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Abstract: We have designed a new type of molecule with a noble gas (Ng = Kr and Xe) atom in a
six-membered ring. Their structures and stability have been studied by density functional theory
and by correlated electronic structure calculations. The results showed that the six-membered ring
is planar with very short Ng–O and Ng–N polar covalent bonds. The calculated energy barriers
for all the unimolecular dissociation pathways are higher than 20 and 35 kcal/mol for Ng = Kr and
Xe, respectively. The current study suggests that these molecules and their derivatives might be
synthesized and observable at cryogenic conditions.

Keywords: noble-gas chemistry; cyclic molecules; stability of noble-gas molecules; bonding of
noble gas

1. Introduction

Recent developments in noble gas chemistry have shown that noble gases can par-
ticipate in various types of chemical bonding, such as in the molecules HNgF [1–4],
HNgCN [5,6], HNgCCH [7–9], FNgCCH [10,11], FNgBNH [12], NgAuF [13,14], FNgO− [15],
FNgCC− [16], FNgBN− [17], CH3OHXeF+ [18], CH3CNXeF+ [19], etc. Studies in the last
two decades suggest that, except for neon, all other noble gas atoms can form kinetically
stable neutral molecules or anions at cryogenic conditions. However, due to the very
limited varieties of chemical groups that can bond to noble gas atoms and the low bonding
energies, it is difficult to extend the noble-gas containing molecules to larger or cyclic
molecules except for pure electrostatic association between a very electropositive site and
a noble gas atom [20]. In stable noble-gas containing molecules of the type X–Ng–Y, the
noble gas atom usually bonds to H and F atoms, or chemical groups such as CC, CN and
BN, which are either univalent or linear in bonding direction, and it is thus difficult to form
a ring. In an earlier study of NXeO3

− [21] and related molecules, we have shown that Xe
and N can form strong bonding when the Xe atom is bonded to multiple oxygen atoms in
the same molecule. The O2Xe–N bonding can thus provide the necessary bond energy and
suitable bond angle to form a potentially stable cyclic noble-gas molecule. In the current
study, we also exploit the flexible –B–O–B–motif [22] to build a cyclic noble-gas containing
molecule NgO3N2B2F2 (Ng = Kr and Xe) ring as shown in Figure 1. To our knowledge, this
is the first study of molecules with noble gas atom in a six-membered ring. The structures,
stability, and electron density distribution of the cyclic molecules will be investigated.
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Figure 1. Calculated structure of NgO3N2B2F2 (Ng = Kr, Xe). The bond distances are in angstroms and the bond angles in 

degrees. The numbers in blue and green are values calculated by the B3LYP/aptz and MP2/aptz methods, respectively. 

The values in red are NBO atomic charges at B3LYP/aptz level. 

2. Methods 

Molecular structures and vibrational frequencies were calculated using B3LYP [23] 

hybrid functional and MP2 [24] theory with the aug-cc-pVTZ [25,26] basis set. The B3LYP 

functional used with a large basis set has been shown to be reasonably accurate both on 

the bond energies and structures for noble-gas containing molecules. [19,27–29]. For Xe, 

the aug-cc-pVTZ-pp basis set was used where the 28 core electrons were represented by 

a relativistic effective potential [30] which takes the scalar relativistic effects into account. 

Diffuse functions were included because recent research shows they are crucial for obtain-

ing accurate bond energies for noble-gas containing molecules [31]. The basis set is abbre-

viated as aptz in the rest of this article. The intrinsic reaction coordinate (IRC) was calcu-

lated for every transition states located. The M06-2X [32,33] functional with the same basis 

set was used to obtain better energetics along unimolecular dissociation pathways. Cou-

pled-cluster CCSD(T) [34] energies were calculated at B3LYP/aptz geometry with the aptz 

basis set to take the high-level correlation effects into account. The electron density distri-

bution was obtained using the B3LYP/aptz method. Topology analysis [35] of the electron 

density was carried out using the Multiwfn program [36]. The electronic structure calcu-

lation was performed using the Gaussian 16 program, revision C01 [37]. 

3. Results and Discussion 

3.1. Structure 

The calculated structures of the ring molecules for Ng = Kr and Xe at B3LYP/aptz and 

MP2/aptz level are shown in Figure 1. The six-membered ring and the two fluorine atoms 

are coplanar, and the NgO2 plane is perpendicular to the ring. The structures are in C2v 

symmetry. The major differences of the two structures are on the Ng–N and Ng–O bond 

distances. At the B3LYP/aptz level, the Kr–N and Xe–N distances are 1.797 Å and 1.912 Å, 

respectively, and the Kr–O and Xe–O distances are 1.645 Å and 1.785 Å, respectively. At 

the MP2/aptz level, the calculated Ng–N distances are 0.07–0.10 Å shorter, and the Ng–O 

distances are 0.04–0.06 Å shorter. These bonds are short compared with earlier studies 

[21,38–40] and can be assigned as double bonds. All other structural parameters are simi-

lar for Ng = Kr and Xe, with corresponding bond lengths within 0.005 Å and bond angles 

Figure 1. Calculated structure of NgO3N2B2F2 (Ng = Kr, Xe). The bond distances are in angstroms and the bond angles in
degrees. The numbers in blue and green are values calculated by the B3LYP/aptz and MP2/aptz methods, respectively. The
values in red are NBO atomic charges at B3LYP/aptz level.

2. Methods

Molecular structures and vibrational frequencies were calculated using B3LYP [23]
hybrid functional and MP2 [24] theory with the aug-cc-pVTZ [25,26] basis set. The B3LYP
functional used with a large basis set has been shown to be reasonably accurate both on the
bond energies and structures for noble-gas containing molecules [19,27–29]. For Xe, the aug-
cc-pVTZ-pp basis set was used where the 28 core electrons were represented by a relativistic
effective potential [30] which takes the scalar relativistic effects into account. Diffuse
functions were included because recent research shows they are crucial for obtaining
accurate bond energies for noble-gas containing molecules [31]. The basis set is abbreviated
as aptz in the rest of this article. The intrinsic reaction coordinate (IRC) was calculated for
every transition states located. The M06-2X [32,33] functional with the same basis set was
used to obtain better energetics along unimolecular dissociation pathways. Coupled-cluster
CCSD(T) [34] energies were calculated at B3LYP/aptz geometry with the aptz basis set
to take the high-level correlation effects into account. The electron density distribution
was obtained using the B3LYP/aptz method. Topology analysis [35] of the electron density
was carried out using the Multiwfn program [36]. The electronic structure calculation was
performed using the Gaussian 16 program, revision C01 [37].

3. Results and Discussion
3.1. Structure

The calculated structures of the ring molecules for Ng = Kr and Xe at B3LYP/aptz
and MP2/aptz level are shown in Figure 1. The six-membered ring and the two fluorine
atoms are coplanar, and the NgO2 plane is perpendicular to the ring. The structures are in
C2v symmetry. The major differences of the two structures are on the Ng–N and Ng–O
bond distances. At the B3LYP/aptz level, the Kr–N and Xe–N distances are 1.797 Å and
1.912 Å, respectively, and the Kr–O and Xe–O distances are 1.645 Å and 1.785 Å, respectively.
At the MP2/aptz level, the calculated Ng–N distances are 0.07–0.10 Å shorter, and the
Ng–O distances are 0.04–0.06 Å shorter. These bonds are short compared with earlier
studies [21,38–40] and can be assigned as double bonds. All other structural parameters
are similar for Ng = Kr and Xe, with corresponding bond lengths within 0.005 Å and bond
angles within 4 degrees at both theoretical levels. All calculated structures are included in
the Supplementary Materials.
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3.2. Stability

We consider three unimolecular dissociation pathways of the ring molecules:

NgO3N2B2F2 (R)→ NgO2N2B2F2 (C1) + O→ NgON2B2F2 (P1) + O2 (1)

NgO3N2B2F2 (R)→ NgO2 + ON2B2F2 (P2) (2)

NgO3N2B2F2 (R)→ NgON2B2F2 (P1) + O2 (3)

The calculated potential energy profiles along these pathways are shown in
Figures 2–5. Pathway R1 is the sequential dissociation of the two oxygen atoms (with
the intermediate C1) that are bonded to the noble gas atom. As shown in Figure 2, both
steps need significant amount of energy (with the product oxygen atoms in the singlet
state). For Ng = Kr the first dissociation requires ~50 kcal/mol, and the second requires
~45 kcal/mol. For Ng = Xe the first dissociation requires ~73 kcal/mol, and the second
requires ~80 kcal/mol. As shown in the Supplementary Materials, the three theoretical
levels, B3LYP, M06-2X, and CCSD(T), give consistent results. The MP2 results, however,
may have somewhat overestimated the stability [10,15,16,21,29]. It is noted that the ground
state of oxygen atom is triplet, which is ~2 eV lower than the singlet state. Dissociation
to triplet oxygen atoms is spin- forbidden but could occur through intersystem crossing.
We estimated the singlet-triplet crossing points to be 26 and 38 kcal/mol higher than R
for Ng = Kr and Xe respectively. We performed a relaxed energy scan along the oxygen
dissociation coordinates. However, we could not find any transition states for R1. These
dissociation pathways seem to be barrierless. We will discuss the CCSD(T) relative energies
in the rest of this article. As shown in Figure 2, the final product P1 is also a molecule
with a noble gas atom in a six-membered ring (NgON2B2F2) but with longer (by 0.2–0.3 Å)
Ng–N bond distances. The stability of this molecule will be discussed later in this section.
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Figure 2. The calculated potential energy (in kcal/mol) profile for the dissociation pathway R1 at
CCSD(T)/aptz//B3LYP/aptz level. The values in blue are for Ng = Kr and values in red are for
Ng = Xe. The oxygen atoms are assumed to be in singlet state.
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Pathway R2 is the dissociation of NgO2 molecule to form the five-membered ring
P2 molecule (ON2B2F2). As shown in Figure 3, this pathway is highly exoergic due to
the formation of the N–N bond. Since the Xe–N bonds are stronger than Kr–N bonds in
NgO3N2B2F2, the energy of reaction of R2 for Ng = Xe is ~40 kcal/mol higher than that
for Ng = Kr. The pathway was predicted to be a two-step process, with the energy barrier
of the first (ring-opening) step slightly higher than that of the second (ring-closure) step.
There is an intermediate complex C2 connecting the two steps with energies of 15 and
25 kcal/mol higher than NgO3N2B2F2 for Ng = Kr and Xe, respectively. The ring-opening
barriers for Ng = Kr and Xe are 21.9 and 35.7 kcal/mol, respectively, which are high enough
to make the ring molecules R kinetically stable against dissociation at cryogenic condition.

Pathway R3 is the one-step dissociation of O2 molecule to form the same six-membered
ring molecule P1 as in R1. The energies of reactions of R3 are lower than those of R1 by
the bond energy of singlet O2 molecule. As shown in Figure 4, the calculated barriers for
Ng = Kr and Xe are 61.7 and 71.4 kcal/mol, respectively, which are also high enough to
make the ring molecules R kinetically stable at low temperature.

The six-membered ring molecule KrON2B2F2, which is the product of R1 and R3,
was found to be unstable against the two-step dissociation to the noble-gas atom and
the P2 molecule, as shown in Figure 5, with barriers only ~6 kcal/mol. For XeON2B2F2
the dissociation barriers were predicted ~18 kcal/mol, which seems still high enough
to make them kinetically stable at low temperature. We did not find other low-energy
unimolecular dissociation pathways for R and P1. The singlet-triplet (S-T) energy gaps for
the ring molecules R were calculated to be higher than 70 kcal/mol at the structures in
Figure 1. This indicates they are not susceptible to dissociation by intersystem crossing.
However, the S-T gap for XeON2B2F2 (P1) was found to be only 37 kcal/mol due to
the much longer Xe–N bonds. Thus the XeON2B2F2 molecule is much more susceptible
to bond dissociation via intersystem crossing. The calculated structural parameters of
transition states (TS1–TS5), dissociation complexes (C1 and C2) and products (P1 and P2)
are listed in the Supplementary Materials. As shown in the Supplementary Materials, in
most cases the dissociation barriers predicted at M06-2X level are in good agreement to
those at CCSD(T) level. This suggests that the stability against unimolecular dissociation of
the cyclic noble-gas containing molecules R can be modeled accurately using the M06-2X
functional at only a fraction of the cost of CCSD(T) theory. The B3LYP functional predicts
somewhat lower barriers while the MP2 theory predicts significantly higher barriers.

3.3. Charge Distribution & Electron Density

Figure 1 shows the calculated NBO atomic charges of R based on the B3LYP density.
The noble gas atoms were assigned very positive charges of 2.3 and 3.2 for Kr and Xe,
respectively, while the oxygen and nitrogen atoms were assigned very negative charges. As
shown in the figure, the charge separation is more pronounced for Ng = Xe. The contour
plots of electron density of R (Ng = Xe) are shown in Figure 6. On the plane of the six-
membered ring, the electron density distribution is consistent with polar Xe–N bonds and
nearly ionic centers of boron atoms surrounded by nitrogen, fluorine, and oxygen atoms.
The center of the ring is devoid of electron density.

On the plane of XeO3, which is perpendicular to the ring plane, the density distribution
shows polar Xe–O bonds and an isolated oxygen atom that is separated from the Xe atom
by the central void. The contour plots of the Laplace concentration of electron and the
topology analysis are shown in Figure 7. The figure shows that the regions between Xe–N
and Xe–O bonds are of electron density depletion, which indicates more ionic character.
The ∇2ρ calculated at the bond critical points of Xe–N and Xe–O are 0.178 and 0.217,
respectively. According to previous studies [41–43], the positive values suggest ionic
characters. As shown in Figure 7, the critical points of B–N, B–F, and B–O are located right
on the borders between regions of electron depletion and electron concentration, and the
signs of the ∇2ρ are less meaningful. Thus, even though their ∇2ρ values are all positive,
these bonds are more appropriately assigned as polar covalent. The detailed results of
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topology analysis are listed in the Supplementary Materials. The electron density contour
and Laplace concentration plots of P1 is also included in the Supplementary Materials.
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Figure 7. Contour plots of the calculated Laplace concentration of XeO3N2B2F2 on (a) the ring plane
(b) the XeO3 plane. The red contour lines are in regions of charge concentration and the black contour
lines are in regions of charge depletion. The blue lines pass points of zero gradients, and the dots are
bond critical points.

4. Conclusions

We have designed a new type of molecule with a noble-gas atom in a planar six-
membered ring, which have not been studied before. High-level theoretical calculation
suggests that the NgO3N2B2F2 molecules (Ng = Kr and Xe) are kinetically stable against
unimolecular dissociation reactions. One may also imagine that if the fluorine atoms are
replaced with oxygen atoms, as shown in Figure 8, other functional groups may be attached
to the oxygen atoms to form a series of derivatives. It is anticipated that these molecules
and derivatives could be observed in future experiments at cryogenic conditions.
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