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The structure anti-influenza activity relationships of thiobenzamide and quinolizidine derivatives, being influenza fusion
inhibitors, have been investigated using the electronic-topological method (ETM) and artificial neural network (ANN) method.
Molecular fragments specific for active compounds and breaks of activity were calculated for influenza fusion inhibitors by
applying the ETM. QSAR descriptors such as molecular weight, EHOMO, ELUMO, ΔE, chemical potential, softness, electrophilicity
index, dipole moment, and so forth were calculated, and it was found to give good statistical qualities (classified correctly 92%,
or 48 compounds from 52 in training set, and 69% or 9 compounds from 13 in the external test set). By using multiple linear
regression, several QSAR models were performed with the help of calculated descriptors and the compounds activity data. Among
the obtained QSAR models, statistically the most significant one is the one of skeleton 1 with R2 = 0.999.

1. Introduction

Influenza (also known as flu) virus is an etiologic cause of
widespread epidemics of acute respiratory tract infections
that occur annually during the winter season [1, 2]. Less
frequent pandemic episodes of influenza are associated with
greater mortality and morbidity, usually a consequence of
genetic recombination of viral strains. Indeed, influenza is
responsible for over 20000 deaths annually in the US, despite
the annual seasonal vaccination campaigns that have become
familiar [3, 4]. It is particularly dangerous to the very young,
elderly, and to those who have suppressed immune systems.
Vaccination has been the main preventive measure and has
provided limited control, but vaccines must be reformulated
each year in response to antigenic drift and may be ineffective
against new variants of influenza viruses [5].

There are three types of influenza viruses: A, B, and C.
The first two types are responsible for annual epidemics
and pandemic outbreaks; while influenza C is endermic
vaccination provides limited protection based on the ability
to predict the exact strains of influenza that will predominate
a year in advance of the influenza season [4]. Millions
of people each year become infected with the influenza A
virus. Influenza A is characterized by the abrupt onset of
constitutional and respiratory signs and symptoms (e.g.,
fever, myalgia, headache, severe malaise, nonproductive
cough, sore throat, and rhinitis) [3]. Currently, control of
influenza infection relies mainly on a preventive strategy
dependent on the annual identification, production, and
distribution of a multivalent vaccine designed to predict
the predominant epidemic viral strains. Until recently, anti-
influenza drugs were restricted to the M2 channel blockers
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Figure 1: Common molecular skeletons.

amantadine and rimantadine, both of which are approved for
the prophylactic and therapeutic treatment of the influenza
viruses within the A family. However, the licensing of the
neuraminidase inhibitors, zanamavir, and oseltamivir has
provided the clinician with antiviral agents that effectively
prevent and treat both type A and B influenza infections
[1]. A new viral target has recently been exploited to develop
clinically useful anti-influenza drugs [5].

In this study, we investigate the structure anti-influenza
relationships by using the electronic-topological method
(ETM) [6–20] for a class of thiobenzamide influenza
fusion inhibitors derived from 1,3,3-trimethyl-5-hydroxy-
cyclohexylmethylamine and quinolizidine derivatives [1, 2].
The series under investigation is presented in Table 1, and
their common skeletons are shown in Figure 1.

All conformational and quantum-chemical data were
obtained by means of the MM2 (molecular mechanic)
method of the molecular mechanics and a semiempirical

ETMC
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Figure 2: Common scheme of the ETM.

quantum-chemistry method known as AM1. Activity fea-
tures’ selection has been carried out by means of the ETM-
software. To have more stable activity features, every active
molecule was used as a template for comparison with the
rest of molecules. As a result of this comparison, activity
features (pharmacophores) P1, P2, and P3 were revealed.
To decide which of pharmacophores is better, each inactive
molecule was used as a template for comparison with the rest
of molecules. So, inactivity features (antipharmacophores)
AP1, AP2, and AP3 were revealed also to complete the
system for the thiobenzamide and quinolizidine derivatives
inhibitors activity prediction.

2. Materials and Methods

In this study, the structure anti-influenza relationships of
thiobenzamide and quinolizidine derivatives being influenza
fusion inhibitors have been studied by means of the ETM. An
ETMC is an n×n matrix, where n is the number of atoms in
the corresponding molecule. Diagonal elements are values of
an atomic property such as atomic charge. An off-diagonal
element can be of one of two kinds. It is bond property, if
the bond exists, and distance for the corresponding pair of
atoms, otherwise [19]. Detailed descriptions of the ETM can
be found elsewhere [6–20].

The matrices are easily understandable and extremely
convenient for computer handling. In this way, the structures
of the molecules under study get a unified description that
is not bound to the atoms’ identity. This circumstance is of
primary importance when searching for pharmacophores in
quite diverse structures of biologically active molecules.

The main steps of the ETM procedure are shown in
Figure 2 [7, 9, 10, 18]:

The descriptors, such as EHOMO, ELUMO, ΔE, chemical
potential, softness, electrophilicity index, dipole moment,
and Mulliken charges of some atoms on studied molecules
were calculated by the DFT method using B3LYP exchange
correlation functionals [21, 22] with the 6-31G(d,p) basis
set by using Gaussian Program [23]. The Fukui functions
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Table 1: A list of chemical molecules under investigation.

No X R1 R2 R3 R4 R5
Activity,

EC50 (μg/mL)

Skeleton I

1 O OH Cl H H H 0.06

2 S H Cl H H H NA

3 S H H H H H NA

4 S Me H H H H NA

5 S H Me H H H NA

6 S H F H H H NA

7 S H CF3 H H H NA

8 S H H Me H H NA

9 S Me H Me H H NA

10 S Me H H Me H NA

11 S H Me H Me H NA

12 S OMe H H H H NA

13 O OH H H H H 0.05

14 S OH H H H H 4.5

15 O OH H H Me H 0.03

16 S OH H H Me H 0.4

17 S OH H H Cl H 0.9

Skeleton II

18 O OH H H Cl H 0.2

19 S H Cl H H H 0.02

20 S H H H H H 0.05

21 S Me H H H H 0.065± 0.035

22 S H Me H H H 0.015± 0.007

23 S H F H H H 0.038

24 S H CF3 H H H 0.09

25 S H H Me H H NA

26 S Me H Me H H 0.15

27 S Me H H Me H 0.023± 0.011

28 S H Me H Me H 0.03± 0.07

29 S OMe H H H H 1.0

30 O OH H H H H 25

31 S OH H H H H 2

32 O OH H H Me H 0.15± 0.071

33 S OH H H Me H 0.5

34 S OH H H Cl H 1.8

35 S H CN H H H 2.5

36 S H NO2 H H H NA

37 S H CO2Me H H H NA

Skeleton III

38 O OH H NH2 Cl H 1–3

39 O OMe H NH2 Cl H NA

40 O H H NH2 Cl H NA

41 O OH H H H H 1.6–3.1

42 O OH H NH2 H H NA

43 O OH H H F H 0.4–0.8

44 O OH H H Cl H 0.8

45 O OH H H Br H 0.8

46 O OH H H Me H 0.2-0.3

47 O OH H H OMe H 0.6
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Table 1: Continued.

No X R1 R2 R3 R4 R5
Activity,

EC50 (μg/mL)

Skeleton III

48 O OH H H OH H NA

49 O OH H H CF3 H NA

50 O OH H H CH=CH2 H 2

51 O OH H H N3 H 0.5

52 O OH H H tert-Bu H NA

53 O OH H H Ph H NA

54 O OH H H PhCO H NA

55 O OH H CH3 H H 4

56 O OH H N3 Cl H NA

57 O OH H –CH=CH–CH=CH– H NA

58 O OH H H –CH=CH–CH=CH– NA

59 O OH H –(Me)2–CCH2CH2C–(Me)2 H NA

60 O OH CH3 H H H 8

61 O OH Cl H Cl H 10–20

62 O OH OH H H H NA

63 O OH H H H F 10

64 O NH2 H H H H 5–10

65 O CH3CONH H H H H NA

NA, not active.

were calculated by AOMix program [24, 25] by using
the data obtained and calculated at the level of B3LYP/6-
31G(d,p) method (See Tables 1–3 in supplementary Material
available online at doi:10.1155/2010/693031 which shows
some quantum chemical descriptors, mulliken charges and
Fukui functions of the studied molecules calculated using the
B3LYP/6-31G (d,p) basis set) .

3. Results and Discussion

In this study, the optimized geometry data and electronic
characteristics were used to form ETMCs for all molecules
in a series of thiobenzamide and quinolizidine derivatives
including 65 molecules [1, 2]. The effective charge on atoms
are shown on diagonal elements, while bond characteristics
and optimized distances are represented on non diagonal
elements.

According to the activity level, molecules under study (65
in all) were classified and divided into 3 classes, namely,

(1) active molecules (30 mol. with EC50 ≤ 2.5),

(2) low active molecules (7 mol. EC50 between 4 and 25),

(3) inactive molecules (28 mol. with EC50 being nonac-
tive).

The parameters responsible for the activity form a matrix
called electron-topological submatrix of activity (ETSA),
calculated from an ETMC that represents one of the most
active molecules (“a template” for comparison).

3.1. Pharmacophores Identification. For each template
molecule, its ETMC was compared with the ETMCs of the

rest of molecules in both series. The comparison resulted in
a few common structural fragments for the two cases. The
fragments were found as submatrices of the corresponding
template ETMCs (i.e. electron-topological submatrices of
contiguity (ETSCs).

Molecule 19 taken as template molecule from active ones
was accepted to be the active one and from the template
molecule 19, an activity feature 2 (or pharmacophore,
P2) was found and presented in Figure 3, alone with the
corresponding ETSCs, which describe electronic-topological
characteristics of the fragments (see Figure 3).

In the matrices, the effective charges on atoms (local
atomic characteristics, Qi) were chosen for diagonal ele-
ments, while in place of nondiagonal elements representing
interatomic characteristics there are either Wiberg’s indices
[21], (Wi j , for bonds) or optimized distances (Ri j , in Å,
for chemically non-bonded pairs of atoms). The distance
between C19 and O22 atom is 8.80 Å.

Submatrices given in Figure 3 are found after setting
some allowable limits for the matrix elements comparison.
For both series, the limits are δ1 = 0.04 for diagonal
elements of the ETMCs and δ2 = 0.14 for their off-diagonal
elements comparison. The pharmacophores found from the
ETM-calculations are realized in all active molecules (30).
Statistical estimates for the pharmacophores are given in
Table 2.

An activity feature P2 is shown along with its ETSA of
the order 6x6 (see Figure 3). Only its upper triangle is given
because of the symmetry of bounds. The pharmacophore was
found in 21 of 30 active molecules, nA, and it was found in
3 of 28 inactive molecules, nIA. Thus, the probability PA of
its realization in this class is about 0.84. As seen from the
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Figure 3: ETSC of the pharmacophores: P1, P2, and P3 found relative to active molecule 15, 19, and 22.

pharmacophore structure, the active feature 2, P2, consists
of the 6 atoms (C3, C5, H11, C15, C19, and O22).

Molecules 15 and 22 were chosen as templates and
compared with the rest of the molecules in the series. Phar-
macophore 1 (P1) was found in 20 of 30 active molecules
having the probability PA = 0.84 and pharmacophore 3
(P3) were found in 21 of 30 active molecules having the
probability PA = 0.85 as seen in Figure 3 and statistical
estimates for the pharmacophores are given in Table 2.

Superimposition of three template compounds that
correspond to the calculated pharmacophores P1–P3 is
shown in Figure 4. In 3D space, three separate regions can
be indicated for each active molecule, where atoms of three
pharmacophores can be found.

These regions are shown in Figure 4 by dotted lines. One
of them is formed by the atoms belonging to the phenyl ring,
while the other two are formed by atoms that represent the
heterocyclic rings. It is quite possible that the atoms from
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Table 2: Statistical estimates for the pharmacophores.

Template
Molecules

Phamacoph nA nIA PA PIA

15 P1 20 3 0.84 0.16

19 P2 21 3 0.85 0.15

22 P3 21 3 0.85 0.15

39 AP1 2 15 0.16 0.84

48 AP2 1 12 0.19 0.81

65 AP3 1 15 0.11 0.89

3
5

1011
12

13

14
15

18

21

22

P1
P2
P3

3
3

55

Figure 4: Template compounds 15, 19 and 22 alignment by
superposing the P1, P2, and P3 features.

these regions play an important role in the ligand-receptor
interaction.

3.2. Antipharmacophores Calculation. Antipharmacophores
(alone with pharmacophores) are also of interest in this
study, as those parts of molecules that are responsible for
the considerable decrease or complete loss of the activity
To find antipharmacophores, inactive molecules (39, 48, and
65) were selected as template molecules (their structures are
given in Figure 5). Again, both protonated and unprotonated
forms of molecules (39, 48 and 65) were studied. As
an example, AP1, AP2, and AP3 antipharmacophores are
shown in the figure by their numbers, while corresponding
submatrices are given nearby.

The antipharmacophores consists of AP1 5 atoms, AP2
and AP3 4 atoms (see Figure 5). AP1 enters the structures
of 15 inactive molecules and are found 2 active molecules
(AP1, AP2, and AP3, see Table 2). The probability level of
them are realized between 81% and 89%, because AP1, AP2,
and AP3 are found in, respectively 15, 12, 15 from 28 inactive
molecules in total. The distribution of the atoms are as shown
in Figure 5.

The molecular orbitals (HOMO, LUMO) for template
molecules taken as P1, P2, P3, AP1, AP2, and AP3 are shown
in Figure 6, but we could not find any relationship between
pharmacophore group and the molecular orbitals (HOMO
and LUMO).

When comparing the structures of the pharmacophores
and antipharmacophores, one can pay attention to the

differences in their spatial and electron characteristics. Thus,
pharmacophores and antipharmacophores can play their role
in the activity prediction only if both types of fragments
participate in the process of prognosis. Thus, the set of
activity/inactivity fragments found as the result of this study
forms a basis for a system of the analgesic activity prediction.

As seen from Figure 7, the pharmacophores P1–P3 and
antipharmacophores AP1–AP3, found as a result of the ETM
application, were used as a basis for a system formation
that is capable of the prediction of the activity of the
thiobenzamide and quinolizidine derivatives.

4. Combined ETM-ETM-ANNs
Approach (ETM-ANNs)

The algorithm for the data resulting from the ETM calcu-
lations analysis (ETM-data) extends the ideas of volume-
learning algorithm [26]. This method is also implemented
as an iterative application of the Kohonen SOMs [27] and
associative neural networks (ASNNs) [28]. The algorithm
evaluates the “weights” of fragments represented by the
ETMCs that have been obtained from the ETM calculations.
To do this, their projections on the Kohonen’s maps corre-
sponding to each ETMC are calculated and a weight of each
fragment’s presence in a molecule is determined [19, 29].
The calculated weights are used for the ANN training. The
original implementation of two last algorithms was used.

4.1. Selforganizing Map of Kohonen (SOM). A SOM is neural
network trained using unsupervised learning to create a
nonlinear projection of high-dimensional input samples to
a lower two-dimensional output space that is represented by
a two-dimensional array of neurons, called a map [27]. The
map seeks to preserve the topological properties of the input
space. Like most artificial neural networks, SOMs operate
in two modes: training and mapping. Training builds the
map using input examples. It is a competitive process, also
called vector quantization. During the SOM training, input
vectors with similar properties in the high dimensional space
are mapped to the same (or to the nearby) neurons on
the two-dimensional space. Thus, by considering all input
vectors projected to the same output neuron it is possible to
determine clusters of vectors having similar properties in the
high-dimensional space. Mapping automatically classifies a
new input vector.

4.2. Associative Neural Network (ASNN). The ASNN rep-
resents a combination of an ensemble of feed-forward
neural networks and the k-nearest neighbor method (kNN).
Usually, the neural network ensemble consists of 100–200
networks when one hidden layer is used. This method uses
the correlation between ensemble responses (each molecule
is represented in space of neural network models as a vector
of model predictions) as a measure of distance amid the
analyzed cases for the nearest neighbor technique. Thus,
ASNN performs kNN in space of ensemble residuals. This
provides an improved prediction by the bias correction of the
neural network ensemble [28].
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Figure 5: ETSC of the antipharmacophores: AP1, AP2, and AP3 found relative to active molecule 39, 48, and 65.

The avoidance of overfitting/overtraining has been
shown to be an important factor for improvement of
generalisation ability and correct selection of variables in
ASNN. the current study used the early stopping over
ensemble (ESE) technique to accomplish this. A detailed
description of ESE can be found elsewhere [30]. In brief, each
analysed artificial neural network ensemble (ANNE) was

composed of M = 100 networks. The values calculated for
analysed cases were averaged over all M neural networks, and
their means were used for computing statistical coefficients
with targets. We used a subdivision of the initial training set
into two equal learning/validation subsets. The first set was
used to train the neural network while the second one was
used to control the training process. Two stopping points
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Figure 7: Frequency of the fragments’ occurrencies in the compounds studied: (a) for Pharmacophores P1, P2, and P3; (b) for
antipharmacophores AP1, AP2, and AP3.

were used to test network performance measured by root
mean square error (RMSE). The first point (early stopping)
determined a best fit of a network to the validation set
while the second point corresponded to the error minimum
for the learning set, and as a rule coincides with the end
of the network training. The quality of each final model
was assessed by the leave-one-out cross-validation method
(LOO). By the method, each molecule was removed from
the training set, and the remaining set was used to separate
molecules into classes of activity, thereby predicting the
activity of this molecule and evaluating the quality of the
decision rule. The detailed description of the used methods
can be found in [30, 31].

Sensitivity analysis methods estimate the rate of change
in the output of a model caused by the changes of the model
inputs. It is mainly used to determine which input descriptor

is more important or sensible to achieve accurate output
values. It is also used to understand the behavior of the
modeled system that to evaluate of the model applicability
and to determine the stability of a model. To evaluate
the importance of the original ETMC fragments, we have
used sensitivity analysis methods named pruning algorithms
[32, 33]. The pruning algorithms introduce some measures
of importance of weights matrix of ASNN by so called
“sensitivities” (S). Since details of the sensitivity methods can
be found in literature, we only give here the short description
of the used method. The sensitivity of input neuron i was
calculated as,

Si =
nj∑

j=1

⎛
⎝ wji

maxa
∣∣∣wja

∣∣∣

⎞
⎠

2

· Sj , (1)
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where, Sj was a sensitivity of the jth neuron in the upper
layer and maxa was taken over all weights ending at neuron
j. This was a recurrent formula calculating the sensitivity of
a unit on layer s via the neuron sensitivities on layer s+1. The
sensitivities of output layer neurons were set to 1 [32].

The sensitivities of all neurons were calculated and
the ETM descriptors associated with input neurons having
smallest sensitivities was deleted.

4.3. Results of the ETM-ANN Approach Application. A dataset
containing 65 molecules was used. Fifty-two of the com-
pounds were used for the model development, and 13
randomly selected compounds (5, 10, 15, 20, 25, 30, 35, 40,
45, 50, 55, 60, and 65) were used for the model validation. For
the data, 210 fragments were selected. The importance of the
detected fragments for the observed activity was evaluated
by using pruning methods. The most part of the ETMC
fragments (as descriptors) were detected as nonsignificant
and removed by the pruning algorithms. As the result, only
13 ETMC-fragments were chosen from 210 fragments in
total as the most important ones. By this, ASNNs classified
correctly 92%, or 48 compounds from 52 in training set and
69%, or 9 compounds from external test set.

4.4. Model Interpretation. The ETM-ASNNs models can
be predominantly applied as virtual screening tools and
also be useful for elucidating the essential structural and
physicochemical requirements for activity. Usually, the
main QSAR and pharmacophore elucidation approaches
use three-dimensional steric and electrostatic potentials or
chemical feature-based pharmacophoric ngerprints whereas
the model reported in this paper uses 2D ngerprints (Mul-
liken atomic charges, Wiberg indices and bond length), in
addition to several global physiochemical descriptors in the
ASNN model development. In view of these differences, the
current ETM-ASNN model reveals inherent features in terms
of abstract substructural features (ETMS) that discriminate
active and inactive molecules. This list of substructures
preferentially present in actives and inactives (activity is
specifically dependent on its conformational disposition on
the cyclohexanol ring. In the trans position, it is dependent
on the cyclohexanol group and the phenyl group and the
substituents on the aromatic ring (especially the groups on
C3 and C5 prevent the activity) can serve as a look-up
guide to chemists during a hit-to-lead or lead optimization
campaign. In general, substructures that have an incremental
effect on activity (Figure 3) include the following: substituted
(C3, C5, H11, C15, C19, and O22) and substructures that
have a decremental effect on activity include the following:
substituted (C3, C5, H14, C19, and O21).

The ASSN models based on descriptors set can be
useful for understanding of the descriptor H1 influenza
inhibitory activity of analysed molecules. The descriptors
such as, chemical potential (μ), hardness (η), softness (s),
electrophilicity index (ω), and condensed fukui functions,
and quantum chemical descriptors such as highest occupied
molecular orbital (HOMO) energy and lowest unoccupied
molecular orbital (LUMO) energy, dipole moment, Mulliken
charges are chemical reactivity descriptor [32–36]. For

example, HOMO plays the role of the binding ability of the
molecules. HOMO energy of molecules having high activity
is lower than nonactive ones.

4.5. QSAR Study. There are two main alternative approaches
to random testing to find compounds with superior prop-
erties for correlation and quantitative prediction of chem-
ical and physical properties from structure. One consists
of theoretical calculations using quantum and statistical
mechanics, and the other is QSAR/QSPR. The major goal
of QSAR or QSPR studies is to find a mathematical
relationship between activity or any other property under
investigation (eg LD50, pKa etc.) and one or more descriptors
related to the structure of the molecule. While some of the
descriptors can themselves be experimental properties of
the molecule, it is generally more useful to use descriptors
derived mathematically from either 2D or 3D molecular
structure, since this allows any relationship derived to be
extended to the prediction of the property or activity for
unavailable compounds. If an acceptable model of this type
can be found, it can guide the synthetic chemist in the
choice between alternative hypothetical structures. More
fundamentally, such studies can illuminate, or even elucidate
the mechanism by which the property or activity in question
is related to the chemical structure.

The mathematical foundation of the QSAR is based
on the principle of polylinearity. Multiple linear regression
is a common method used in QSAR studies. The QSAR
equations can be obtained by forward stepwise multiple
regression shown below.

Activity = f (physicochemical properties and/or struc-
tural properties)

or

f
(
biological activity

) = f (electronic) + f (steric)

+ f
(
hydrophobic

)
+ f (structural)

+ f (theoretical),
(2)

or

Biological activity = a0 + a1D1 + a2D2 + a3D3 + · · · anDn,
(3)

where D1, D2, D3 and Dn are descriptors, n is the number of
descriptors. The intercept (a0) and the regression coefficient
of the descriptors are determined using the least squares
method.

In this study, by using the multiple regression, several
QSAR models were performed with the help of some of the
calculated descriptors and the compounds activity data from
the different skeletons. Below are the regression equations.

Skeleton I

ATheor = 10.2752ΔE1 + 328.707ω + 47.11191μ

− 1.71759∗ Polarizability + 0.25237E2

+ 509.4651,

R2 = 0.9999, standard error = 0.

(4)



10 Journal of Biomedicine and Biotechnology

Table 3: Comparison of experimental and theoretical the activity by using the multiple regression analysis for compounds in Skeleton I.

No Theoretical activity Experimental activity No Theoretical activity Experimental activity

1 0.060605 0.06 9 −47.0767 NA

2 −205.41 NA 10 −34.05735 NA

3 −150.779 NA 11 −120.032 NA

4 −34.0955 NA 12 42.74012 NA

5 −142.783 NA 13 0.050604 0.05

6 −221.083 NA 14 4.50064 4.5

7 −288.973 NA 15 0.030675 0.03

8 −146.076 NA 16 0.400708 0.4

9 −47.0767 NA 17 0.900642 0.9

10 −34.05735 NA

Table 4: Comparison of experimental and theoretical the activity by using the multiple regression analysis for compounds in Skeleton II.

No Theoretical acitivity Experimental activity No Theoretical acitivity Experimental activity

18 2.404503 0.2 28 −3.3007 0.03± 0.07

19 −2.23585 0.02 29 4.28845 1.0

20 2.566251 0.05 30 21.714 25

21 −2.42417 0.065± 0.035 31 −0.14402 2.0

22 3.207149 0.015± 0.007 32 2.274756 0.15± 0.071

23 1.730689 0.038 33 1.167479 0.5

24 −1.0243 0.09 34 −1.9877 1.8

25 −0.26089 NA 35 3.457774 2.5

26 −1.73024 0.15 36 52.1551 NA

27 0.338793 0.023± 0.011 37 −6.66909 NA

Skeleton II

ATheor = 178.0305ΔE + 93.2522μ− 171.2043η

+ 716.9193S + 44.3081ω − 6.0477∗ dipole

− 0.256∗ polariz + 0.0015E2,

R2 = 0.8475, standard error = 3.4522.

(5)

Skelelton III

ATheor = 196.5666EHOMO + 300.7505ΔE

+ 53.5951η + 1547.8892S

+ 135.0100∗ ω − 15.4192∗ dipole

+ 0.1275∗ polariz + 0.00174E2,

R2 = 0.9538, standard error = 1.5980.

(6)

From the three equations above, it shows that statistically
the most significant one is the correlated parameters in
Skeleton I with R2 = 0.9999. There are some deviations

for skeleton II and III. It also implies that the activity of
the compounds in the skeletons does not only depend on
the quantum chemical descriptors but may be influenced by
other parameters.

Below are tables of theoretically calculated activities
and experimental activities (Tables 3, 4, and 5). Skeleton I
shows better correlation between the theoretically calculated
activities and experimental activities while skeletons II and
III do not show good agreement between them.

For each compound, 19 QSAR descriptors such as molec-
ular weight, EHOMO, ELUMO, ΔE, chemical potential, softness,
electrophilicity index, dipole moment, and others were
calculated. Preliminary study by ASNNs for all descriptors
resulted in model with good statistical qualities (classified
correctly 87%, or 45 compounds from 52). Only 3 com-
pounds in the external test set were predicted incorrectly
(classified correctly 77%, or 10 compounds from 13).

Thus, the comparison of both models allowed us to con-
clude that both approaches provide practically similar results
using the different set of descriptors. It should be noted that
three identical molecules (5, 10, and 65) were classified incor-
rectly by both models. As it is seen, the approach presented in
this paper has shown quite satisfactory results. This fact tells
in favor of workability of both found models. These models
can be applied to the design of new potent drugs.
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Table 5: Comparison of experimental and theoretical the activity by using the multiple regression analysis for compounds in Skeleton III.

No Theoretical acitivity Experimental activity No Theoretical acitivity Experimental activity
38 38.2127 1–3 52 −0.52359 NA
39 64.19797 NA 53 0.78188 NA
40 57.64826 NA 54 −11.3917 NA
41 1.941236 1.6–3.1 55 5.240327 4
42 20.35258 NA 56 −7.94074 NA
43 0.257742 0.4–0.8 57 11.32183 NA
44 1.530218 0.8 58 12.43476 NA
45 0.690143 0.8 59 4.718806 NA
46 0.643486 0.2-0.3 60 6.527825 8
47 0.757012 0.6 61 −20.8307 10–20
48 3.174496 NA 62 −7.68755 NA
49 4.757657 NA 63 10.20552 10
50 2.120876 2 64 43.48481 5–10
51 −0.07988 0.5 65 −23.5418 NA

5. Conclusion

A series of thiobenzamide and quinolizidine derivatives
activity-binding affinity is studied by means of the ETM
and ANN, which takes into account both structural and
electronic characteristics of molecules. Based on pharma-
cophores and antipharmacophores calculated by the ETM-
software (as submatrices containing important spatial and
quantum chemistry characteristics), a system for the activity
prognostication is developed. The system was tested on a
few molecules with molecular skeletons other than those
that were characteristic of the training sets. It allows for
identifying the presence/absence of the analgesic activity
(with probabilities 84%-85%) in molecules with diverse
structures and predicting the level of the activity.

QSAR models were performed with the help of some of
the calculated descriptors and the compounds activity data
from the different skeletons by using the multiple regression.
Skeleton 1 shows better correlation between the theoretically
calculated activities and experimental activities while skele-
tons 2 and 3 do not show good agreement between them.

QSAR descriptors such as molecular weight, as EHOMO,
ELUMO, ΔE, chemical potential, softness, electrophilicity
index, dipole moment, and others were calculated to
compare classical and ETM model. Thus, the comparison of
both models allowed us to conclude that both approaches
provide practically similar results using the different set of
descriptors. It should be noted that three identical molecules
(5, 10, 65) were classified incorrectly by both models. As it is
seen, the approach presented in this paper has shown quite
satisfactory results. This fact tells in favor of workability
of both found models. These models can be applied to the
design of new potent drugs.
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