timing. This issue is central because it directly influences predictions for human lifespan and provides
strong insights into the biological determinants of aging. In this article, we propose a model which lets population
heterogeneity emerge from an evolutionary algorithm. We find that whether individuals differ in (i) aging rate or (ii) timing
leads to different emerging population heterogeneity. Yet, in both cases, the same mortality patterns are observed at the
population level. These patterns qualitatively reproduce those of yeasts, flies, worms and humans. Such findings, supported
by an extensive parameter exploration, suggest that mortality patterns across species and their potential shapes belong to a
limited and robust set of possible curves. In addition, we use our model to shed light on the notion of subpopulations, link
population heterogeneity with the experimental results of stress induction experiments and provide predictions about the
expected mortality patterns. As biology is moving towards the study of the distribution of individual-based measures, the
model and framework we propose here paves the way for evolutionary interpretations of empirical and experimental data
linking the individual level to the population level.
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Introduction

Aging can be generally defined as age-related changes in a set of

variables, from growth rate to reproductive effort, which influence

the fitness of an organism. Aging is a multiscale process which can

be measured at almost every level of the individual organism.

Individual metrics of aging include a broad range of processes

from damage to DNA and proteins [1,2] to tissue loss of

functionality [3]. Complementary to characterization of aging

through individual metrics, there is a long history of demographic

studies of aging going back to Gompertz’s seminal studies [4–6]

studying age-specific mortality.

Age-specific mortality is arguably one of the most document-

ed measure of aging. Since Gompertz’ seminal work on human

data [4], such mortality curves have been obtained for a large

variety of species [7], in a broad range of environmental

conditions (e.g., [8,9]). These curves play a central role in

understanding aging processes and predicting the dynamics of

population growth and human life expectancy [10,11]. Age-

specific mortality curves allow the comparison of aging

processes between species as the same measure can be applied

from unicellular organisms to humans, as long as the death of

the individual is clearly defined. All of these contribute to make

changes in mortality over age a well-accepted definition of aging

from the demographic perspective. This is the definition of

aging considered throughout this paper. One of the striking

observations resulting from inter-species comparison is that

yeast, fly, worm and human mortality patterns share common

properties. They all exhibit exponential increase and decrease

with age [7], but also differ in the timing and magnitude of these

exponential phases and some species even exhibit mid-age or

late-age plateaus [7]. In this article, we study the evolution of

mortality patterns to investigate the nature of inter-individual

differences in aging.

The nature of inter-individual differences in aging is crucial to

study and forecast a population’s life expectancy, but is as yet still

largely unknown. For humans, two main hypotheses have been

proposed recently [11]: individuals may differ in aging rates or

timing. Namely, from one individual to the other, the aging

processes may be slowed or delayed. Addressing this issue is import

to understand the potential and limits of individual medical

treatments. Fundamental questions about inter-individual differ-

ences, i.e. individual heterogeneity, can be tackled studying age-

specific mortality patterns.

Because of these exponential patterns, differences in aging rates

and timing can be visualized respectively as changes in slope and

shift in mortality patterns [11]. Such changes have been

documented for Drosophila melanogaster populations: when facing a

diet restriction, a change in aging timing occurs while the response

to fluctuations in temperature is a change in aging rate [12,13].

Previous work has used age-specific mortality to show that the

aging rate seemed to be conserved in different human populations

[14] and differed between different strains of Caenorhabditis elegans

[15]. Both shift in level and differences in rate have been reported
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between baboon populations [16] or between male and females

flies [17].

These mortality curves are population measures: they result

from the aggregation of individual’s aging. Biodemographic

studies of aging have shown that specific population heterogeneity

can reproduce the main features of qualitatively different mortality

patterns, such as late-age mortality plateaus [18,19]. To do so,

these studies make ad-hoc assumptions about (i) population

heterogeneity, e.g., a Gamma distribution, and (ii) the nature of

inter-individual differences in aging. In this paper, we address

these issues in the light of evolution, we do not assume a specific

population heterogeneity and we explore different types of inter-

individual differences in aging.

In our model, we include Gompertz aging, that is exponential

increase in mortality hazard with age, and implement heteroge-

neity in aging rates and timing. Population heterogeneity is

allowed to evolve over generations under the influence of life-

history trade-offs. Following the disposable soma theory [20,21]

and empirical observations made in a broad range of species [22],

we incorporate a trade-off between reproduction and aging. In this

framework, investing in maintenance mechanisms (rather than

reproduction) results either in slowing or delaying aging depending

on the nature of inter-individual differences.

In section ‘Transitions in mortality curves’, we discuss

predictions concerning population heterogeneity and the corre-

sponding mortality patterns under different assumptions about

inter-individual differences. We compare our results to mortality

patterns of yeast, flies, worms and humans respectively. In section

‘Influence of mutation rate’, we test the robustness of our results

with respect to mutation rates and highlight new features for the

distribution of heterogeneity. Finally, in section ‘The notion of

subpopulation’, we exploit the predictions of the model to shed

light on the notion of subpopulations which is invoked in

numerous experimental studies [23,24].

Results

Age-structured populations
The model we propose describes evolving populations in which

individuals age, die and compete for reproduction while they are

alive. The offspring they produce fill the next non-overlapping

generation until the desired population size is reached. Survival

and reproductive success of each individual are connected

following the disposable soma theory. The more an individual

invests in reproduction, the shorter its lifespan. For each

individual, a single parameter a describes its resource allocation

strategy between maintenance and reproduction. Different indi-

viduals may have different strategies (i.e., different a) and one of

the key features of these models is that this distribution of strategy

in the population evolves over generations.

For each generation, all the individuals are synchronized,

starting with age zero. While an individual i is alive, at each time

step it has a probability pr to be chosen for reproduction,

proportional to its a parameter, normalized by the sum of the a of

alive individuals: pr~
aiP

individual j alive
aj

. The normalization factor

implements a competition for reproduction because the ability for

each individual to reproduce depends on the composition of the

whole population. The higher a are more likely to reproduce than

the lower a, but if the population is reduced to one single

individual, the probability it has to reproduce is one, indepen-

dently of its a parameter.

Competition for reproduction has been documented in a broad

range of species and can take numerous forms, from limited access

to habitat [25] to dependence on external resources [26].

Once an individual is chosen for reproduction, it produces one

offspring which inherits its a value if no mutation occurs. We use

the term mutations here to describe a process introducing

variability in the inheritance process. In Text S1, we explore

different implementations of such a process and show that the

conclusions of this paper do not rely on specific modeling choices.

Each reproductive event has a fixed mutation probability pmut: if

a mutation occurs, the offspring value of a is replaced by a

random number drawn from the uniform distribution between

zero and one. The result is that a is a heritable trait, subject to

mutations and influences the reproductive success of the

individual.

The model we propose simulates evolving populations with a

fixed size and non-overlapping generations. We start studying

individuals at maturity, so that they are able to reproduce since

time t~0. In the initial population each individual is assigned a

randomly chosen a drawn from a uniform distribution between

zero and one. We then let population heterogeneity change over

generations until it reaches a quasi stationary distribution.

Building the generation nz1 from generation n occurs as

follows. First, at time t~0, all the individuals are alive. The

higher a have a higher probability to be chosen for reproduction

and therefore the first offspring added to the initially empty

generation nz1 are likely to have high a. Then, as time goes on,

individuals with high a face a faster aging process than their

counterparts with low a. As the high a die out, lower a have more

and more access to reproduction, thus producing on average low

a offspring. The ‘low a’ phenotype experiences a positive

frequency-dependent selection as its fitness increases as their

frequency in the population increases. The reproduction process

is iterated until the generation nz1 is filled. Some individuals

might have inherited a very low a because of the mutation

process. They live much longer than the time required to fill a

generation and do not reproduce. These individuals we will refer

to as the ‘oldest old’ and present the influence they have on

mortality patterns in section ‘Transitions in mortality curves’.

This reproduction process is asexual, as one individual is either

cloned, if no mutations occur, or modified in the other case. In

Text S1, we show that introducing sexual reproduction does not

alter the conclusions of the paper.

Author Summary

Aging is a widespread phenomenon across the tree of life.
From yeast to humans, mortality changes over age have
been widely documented. Interestingly, all individuals are
not equal with respect to the aging process: large
variability in individual life span has been reported, even
in clonal populations. Understanding the nature of these
differences is of great interest for medical research. So far,
two hypotheses have been proposed: individuals may
differ in their aging rate or timing. Here, we show that
these two hypotheses can reproduce experimental and
empirical mortality patterns as a result of natural selection.
We also predict the corresponding population heteroge-
neity in aging. Many studies define subpopulations ad hoc,
the work we present provides insight into a more accurate
description of inter-individual differences in aging. Finally,
our analysis also predicts the modifications of these
mortality patterns under stressful conditions. This explo-
ration reproduces experimental data obtained with heat
shocks and permits to foresee new mortality patterns that
could be observed with other perturbations.

Evolution of Aging in Heterogeneous Populations
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Choice of the individual mortality function
Following the disposable soma theory, we implement a trade-off

at the individual level between survival and reproduction. For each

individual, the hazard of death between age t and age tz1 is given

by a function which increases with a and t. The dependence on a
depicts heterogeneity in the population as each individual has its

own a. The increase in mortality over age depends on the

interactions between (i) the species biological characteristics and (ii)

its environment [12,13]. This interaction is captured by a

parameter k in our model which influences the rate of the

individual’s exponential aging, differing from one species to the

other. This baseline aging is then modulated by the individual

strategy of resource allocation between maintenance and repro-

duction, captured by the parameter a. Whether a modulates the

rate or the timing of the baseline aging is an open question [11].

To address it, we therefore study two distinct individual mortality

functions.

First, we implement m(t,a)~m0eakt which leads to heterogeneity

in aging rates, described afterwards as the Heterogeneity in aging

Rate Model (HRM). The parameter m0 reflects the initial mortality

and the parameter k the interactions between the biology of the

species and its environment. These two parameters are constant

over generations and identical for all the individuals, thus defining

a baseline aging.

Second, to derive a mortality function for the Heterogeneity in

aging Timing Model (HTM), let us now consider linear

dependence on a for the individual mortality function and two

different individuals, respectively defined by a1 and a2~ba1.

Their respective mortality function m1 and m2 are: m1(t)~m0a1ekt

and m2(t)~m0a2ekt~m0a1ek(tz ln (b)=k). Therefore, a change in

initial mortality corresponds to a delay in aging, i.e., a shift of the

mortality curve along the time axis, while both individuals still

share the same aging rate. In contrast, in the case of the mortality

function m(t)~m0ekat presented in the previous paragraph, two

different individuals would start from the same initial mortality but

differ in their aging rates.

The two hypotheses concerning heterogeneity in aging postulate

different underlying trade-off mechanisms. In the case of

heterogeneity in aging rates, investing in maintenance mechanisms

slows down the aging process whereas in the case of heterogeneity

in aging timing, the same investment delays the aging process. In

Text S1, we also present and discuss the influence of age-

independent factors, usually referred to as extrinsic mortality, on

the evolution of mortality patterns.

Quasi-stationarity of the evolving populations
Over generations, the evolutionary process reshapes the

distribution of a-strategies according to the environmental

parameter k and the choice of the individual mortality function.

For instance if m(t,a)~m0eakt, in the (extreme) case of k~0, the

optimal strategy is a~1 because the trade-off has no effect. On the

other hand, high values of k are likely to draw the distribution of a
towards lower values so that individuals have to survive to get the

opportunity to reproduce. We present the evolution of these

distributions in section ‘Evolution of heterogeneity’.

After several hundreds of generations (400 in the simulations

below), the distribution stabilizes and mortality curves can be

estimated. The probability for a whole population to disappear in

the course of evolution is strictly positive. Indeed, each individual

has a non-zero probability to die at each time step and this could

happen before it reproduces at all. Population size can theoret-

ically decrease over generations until extinction. Yet, for a broad

range of parameters, this does not occur and a quasi-stationary

distribution of strategies is reached. In Text S1, we provide a

mathematical formulation of the model which would allow one to

study the existence and uniqueness of these quasi-stationary

distributions from a formal standpoint. Here, in the following

sections, we focus on the properties of these post-evolution quasi-

stationary distributions.

In this paper, we focus on adult mortality patterns and, as such,

we do not explicitly address the heterogeneity arising from

developmental processes. We assume that development leads to

the expression of the inherited phenotype a. In Text S1, we

explore the effects of a maturation period before the onset of

reproduction and provide mathematical tools to address the issue

of additional development-induced heterogeneity in more depth.

This additional information could be used to study the known

effects of the environment during development on population

heterogeneity [27].

Transitions in mortality curves
In this section, we present the results of evolution in different

environments under two distinct assumptions, heterogeneity in

aging rates (HRM) and heterogeneity in aging timing (HTM), and

compare the outcome with empirical and experimental data. In

figure 1, first row, we present mortality patterns of C. elegans, D.

melanogaster, humans and yeasts. From left to right, the C.

elegans mortality curve presents a two-stage exponential increase,

usually referred to as a ‘kink.’ Human mortality data also exhibits

a two-stage exponential, but is separated by a slowing down or

even a slight decrease. The D. melanogaster mortality curve has

an exponential-plateau-exponential pattern; in contrast, the one

for yeasts display a clear U-shape.

Simulation results with both the HRM and HTM, presented in

figure 1, second and third row respectively, exhibit the same set of

mortality curves. Both models lead to a transition from an

exponential-exponential (‘kink’) pattern under small values for k
(on the left), to an exponential-slowing down-exponential pattern

when evolution occurs under higher values for k. Increasing k
further leads to an exponential-plateau-exponential pattern, then

to an exponential-decrease-exponential pattern. Finally, the

highest value for k presented here corresponds to an exponen-

tial-U-shape-exponential pattern. These transitions in shape

reproduce the transitions observed in experimental and empirical

data. Obtaining all these experimental patterns only requires the

modification of the single parameter k and letting population

heterogeneity evolve.

In Text S1, we show that these mortality patterns are also robust

to an extensive exploration of parameter space.

The transitions in mortality patterns presented in figure 1 are

calculated without accounting for the oldest-old individuals, i.e.,

those living longer than the time it takes to fill a generation. In

figure 2, we present the influence of these individuals on mortality

patterns. Including these individuals does not modify the

qualitative shapes presented in figure 1 but leads to a decrease

in mortality at late ages. Simulated mortality patterns of both the

HRM and the HTM resemble medfly mortality which presents

two peaks and a late-age decrease.

Evolution of heterogeneity
In both models, population heterogeneity is shaped by natural

selection, via a life-history trade-off between survival and

reproduction. The transitions observed in the two versions of the

model rely on a change of the underlying heterogeneity in a in

response to the parameter k. Figure 3 shows the quasi-stationary

distribution of a as a function of k in the case of heterogeneity in

aging rates. Under low basal damage accumulation (low k), the

Evolution of Aging in Heterogeneous Populations
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most prevalent strategy consists of investing in reproduction (a
close to one). As k increases, being able to survive in order to

reproduce leads the distribution of strategy to move towards more

investment in maintenance mechanisms (low values of a).

Mortality patterns presented in figure 1, second row, directly

derive from these evolved distributions of heterogeneity.

Figure 1. First row, age-specific mortality curves for C. elegans, humans, D. melanogaster and yeasts. The qualitative pattern goes from
an exponential-exponential pattern to an exponential-U-shape-exponential pattern. Experimental data adapted from Vaupel et al. [7] and [6] for
humans.; Second row: Mortality patterns for an individual mortality function mekat (HRM) in different environments (m~0:00001, 500 individuals per
simulation, 400 generations and 300 simulations). The same transitions as the one depicted in the first row; Third row: Mortality patterns for a

mortality function maekt (HTM) resulting from the evolution under different values for k (m~0:00001, 500 individuals per simulation, 400 generations
and 300 simulations per figure). The same transitions as in the first two rows are observed, from an exponential pattern to an exponential-U-shape-
exponential pattern.
doi:10.1371/journal.pcbi.1002825.g001

Evolution of Aging in Heterogeneous Populations
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In the case of heterogeneity in aging timing, population

heterogeneity evolves with the parameter k as depicted in

figure 4. The same qualitative understanding holds: under low

damage accumulation, investment in reproduction is favored while

maintenance becomes prevalent if damage accumulates faster.

Here, the distributions are bimodal and increasing k mainly

changes the ratio between the two peaks, while also slightly shifting

the left peak towards more maintenance. In the previous case

Figure 2. Both the HRM and the HTM reproduce the key features of medfly mortality pattern: (i) increase, (ii) local maximum, (iii) U-
shape, (iv) second local maximum, higher than the first one, (v) decrease. The scales of the y-axis differ in both graphs in order to zoom
around the region of interest. (Experimental data adapted from Vaupel et al. [7], m~0:0001, 500 individuals per simulation, 400 generations and 300
simulations per curve).
doi:10.1371/journal.pcbi.1002825.g002

Figure 3. Population heterogeneity depends on the interactions between the species biology and its environment. These interactions
are captured by the parameter k. The resulting distributions of heterogeneity for an exponential frailty model are presented above, corresponding to
the mortality curves presented in figure 1, second row. a represents the investment in reproduction made by the individual. Higher basal damage
accumulation (high k) leads to more individuals investing in maintenance (i.e., low a due to life-history trade-off). In both this figure and figure 4, the
scale of the y-axis is set to match the highest frequency.
doi:10.1371/journal.pcbi.1002825.g003

Evolution of Aging in Heterogeneous Populations
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(heterogeneity in aging rates), the distributions are unimodal and

the main effect of k is the shift.

In our models, individuals are competing with each other to

access reproduction. Different a, that is different resource

allocation strategies, have different prevalence, as shown in

figures 3 and 4. As the parameters k and m0 are fixed initially

and kept constant over generations, the fact that a whole

distribution of strategies is maintained in the population, without

one a taking over, could be surprising. Previous models of

competition have shown that in many set-ups, one strategy invades

the population and the distribution of heterogeneity after several

generations is a single peak corresponding to the optimal strategy

or species [28]. Polymorphism can be maintained in density-

dependent selection models, but it usually requires negative

density-dependence [29] (that is the fitness of a trait increases as

the frequency of the trait in the population decreases). Interest-

ingly, in this model, heterogeneity is maintained over generations

even though all the a experience a positive density-dependent

selection. In Text S1, we account for this sustained heterogeneity

in both the HTM and the HRM.

Influence of mutation rate
Mutations occurring on a influence the heterogeneity distribu-

tions in evolved populations. A high mutation rate tends to make

the distribution of a closer to a uniform distribution. In this

section, we first present the effects of high mutation rates on

populations heterogeneity as well as the corresponding effects on

the mortality patterns.

First, we find that the properties of asymmetry in heterogeneity

described in figure 3 and 4 are maintained despite high mutation

rates, as shown in figures 5 and 6. The left side of the distribution

is not altered by the mutation process: the shape of the distribution

close to zero remains unchanged even under high mutation rates.

This derives from the fact that individuals below a certain

threshold have negligible opportunities to reproduce and are

therefore absent from the population. More details about the

asymmetry between low a and high a are provided in Text S1.

Results in sections ‘Transitions in mortality curves’ and

‘Evolution of heterogeneity’ suggest that changes in population

heterogeneity have a considerable influence on mortality patterns,

providing the transitions in shape previously described. Yet, we

find here that if the left-side of the a distribution is preserved, then

mortality patterns are not qualitatively changed, as shown in

figure 7 and 8. In this case, the exponential-plateau-exponential

pattern remains unchanged. These findings imply that the

presence of the strongest individuals dramatically influences the

shape of mortality patterns.

The notion of subpopulation
Defining subpopulations. Because it explicitly links the

individual level and population measures of aging, the model we

propose also allows for study of what is called ‘subpopulations’ in

several experimental studies. In the case of heterogeneity in aging

rates, the distribution of individual lifespan in evolved populations

is bimodal for k~0:45 as shown in figure 9, first column. Yet, the

corresponding distribution of a is unimodal. Therefore, the very

notion of subpopulation seems to be challenged here. Indeed,

observing the lifespans leads to the distinction of two subpopula-

tions which cannot be easily determined when analyzing the

distribution of a.

When the right tail of the a distribution in the HRM is cut-off,

the bimodality in the lifespan distribution progressively disappears

(figure 9, all columns). All the individuals in the tail contribute to

the same peak of the lifespan distribution. This phenomenon is

due to the non-linear relationship between a and lifespan which

allows the compression of a broad range of a values onto a single

lifespan peak. In terms of experimental study, if a is the chosen

marker to assess investment in maintenance, the findings we

present here show that the knowledge of the relationship between

Figure 4. Distributions of heterogeneity, for a mortality function maekt, underlying the mortality curves presented in figure 1, third
row. With heterogeneity in aging timing, bimodal distributions emerge from the evolutionary algorithm. Only the ratio between the two peaks
changes with the environment.
doi:10.1371/journal.pcbi.1002825.g004

Evolution of Aging in Heterogeneous Populations
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this marker and the related aging feature is key. If it is strongly

non-linear, defining subpopulations is difficult.

Subpopulations in stress induction experiments. A

subpopulation also arises in studies focused on stress induction

experiments [24]. The usual set-up consists of measuring a marker

linked to survival, such as concentration of chaperone proteins,

and splitting the population into several subgroups, very often two:

high expression and low expression profiles. As mentioned above,

the existence of subpopulations may depend on the marker which

has been chosen, the key being the nature of the relationship

Figure 5. Distributions of a after 400 generations in the HRM for different mutation rates. The left part of the distribution remains
unchanged, while the right tail gets closer to a uniform distribution as the mutation rate (pmut) increases. (HRM, 400 generations, k~0:45, 500
simulations).
doi:10.1371/journal.pcbi.1002825.g005

Figure 6. Distributions of a after 400 generations in the HTM for different mutation rates. The left part of the distribution remains
unchanged, while the right tail gets closer to a uniform distribution as the mutation rate (pmut) increases, which is similar to the observation in
figure 5. (HRM, 400 generations, k~0:23, 500 simulations).
doi:10.1371/journal.pcbi.1002825.g006

Evolution of Aging in Heterogeneous Populations
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between this marker and the aging criteria observed (such as

lifespan).

As a case study, we focus here on stress induction experiments in

C. elegans. Figure 10, left column, shows the survival curves for

populations of C. elegans after transient heat-shocks. The main

features of these survival curves are characteristics of stress

induction experiments: the survival curve exhibits a strong

decrease, followed by a slowing down. Such patterns can be

found in a broad range of species and experimental conditions

[30–32]. The right column of figure 9 shows two survival curves

which correspond to populations evolved with heterogeneity in

aging rates and heterogeneity in timing respectively. Both models

reproduce the key features of the experimental data of [24]. In this

paper, the authors hypothesized the existence of two subpopula-

Figure 7. Even with high mutation rates, the mortality patterns are not significantly altered in the HRM model. (HRM, 400 generations,
k~0:45, 500 simulations).
doi:10.1371/journal.pcbi.1002825.g007

Figure 8. Even with high mutation rates, the mortality patterns are not significantly altered in the HTM model. (HTM, 400 generations,
k~0:45, 500 simulations).
doi:10.1371/journal.pcbi.1002825.g008

Evolution of Aging in Heterogeneous Populations
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Figure 9. A bimodal distribution of lifespan does not necessarily imply the existence of two subpopulations with respect to an
aging marker. If the link between this aging marker and mortality is non-linear, then a unimodal and long-tailed distribution can lead to a bimodal
distribution of individual lifespans. In the HRM, all the individuals in the right tail of the distribution contribute to the same peak in the distribution of
lifespan (HRM, 400 generations, k~0:45, 500 simulations to obtain the uncut distribution of a).
doi:10.1371/journal.pcbi.1002825.g009

Figure 10. Survival curves after a heat-shock with heterogeneity in aging rates (HRM) and heterogeneity in aging timing (HTM), on
the right column. The two curves reproduce the main features of survival curves corresponding to heat-shock experiments in C. elegans (filled
diamonds, adapted from [24]). Both the experimental data and the simulated curves exhibit a two stage decrease: a first quick, strong fall followed by
a slowing down. (m~0:00001, 500 individuals per simulation, 500 simulations per curve).
doi:10.1371/journal.pcbi.1002825.g010

Evolution of Aging in Heterogeneous Populations
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tions (‘strong’ and ‘weak’ individuals) to account for their

experimental results. Here, we show that both unimodal and

bimodal distributions of population heterogeneity lead to similar

survival pattern, depending on the relationship between a and the

mortality function.

Predicted mortality patterns in stress induction
experiments

Whether stress induction experiments induce adaptation which

modifies population heterogeneity is a burning issue [27]. If

adaptation occurs when k is modified, mortality patterns presented

in figure 1 emerge. In this section, we complement the previous

results with predictions concerning the mortality patterns expected

when there is no adaptation of population heterogeneity. In

figures 11 and 12, we show the qualitative changes in mortality

patterns when k is modified but not the distribution of a in the

HRM and the HTM respectively.

In both figures, the distribution of a presented in the right

column almost always led to exponential-exponential (kink)

mortality patterns. The only exception occurs for the HRM and

high k combination because individuals die too quickly to exhibit

the two-stage exponential increase. In all the other cases, the kink

shape is preserved but the time at which the kink occurs as well as

the corresponding mortality levels are modified by k. These

findings are in agreement with experimental results for C. elegans

observed under different diets [9].

The results presented in the other columns provide predictions

concerning the expected mortality patterns for other population

heterogeneity. The interests of this exploration are twofold. First, it

allows one to determine whether a given stress induction

experiment will modify population heterogeneity. If the same

distribution of a cannot produce the mortality pattern with and

without stress by only modifying k, our model predicts that

adaptation as occurred. Second, if adaptation does not occur, the

mortality patterns under perturbation present significant differ-

ences between the HRM and the HTM. One of the main

observation which stands out from the comparison between

figure 11 and 12 is that the mortality rates are more modified in

the HRM than in the HTM in response to changes in k.

Therefore, this prediction can provide a way to decide whether

inter-individual differences in aging rely on rate of timing.

Discussion

Studying the evolution of heterogeneity in resource allocation

strategies is at the heart of a broad range of experimental studies

and today’s aging research [11]. The nature of individual mortality

functions are still to be discovered: whether populations of the

same species living in different environments differ in aging rates

or aging timing is still an open question. Drosophila melanogaster

submitted to diet changes exhibit a shift in their mortality curves

(changes in the timing) while the same populations exhibit a

rescaling of their mortality curves in response to temperature

changes (changes in aging rates) [13]. The same question holds for

human populations and individuals [11]. Understanding the

nature of heterogeneity in aging sheds light on the biological

constraints which can be circumvented. If it turns out that aging

rate is the same for every human being, it might be strongly

controlled at the lower levels of the organism and therefore

difficult to modify.

Moreover, in terms of medical treatments, focusing on aging

rate or timing has distinct implications. On the one hand,

modifying the rate of aging results in a high potential increase in

life expectancy as aging is slowed during the whole life time. On

the other hand, such changes in rate would not only extend the

period of ‘healthy aging’ but also morbidity. These pros and cons

have arguably significant implications in terms of public policy and

need to be considered with regards to population heterogeneity. If

the rate of aging is a fundamental constant in humans while timing

Figure 11. Expected log-mortality patterns in stress induction experiments for the HRM. Modifying k without adaptation in population
heterogeneity changes the mortality pattern. The results presented in the right column are in agreement with experimental results concerning diet
changes in C. elegans [9].
doi:10.1371/journal.pcbi.1002825.g011
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is highly variable, being able to modify aging rate via medical

progress will require substantial investment while timing would be

presumably more flexible and thus cheaper to modify.

Numerous studies in current aging research have found

mutations or treatments which dramatically influence aging

dynamics [12,13]. Yet, very often the issue of timing and rate of

aging is not directly addressed, for instance because survival curves

are provided and not mortality curves. The models we present in

this paper allow one (i) to compare their data to the transitions

with the parameter k observed in our model and (ii) to reinterpret

previously published data to address the crucial issue of rate and

timing of aging.

In this model, we analyze different possible heterogeneity in

aging, only assuming Gompertz dependence on time. Our results

show that assumptions about internal life-history trade-offs

modulate the shape of population heterogeneity. Yet, in a wide

array of scenarios, the same set of mortality and survival curves

emerge. Population heterogeneity adapts to the environment

according to the individual mortality functions but, at the

population level, no qualitative changes can be observed. The

transitions observed always go from a ‘kink’ shaped mortality

curve to an exponential-U shape-exponential pattern. This

robustness of the mortality patterns also echoes experimental

observations of mortality and survival in different environments. In

many organisms, the modifications observed in mortality patterns

as a result of genetic manipulations [33] or environmental changes

[9] does not provide strikingly different curves. These curves can

be stretched or shifted by the treatment, but generally they do not

exhibit shapes radically different than those described in this

paper. For instance, the survival curve shown in figure 10, which

shows a quick decrease followed by a slowing down, is a standard

pattern which can be observed across species under stressful

conditions [30–32]. This robustness of survival and mortality

curves will be easier to assess thanks to increasingly available data

for species other than model organisms. Such robustness may even

be a key property which sheds light on the underlying mechanisms

of aging across species, their effects, their limits and their

evolution.

The systematic exploration of different forms of inter-individual

differences in aging also provides predictions about the expected

distributions of heterogeneity. Even though the mortality patterns

look alike in the different versions of the model, the evolved

heterogeneity distributions do not. Current technical advances,

such as microfluidics set-ups [34], individual genomics [35] or

proteomics [36], allow more and more observations at the

individual level, which in turn lead to population level influences.

As such, we expect that the analysis of distributions and

heterogeneity will replace the analysis of means over populations

in the coming decade. The framework we present here, in which

the distribution of heterogeneity conveys information about

evolution and the aging process, anticipates this trend and paves

the way for formal modeling and understanding of individual-

based data. In aging research, these predictions would allow

researchers to decide whether individual differences in aging rely

on aging rate or timing. In other fields, it paves the way for a

renewed vision of inter-individual differences evolution.

Previous works have used the Price equation to link population

heterogeneity and natural selection [37,38]. The framework we

propose here, with age-dependent competition and evolution of

distribution provides an interesting ground for further develop-

ment of these works. In this respect, the analytical framework

presented in the Methods section is of particular interest as it could

in principle give explicit expressions concerning the changes in the

phenotypic variance from one generation to the other.

Moreover, the shape of these distributions also provides

information about the link between the marker observed at the

individual level and the measure of interest, such as individual

lifespan. Comparing the distributions emerging from our evolu-

tionary algorithm shows that to obtain the exponential-plateau-

exponential pattern (which corresponds to a bimodal distribution

Figure 12. Expected log-mortality patterns in stress induction experiments for the HTM. Modifying k without adaptation in population
heterogeneity changes the mortality pattern. The results presented in the right column are in agreement with experimental results concerning diet
changes in C. elegans [9].
doi:10.1371/journal.pcbi.1002825.g012
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of lifespans) with a unimodal distribution of the aging marker, the

link between the marker and individual lifespan needs to be

strongly non-linear. The exploration we propose here also

provides milestones to interpret the individual-based data and

their corresponding distributions.

Finally, we believe that the model is also flexible enough to

allow the exploration of other types of life-history trade-offs, based

on the key idea of evolving heterogeneity. As such, it paves the way

for future interpretations of coming individual-based observations

in evolving biological systems.

Conclusions
The simplicity of the framework we propose also enables the

formalization of intuitive notions, such as a ‘subpopulation’ and

the extensive exploration of mortality functions provides predic-

tions of possible curves for organisms yet to be studied, along with

expected distributions of heterogeneity. The robustness of

mortality patterns observed suggests that aging is itself a robust

process, relying on similar processes across species. We hope that

this work paves the way for (i) faster understanding and

classification of heterogeneity distributions across species which

are not model organisms and (ii) opens up new prospects in terms

of understanding the evolution of aging and its robustness. The

set-up allows easy changes and explorations, as well as creating

space to make the interactions between aging and reproduction

more complex. In that sense, it complements previous approaches

combining evolutionary theories and heterogeneity, as it provides

a framework to explore yet to be explained aging dynamics.

Methods

Numerical methods
We have simulated our model with both a continuous time and

a discrete time framework, in both a stochastic and a deterministic

manner, in order to ensure the robustness of our results. All

models have been implemented in C and this section provides

numerical methods for the algorithm used in our simulations.

Stochastic models. In the stochastic models, the population

has a finite size which is usually 500 individuals, unless otherwise

mentioned. Modifying this parameter does not alter the conclusion

of the models and the same results can be obtained for different

population sizes. The mortality curve we observe as a result of the

evolutionary algorithm depends on the parameter k. The

transitions in the mortality patterns following k are the same for

different population size, these transitions simply occur for

different values of k.

In the discrete time version of the stochastic model, the age of

each individual is incremented by one at each time step and

followed by a survival test. This test consists of drawing a random

number q between zero and one, and comparing this number with

the age-specific mortality hazard: if qwm(t,a), the individual

survives until the next time step and dies otherwise. As we consider

populations with a fixed size of 500, no individuals were

experiencing a mortality hazard higher than one. As a first

approximation, we have considered the age-specific probability of

death to be close to the mortality hazard at the same age. This

approximation provides the same results as the continuous-time

version of the model (see below) which directly computes the

individual lifespan according to mortality hazards. All alive

individuals compete then for reproduction. Multiple reproductive

events may occur in the same time step, and the offspring

produced is added to the next generation if it is not full. This

process of death-reproduction is then iterated until the next

generation is filled.

The continuous time version of the stochastic model follows the

same principles. The time of death and reproduction events are

drawn following continuous distributions. First, the time of death

for each individual is randomly drawn following an exponential

distribution which corresponds to its m(t,a).More precisely, the

procedure to draw the time of death td for a given individual, with

a parameter a and a baseline mortality described by m0 and k, is

the following. First, we draw randomly a number t between 0 and

1. Then, we compute td~
1

ka
log 1z

ka

tm0

� �
, following the

standard procedure to draw random numbers from exponential

distributions. The time of reproductive events derive from a

standard Gillespie algorithm accounting for the fact that only alive

individuals compete for reproduction. More precisely, the time

interval between two reproduction events is drawn from an

exponential distribution of parameter 1, as these are the only

events considered here (the time of death being already calculated

beforehand). The stochastic model with continuous time was used

for all the figures presented in the main text.

Deterministic model
We have also implemented a deterministic model which

corresponds to the stochastic models presented in the main text

in the case of infinite populations. The purpose is twofold: (i) it

ensures the robustness of our results and (ii) it paves the way for an

analytical analysis of the evolutionary algorithm we present in this

paper. For instance, the formalisation presented in this section

allows one to study from a formal standpoint the convergence to a

stationary distribution with infinite populations. The deterministic

model is defined at the population level and describes the changes

in Da(n), the distribution of a in the population at generation n.

This distribution changes over generations through the same

principle: individuals reproduce based on their a and die

according to the individual mortality function chosen. The

distribution of a changes over time in one generation, as

individuals die, following: D(t,a,n)~D(a,n)S(t,a)~D(a,n)

e
{m0

ka ekat{1ð Þ. Da(nz1) is therefore defined as

Da(nz1)~

ð1

0

K(a,a’)
1

tmax

ðtmax

0

a’D(t,a’,n)Ð 1

0
aD(t,a,n)da

dt

 !
da’

where K(a,a’) accounts for the probability that an offspring

inherits a parameter a given that its parent had a parameter a’ and

tmax for the finite size of the population. Indeed, as the rate of

reproduction is constant over time, limiting the population size is

equivalent to limiting the overall time allowed for reproduction. In

sum, Da(nz1)~T(Da(n) where T is the operator on a
distributions described in the equation above. The evolutionary

process described in the main text converges towards a stationary

distribution of a after several hundreds of generations when a fixed

point for the operator T is reached. In Text S1, we show that the

deterministic model and the stochastic models produce the same

results.
Deterministic model. For computational reasons, the pos-

sible values of a are discrete. In the formula concerning the

deterministic model presented above, the integrals with respect to

a are discrete. The stochastic model with discrete time is

equivalent to a deterministic model with discrete time. In this

case, each time step follows the same pattern as the stochastic

model: survival test ends reproduction. These two steps occur at

the population level for the deterministic model with discrete time.

A fraction of each class of a survives and reproduction depends on

the number of individuals in each class of a.
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In supplementary material, we also describe the explorations

mentioned in the main article (Text S1) and provide the code to

reproduce the simulation results (Program S1).

Supporting Information

Figure S1 Exploration of the parameter space A - Mortality

pattern for a mortality function ma4ekt for different values of k
(m~0:00001, 500 individuals per simulation, 400 generations and

300 simulations). Similar patterns are observed for other powers of

a. B - Mortality pattern for a mortality function ma0:25ekt for

different values of k (m~0:00001, 500 individuals per simulation,

400 generations and 300 simulations). Similar patterns are

observed for other powers of a. These two new mortality functions

provide the same set of mortality curves as those presented in

figure 1, main text. C - Mortality pattern for a mortality function

mekat for different initial mortality (k~0:2). D - Mortality pattern

for a mortality function maekt for different initial mortality

(k~0:26). Modifying the initial mortality does not provide

qualitatively new mortality curves: the same transitions when

changing k are still observed.

(EPS)

Figure S2 HRM where mutations consist in perturbing the

previous value of a. The new value is drawn following a Gaussian

distribution, centered on the previous value and with standard

deviation 0.3. The same transitions as the model presented in the

main text are observed.

(EPS)

Figure S3 In the HRM, adding mild extrinsic mortality

(l~0:01) does not alter the conclusions of the paper: the same

transitions occur. The main difference lies in a plateau at early

ages, resulting from extrinsic mortality driving population death.

At mid and late ages, intrinsic mortality dominates and the usual

patterns are obtained.

(EPS)

Figure S4 Transitions with the k parameter for the deterministic

model: the same set of transitions as those presented in figure 1

(main text) emerge from the evolutionary algorithm.

(EPS)

Figure S5 Mortality pattern and stationary distribution obtained

with sexual reproduction. The horizontal line shows 0.01 to

highlight the decrease of the tail close to 1. (k~0:9, 500

simulations, 500 individuals in each, 400 generations with the

HRM).

(EPS)

Figure S6 Mortality pattern and stationary distribution obtained

with a maturation time of 10. The horizontal line shows 0.01 to

highlight the decrease of the tail close to 1. (k~0:4, 500 simulations,

500 individuals in each, 400 generations with the HRM).

(EPS)

Figure S7 In the absence of mutations, the distribution of a
quickly converges towards a peak around one specific value

(Heterogeneity in aging rates, k~0:45, deterministic model). The

depletion of high a over generations occurs more slowly than the

depletion close to zero.

(EPS)

Figure S8 For small mutation rates, population heterogeneity

remains bimodal in the case of heterogeneity in timing (HTM).

Heterogeneity is maintained because of the time-dependent

competition, as described in the mathematical model in Text S1,

section ‘‘Maintaining heterogeneity’’ (HTM, 400 generations,

k~0:23, m0~0:0001, 500 simulations).

(EPS)

Figure S9 The grey area represents the set of valid couple (c,b)
to allow the coexistence of three competing traits in the simple

model we present here.

(EPS)

Program S1 Simulation Code. Program S1 contains a C code

allowing to reproduce the mortality curves of the paper.

(ZIP)

Text S1 Exploration of the parameter space and mathematical

models. Text S1 describes supplementary information mentioned

in the main text, such as exploration of parameters to ensure the

robustness and mathematical models to illustrate how heteroge-

neity can be maintained over generations.

(PDF)
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