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Consistent role of weak and strong interactions
in high- and low-diversity trophic food webs
Gabriel Gellner1 & Kevin S. McCann2

The growing realization of a looming biodiversity crisis has inspired considerable progress in

the quest to link biodiversity, structure and ecosystem function. Here we construct a method

that bridges low- and high-diversity approaches to food web theory by elucidating the

connection between the stability of the basic building block of food webs and the mean

stability properties of large random food web networks. Applying this theoretical framework

to common food web models reveals two key findings. First, in almost all cases, high-diversity

food web models yield a stability relationship between weak and strong interactions that are

compatible in every way to simple low-diversity models. And second, the models that

generate the recently discovered phenomena of being purely stabilized by increasing

interaction strength correspond to the biologically implausible assumption of perfect

interaction strength symmetry.
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T
he dynamics of ecosystems include a bewildering number
of weak to strong biotic interactions. Global human
development has begun to erode this natural complexity

making it important that we rapidly assess the structural aspects
of food webs that are critical to the stable function of our life-
support systems1. Importantly, results from simple low-diversity
food web models often stand in contrast to results from complex
high-diversity food web models on the role that diversity and
structure play in mediating the stability of nature’s complex
networks. Of particular interest is the recent discovery that
large predator–prey networks seem to be purely stabilized by
increasing interaction strength2,3; a result that overturns 40 years
of ecological research4–9.

There exists a long and storied history of research on the
relationship between diversity, complexity and stability of whole
food webs10. Despite this, there has been little attempt to bridge
the understanding of stability results from population ecology to
whole food webs. This is surprising given that the underlying
sub-systems of whole webs are in fact both populations and
low-diversity interactions, and so a search for internal consistency
seems logical (Fig. 1a–d).

Here we first identify a very general argument for the role of
biomass growth and biological lags on the stability of single
populations. We then show that this simple rule translates to
low-diversity modular interactions, or food web modules11, where
consumer species growth rates (that is, numerical response) and
inherent consumer–resource (C–R) lags dictate an identical
stability response. Finally, we consider results from whole food
web models where current and historical research finds a mixture
of stability responses that seem either partially, or wholly,
incongruent with this simple general rule2,3. We then revisit these
results using the elegant mathematical result of Sommers et al.12

to show that both historical and recent results are singular
endpoints that hide a general result that is equivalent to the
population and modular results. Indeed, low- and high-diversity
food webs generally yield qualitatively similar stability results.

Results
General ecological stability relationship. The continuous logistic
model can be solved to see that increased population stability
scales directly with increased population growth rates such that
increased growth rates yield increased stability (that is, l¼ � r).
This well-known result shows that high growth, without a lag,
simply stabilizes the population—a small perturbation of a high
growth rate population returns rapidly back to the equilibrium.
While a simple and intuitive result, population ecologists and
mathematicians have long understood that lags tend to induce
instability. Ecological systems abound with lags, and so while the
continuous logistic is a good example of population growth, it is a
poor model for understanding stability since it ignores the fact
that populations are replete with lags.

To rectify this, we next consider a broad set of population
growth models that incorporate biological lags (for example, the
lagged logistic model) and find that now increasing the intrinsic
growth rate leads to a dual response: (i) a stabilizing phase where
increases in growth rates increases the equilibrium stability (low
r phase in Fig. 1b); and (ii) a destabilizing phase where increases
in growth rates destabilize the equilibrium (high r phase in
Fig. 1b). This dual stability response, or ‘checkmark’ stability
pattern, is universal to a broad set of population models
(Supplementary Note 1 and Supplementary Fig. 1).

Mathematically, it can be shown that the switch from
stabilization to destabilization in Fig. 1b occurs for the lagged

Growth (r)

IS

In
cr

ea
si

ng
st

ab
ili

tya

c

b

t

Omnivory IS

d

In
cr

ea
si

ng
st

ab
ili

ty
In

cr
ea

si
ng

st
ab

ili
ty

 

Figure 1 | Decomposition of food webs into stability building blocks. Modular theory attempts to decompose complex food webs like in a by looking

at the stability patterns as interaction strength (IS) is changed of the simpler, sub-web (filled circles), building blocks (grey boxes). A general finding

from modular theory is a stability tradeoff for increasing the flux/growth/interaction strength, where we expect an initial stabilization phase as increased

energy leads to increased resilience/stability as populations can respond to perturbations more rapidly. Ultimately this same increased energy begins to

lead to overshoot, as the populations respond so rapidly, coupled with a lag, that the return to equilibrium is missed. This behaviour occurs for lagged

population models (b) consumer-resource interactions (c) as well as higher order food web modules such as same chain omnivory (d).
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logistic at exactly the point the eigenvalue, l, becomes complex
(negative for discrete models; Supplementary Note 1 and
Supplementary Fig. 2). From a biological standpoint this
mathematical results implies that the destabilizing phase always
occurs at precisely the point where the population starts to show
overshoot dynamics (that is, population dynamics begin to vary
around carrying capacity, K, on their approach to the equili-
brium). In a simplified sense, this overshoot can be envisioned as
the expression of the population lag such that further increases in
growth (r) operate to only increase overshoot dynamics and
further destabilize the dynamics. In many population models this
destabilizing influence of increasing growth rates coupled to lags
eventually lead to wild oscillations and even chaos4,13.

To summarize, when a population has lags we find a general
checkmark stability pattern whereby increasing growth rate
(or net per capita flux into the population) first stabilizes a
population but then ultimately destabilizes the population by
driving overshoot dynamics that are further excited by increasing
per capita flux into the population. We now extend this result to
C–R models and low-diversity food web modules.

Stability pattern in C–Rs models. As with the population model,
the C–R interaction is an inherent and ubiquitous sub-system in
any food web (Fig. 1c). Following our single population analysis,
we start by considering what governs the growth of the consumer
in the C–R interaction. In classical Lotka–Volterra models, it is
assumed that the biomass growth process is a result of the con-
version of resource consumption (for example, eaRC for Type I,
where R is the resource biomass, C is the consumer biomass, e is
conversion and a is attack rate). Thus, the C–R analogue of the
intrinsic growth rate of a single population is related to interac-
tion strength or, more accurately, the strength of the parameters
governing the interaction (that is, ea is to the eaRC as r is to rR).
Note also that in a C–R interaction, a biological lag occurs
implicitly due to the time needed to convert resource biomass
into consumer biomass, and therefore, no explicit lag is required.

Figure 1c shows the generic response of increasing ea of a Type
I C–R model with the standard logistic resource growth. Not
surprisingly, the result exactly mirrors the population growth
result with a checkmark stability pattern. Here, as before, the
destabilizing phase of increasing consumer interaction potential
occurs at precisely the point where the population dynamics
start to overshoot (Supplementary Note 2 and Supplementary
Figs 3–6, for examples, showing identical response across a broad
set of C–R models). The checkmark response is clearly related to
the transcritical bifurcation (where C becomes feasible) in the
stabilizing phase, while the destabilizing phase can often be
associated with a Hopf bifurcation. Note, although, that the
destabilizing phase only depends on the presence of complex
eigenvalues and so really only necessitates that the dynamics
show transient oscillatory decay. Finally, this result readily
extends to simple low-diversity food web modules where we
increase the interaction potential (for example, ea) of all
interactions simultaneously (Fig. 1d; Supplementary Note 1
and 2). In summary, theoretical results from both population and
C–R-based food web modules generically show a checkmark
stability response to increases in growth (similarly, interaction
strength within the C–R framework). It remains to consider
whole webs.

Scaling up to whole food webs. Forty years ago, Robert May,
using community matrices, showed mathematically and
numerically that randomly constructed whole webs had local
stability properties well approximated for large numbers of spe-
cies (S) by the following relationship for the maximum eigenvalue

(lmax):

ReðlmaxÞ � sA

ffiffiffiffiffiffi

SC
p

þ d; ð1Þ
where C is connectance, and sA is the s. d. of the union of non-
zero off-diagonal matrix elements (hereafter referred to as A).
Increasing sA was argued to be a surrogate for increasing mean
interaction strength as each matrix element had a mean of zero
and therefore increasing sA increased the mean range of values in
the community matrix. Finally, d is the size of the diagonal or the
per capita effects that a species has on themselves (aii; � 1 for
May’s special case). As May pointed out, for the case of diagonals
set at � 1 then the system is stable whenever the positive term,
sA

ffiffiffiffiffiffi

SC
p

o1. This simple, but elegant, formulation suggests that
strengthening interactions (increasing sA) is purely destabilizing.
From this result, we shall hereafter refer to the term, sA

ffiffiffiffiffiffi

SC
p

in
equation 1, as ‘May’s destabilization factor’.

While an interesting approach, this specific relationship holds
for matrices of random interactions alone (random mixtures of
C–R, competition and mutualism3). It also assumes that the
off-diagonal pairs, on average, have equal means. Thus, while any
off-diagonal pair is different, the property of the whole matrix, on
average, produces equal off-diagonal pairs. There are several
reasons why this equation may not be appropriate for food webs
constructed purely from C–R interactions. In consumptive webs
like these, the non-zero off-diagonal elements, aij, (representing
per capita impacts of species j on species i) will be non-negative
for the consumer and negative for the resource. In addition,
Lotka–Volterra models find that the positive interaction strength
of the resource on the consumer (aji) should scale with the
negative interaction strength of the consumer on the resource
(aij) as f¼ aji/aij. For a Type I functional response, f¼ eC*/R*
implies that f should generally be much less than 1 (note, it would
take C* to be considerably greater in biomass than R* for f to scale
Z1 and this is empirically known to be rare14,15). An issue we do
not consider is using measures of density rather than energy/
biomass. This complicates the meaning of f as we lose the nice
biological relationship to biomass pyramids. In general, the
theory presented here will carry over to using density but it is
harder to interpret the meaning of the parameters.

Here to embody the biological interpretation of biomass
pyramids (C:R ratios), we choose community matrices with a
scaling parameter, f. First, to enforce a consumptive food web
structure we define two distributions; one corresponding to the
negative effect of the consumer on the resource (Aij) and a second
for the positive effect the resource has on the consumer (Aji).
These distributions are called the half distributions of the
community matrix as they correspond to each half of the paired
C–R interactions. Specifically, we construct C–R interactions with
the negative effect of the consumer on the resource drawn from a
‘half’ distribution Aij with mean E[Aij], and the effect of the
resource on the consumer drawn from the scaled half distribu-
tion, Aji¼ fAij, with mean fE[Aij]. With this formulation the
distribution of non-zero off-diagonal matrix elements (A) is equal
to the union of the half distributions {Aij, fAij}. Notice that this
approach does not mean all non-diagonal pairs follow the exact
scaling relationship, that is, fajiaaij, but rather it implies that the
mean properties of all non-diagonal pairs do (fE[Aij]¼E[Aij]).
This approach allows for natural variation between the scaling of
each specific C–R pair while maintaining a mean symmetry for
the entire matrix.

Amazingly, there is an analytic estimate for the dominant
eigenvalue for matrices with similar symmetric structure derived
by Sommers et al.12 for the bivariate normal distribution, and
conjectured to hold for more general distributions (unpublished
proofs of the general case have recently been proposed16,17).
Building on an estimate by Sommers et al.12, Allesina & Tang3
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added the connectance structure of food web models, in an
analogous fashion to May, yielding the general stability estimate
for C–R networks:

ReðlmaxÞ � sA

ffiffiffiffiffiffi

SC
p
ð1þ tÞþ d ð2Þ

where, again, sA is the standard deviation of the whole
distribution and t is related to the correlation between the
off-diagonals (see Supplementary Note 4 and Supplementary
Figs 10–14 for technical details). This estimate for the stability of
C–R matrices includes May’s destabilizing factor, sA

ffiffiffiffiffiffi

SC
p

,
modified by (1þ t). Since t ranges from � 1 to 0 in predator–
prey interaction matrices (Supplementary Note 4), the (1þ t)
term ranges between 0 and 1. Thus (1þ t) is a measure of the
damping in equation (2) caused by the structure of the interaction
strength distribution (hereafter, we refer to (1þ t) as the
damping factor). If the damping factor is 0, then the system
will be maximally stable, as the influence of May’s destabilization
factor is removed. On the other hand, if the damping factor is 1,
then we have maximum destabilization and a return to
equation 1. For intermediate values of the damping factor, we
scale the strength at which May’s destabilization factor operates.

It is important to recognize that the exact value of t for any
community matrix depends on the magnitude of mean interac-
tion strengths, E[Aij], which depends on the variation of the half
distribution, sAij , as well as the interaction strength scaling
parameter, f. The precise relationship between t, sA and the
scaling parameter, f, dictate the stability outcome (equation 2,
above). Due to the asymmetry in our whole-web experiments
(that is, fa1), we cannot directly employ Allesina and Tang’s
formula for t , so instead we numerically derive the true
dominant eigenvalue and compare this to the heuristic method
described. Note that equation 2 still often remains an excellent

estimate for the fa1 case (Supplementary Note 4) and is not
always outperformed by more recent conjectured formula’s that
try to include non-symmetric C–R pairs (Supplementary Note 4).
In any case, all formula’s give qualitatively similar answers so we
choose to use the simplest form. In what follows, we use our
numerical matrix results and equation 2 as a heuristic guide to
explore the stability implications of several common interaction
strength experiments.

Interaction strength and stability. The first numerical experi-
ment conducted was to increase the mean of the half distributions
(E[Aij]) of the C–R matrix pairs while keeping the variance of the
half distribution ðsAijÞ equal (Fig. 2a). This necessarily increases
sA and May’s destabilizing factor, however, the stability response
(equation 2) requires that we understand how the damping term
is influenced by increases in sA. It turns out that the qualitative
behaviour of the damping response depends entirely on whether
f¼ 1 or fa1.

Conducting this experiment with a symmetrical interaction
scaling parameter (that is, f¼ 1), we find that as we increase the
average interaction strength (that is., increasing sA), we initially
decrease the damping term, 1þ t, until the damping term
becomes exactly 0. Note that the f¼ 1 symmetry assumption
drives the damping term to 0, and does not depend on the
distribution used. This monotonic approach of 1þ t to 0 means
that the destabilizing potential of May’s factor (sA

ffiffiffiffiffiffi

SC
p

) is
increasingly muted until we reach maximal stability (determined
by the diagonal value d). This relationship between 1þ t and
mean interaction strength drives a pure stabilization result
(Fig. 2b; grey curve). Thus, for perfectly symmetrical mean C–R
interaction strengths, our first whole-web result is that increasing
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Figure 2 | Consistent stability pattern for large random trophic food webs. The role of increasing mean interaction strength (IS) and food web stability

exhibits a universal checkmark stability signature (b,d) as long as the scaling of the consumer–resource (C–R) interaction pairs (f) is not exactly 1 (a,c).

This signature does not depend on the shape of the C–R pair interaction distribution changing with mean interaction strength. We show two examples: fixed

higher moments (Uniform, a), changing higher moments (Gamma, b) both have qualitatively identical patterns. For each model the diversity is set as

S¼ 250, connectance is set as C¼0.25, with off-diagonal community matrix elements drawn from a uniform distribution Uniform (r, rþ 1) with r ranging

within [0, 10] in steps of 0.1, and a gamma distribution Gðr;0:2=
ffiffi

r
p
Þ with r ranging within [1, 2,480] in steps of 20.0. In both models (a,b), for each value

of r we created 100 random network topologies (location of non-zero matrix elements) and then 100 random community matrices and took the mean

real part of the dominant eigenvalue as a measure of the stability and plotted this versus the mean of the C–R pair sampling distribution.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11180

4 NATURE COMMUNICATIONS | 7:11180 | DOI: 10.1038/ncomms11180 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


mean interaction strength is purely stabilizing—an answer
inconsistent with population ecology and results from modular
food web models.

Importantly, changing f from anything but 1 decreases
maximum achievable damping and we find that it necessarily
approaches a value greater than 0 as mean interaction strength
increases. If we now conduct the same experiment with any
f-value other than 1, then we see from equation 2 that we get a
different stability answer. Increasing mean interaction strength
again drives 1þ t towards some minimal value (but this value is
now greater than 0). During this phase, the result operates
identically to the f¼ 1 case in that increasing interaction strength
stabilizes the system by muting May’s destabilization term.
However, once the 1þ t term saturates with increasing interac-
tion strength (that is, increasing sA), May’s growing destabilizing
factor (sA

ffiffiffiffiffiffi

SC
p

) overwhelms equation 2, driving a destabilization
phase (Fig. 2b; black curve). The result is the now familiar
checkmark stability pattern (Fig. 2b; black curve). In summary,
we have shown that extremely complex webs have a stability
result identical with population and low-diversity models for all
but one degenerate configuration (that is, perfect interaction
strength mean symmetry; f¼ 1). Although we have concentrated
in the examples presented here with the fo1 to try and match the
most common biological situations14,15 the relationship holds, as
we have generally stated for fa1, see Supplementary Note 7 and
Supplementary Fig. 18 for a thorough example where we change

both mean interaction strength as well as f, both greater and less
than 1 and show the full stability surface.

Researchers have also been interested in how the skew of
interaction strength distributions influence stability, and modular
food web results make the prediction that skews towards strong
interactions ought to be destabilizing6,7. To test, we carried out
numerical experiments that changed the shape of the half
distribution from one having a bias towards weak interactions
into a distribution with a bias towards strong interactions
(Fig. 2c). We then tracked the stability results for both
symmetrical (f¼ 1; Fig. 2d; grey curve) and non-symmetrical
(fa1; Fig. 2d; black curve) many species matrices. The non-
symmetric case again yields the checkmark stability pattern
(Fig. 2d; black curve). This occurs because the s. d. of the whole
distribution, sA, necessarily increases in this experiment, and so
May’s destabilization factor eventually overwhelms the damping
as we change the skew towards strong interaction strengths
(Supplementary Notes 5 and 6 and Supplementary Figs 15–17 for
further details on how the shape of the distributions interacts
with stability).

The role of realistic network structure. To this point, we have
used purely random network structures (lacking any biological
constraints). This is arguably an extreme assumption as we have
good statistical models for the topology of food webs in nature18.
To get at this, we redo our above analysis but employing three
additional network models: the Cascade19, which gives a more
realistic link distribution, the Generalized Cascade20, which gives
a small update to the original Cascade model so that it fits
ecological data better, and finally the mostly widely used model of
food web topology the Niche model21. What is nice about this
selection of models is that we have an increasing level of
complexity from the purely Random model of May continuing up
to the Niche where we are able to keep the same underlying
structure of the number of species (S) and the connectance (C)
the same, while changing the underlying structure like the link
distribution in a manner that has been shown to fit ecological
data well20.

Using the topological models mentioned above in the random
community matrix context where we first look at the symmetrical
case (f¼ 1) in Fig. 3a, we see a surprising pattern where the extra
biological information encoded in the Cascade and Generalized
Cascade give not stability change from the purely Random. Only
once we used the Niche model we got a difference, though it is
worth noting that the qualitative shape of the stability pattern is
the same (pure stabilization) but for all interaction strength values
we have that the Niche model is less stable than the Random. This
is a visualization of the unintuitive result found in the original
Allesina and Tang3 paper. The puzzle of why the natural
biological structure appears destabilizing becomes more
interesting when we look at the non-symmetric case (Fig. 3b).
Here we again see that the Random, Cascade and Generalized
Cascade give identical stability results, whereas the Niche gives a
qualitatively similar (checkmark) pattern it differs numerically. In
the non-symmetric case, we see that for low mean interaction
strength the Random-like models are more stable, analogous to
the symmetric case, but once mean interaction strength gets large
enough suddenly this pattern switches and the more realistic
Niche model is more stable. The tradeoff of the stability
dominance between these classes of models is intriguing and
speaks to some underlying structure that biological networks
possess that buffers against strong mean interaction strengths at
the expense of weaker interactions. Moreover, the only way that
this stability tradeoff can be seen is when we consider the
non-symmetric case instead of the degenerate symmetric case.
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Figure 3 | Consistent Stability Pattern for Changing Network Topology.

The effect of increasing the realism of the topology of consumer–resource

(C–R) interactions for symmetric and asymmetric C–R interaction

distributions. Each model has 100 species, with a connectance of 0.3, the

interaction strength distribution was the Uniform(r, rþ 1) where r ranged

from 0 to 15 in increments of 0.1. In a, we used a C–R symmetry f¼ 1,

whereas in b we used symmetry f¼0.8. To help minimize the variation

between simulations for each value of mean interaction strength (r) we

generated 100 random network configurations and then 100 samples or the

community matrix and reported the mean real part of the dominant

eigenvalue as the stability for that configuration. The results show that

increasing the realism of the network topology has no effect on the stability

of the C–R food web unless Niche like topological network structure is used.
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Discussion
In summary, we have shown that food web models of
consumptive interactions, from single species up to assemblages
of hundreds of interacting species, tend to generate a consistent
stability pattern whereby increasing mean interaction strength
generates a stability ‘checkmark’ (Fig. 2). The only exception we
found to this stability pattern occurs for the point of exact
symmetry (f¼ 1). This symmetry occurs where, on average, the
reciprocal effects of consumers on resources, and resources on
consumers, are the same in the community matrix. It is important
to note that all other instances of f (either fo1 or f41) produce
the stability checkmark.

Thus, our result suggests that the likelihood of the real world
producing pure stabilization with increasing interaction strength
is extremely unlikely. Furthermore, once f surpasses 1 (that is,
f41 or very top heavy C:R ratios), we find that this only
exacerbates the checkmark by shortening the region of stabiliza-
tion before rapidly destabilizing the system (Supplementary
Note 7). Again, this result resonates with much of C–R theory
where top–heavy interactions tend to produce less stable
dynamics22,23. While empirical patterns generally suggest that
C:R biomass ratios are less than 1 (refs 14,15), some aquatic
systems have been argued to be inverted14. Nonetheless, our
results suggest that both (fo1 and f41) are expected to be
destabilized by strong interactions; further, we expect the more
top-heavy aquatic webs (potentially f41) to be more greatly
destabilized. This is necessarily true unless the real world,
for some unknown reason, is able to constrain webs to exactly
f¼ 1 case.

Furthermore, our analysis shows that growth, interaction
strength and lags interact in a general way to produce this same
consistent stability result across the ecological hierarchy.
Increasing growth, flux or interaction strength through a
population or interacting assemblage, first drives a stabilizing
phase before entering a subsequent destabilizing phase (stability
checkmark). In low-diversity dynamic models, we have shown
that the destabilizing phase corresponds to increased population
dynamic overshoot (Supplementary Notes 1–4) and eventually
cycles or chaos in many models. In a sense, high energy or growth
drives the dynamics to express the inherent biological lags
(population lags or C–R lags) and, once expressed, further
increases and excites these lags to greater instability.

A recent synthetic data result that compares aquatic ecosystem
dynamics to terrestrial ecosystem dynamics allows a preliminary
examination of our whole-web results. Specifically, aquatic
ecosystems, which have smaller body size and more palatable
resources than terrestrial ecosystems, tend to have larger
interaction strengths than terrestrial ecosystems24–26. Consistent
with the results presented here, strongly interacting aquatic
ecosystems also appear to empirically have more top heavy webs
than terrestrial ecosystems (that is, aquatic webs have more
biomass in the higher trophic levels22). This higher trophic level
accumulation of biomass is symptomatic of high energy flow or
growth throughout the aquatic food web22. Finally, aquatic
ecosystems show significantly more population dynamic variance
than terrestrial ecosystems22, suggesting that the strong
interactions in aquatic ecosystems, in fact, decrease stability.
Thus, we argue that both theoretical and empirical evidence
suggest strong interactions are indeed destabilizing.

The corollary of the result that strong interactions tend to be
destabilizing is that weak interactions are, indeed, fundamental to
the maintenance of diversity. Recent analyses of empirical
complexity–stability relationships have found little relationship
between stability and classical metrics of stability27; however,
intriguingly one of the major arguments for this discrepancy
relied on the empirical finding that the interaction strength

distribution became increasingly skewed towards weak inter-
actions as diversity increased. Thus, our result, which resonates
with consumptive food web theory across scales, is also consistent
with recent empirical whole food web stability results.

Methods
Numerical simulations were carried out using Mathematica and the Julia
language28, both calling standard numerical procedures for linear algebra found in
LAPACK29. Random community matrices were generated by filling a double
precision S� S array, where S is the number of species in the simulation, with
either zero or non-zero values according to the specified network model (Erdos-
Reyni4, Cascade30, Generalized Cascade20 or Niche21). Once the non-zero locations
of the array were found they were filled by simulating a pair of independent
random values from a given distribution (Uniform, Normal, or Gamma). For
distributions that could take on negative values, the absolute value of the samples
was taken so that the exact sign-structure could be enforced. For each pair of
random values one was forced to be negative, and the other, positive valued,
element was scaled by the desired symmetry value f. These scaled and signed pair of
random, independent, values were then placed in the numerical array, with one
value occurring at the (i, j) location and the other occurring in the (j, i) location,
thereby forming a pair symmetric around the diagonal of the square matrix. Once
all non-zero values were filled in this manner then eigenvalues were calculated,
stability was determined by the real part of dominant eigenvalue.
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