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Abstract: Ovothiol A (OSH) is one of the strongest natural antioxidants. So far, its presence was
found in tissues of marine invertebrates, algae and fish. Due to very low pKa value of the SH group,
under physiological conditions, this compound is almost entirely present in chemically active thiolate
form and reacts with ROS and radicals significantly faster than other natural thiols. In biological
systems, OSH acts in tandem with glutathione GSH, with OSH neutralizing oxidants and GSH
maintaining ovothiol in the reduced state. In the present work, we report the rate constants of
OSH oxidation by H2O2 and of reduction of oxidized ovothiol OSSO by GSH and we estimate the
Arrhenius parameters for these rate constants. The absorption spectra of reaction intermediates,
adduct OSSG and sulfenic acid OSOH, were obtained. We also found that OSH effectively quenches
the triplet state of kynurenic acid with an almost diffusion-controlled rate constant. This finding
indicates that OSH may serve as a good photoprotector to inhibit the deleterious effect of solar UV
irradiation; this assumption explains the high concentrations of OSH in the fish lens. The unique
antioxidant and photoprotecting properties of OSH open promising perspectives for its use in the
treatment of human diseases.
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1. Introduction

Ovothiol A (1-methyl-4-thiol-L-histidine, OSH; Scheme 1) is a naturally occurring an-
tioxidant with unique properties. Firstly, despite its low molecular weight (only 24 atoms),
OSH has four distinct basic sites, which correspond to 32 site-specific basicities [1,2]. Sec-
ondly, the SH group of OSH has very low pKa value (pKa ≈ 1.0–1.4) [1–4], in comparison
with other natural thiols, such as glutathione GSH (pKa = 8.7), cysteine (pKa = 8.4) and
coenzyme A (pKa = 9.8). Thiols act as good electron donors only in anionic thiolate form
and, under physiological conditions, only a small fraction of GSH is deprotonated, while
OSH is present almost entirely in the thiolate form. For that reason, OSH reacts with
oxidants (Fremy’s salt, ferricytochrome c, H2O2 and tyrosyl radical [3,5–9]) much faster
than GSH, yielding oxidized ovothiol OSSO. At the same time, the redox potential of OSH
is more positive than that of GSH and the equilibrium in Equation (1) is shifted well to the
right [4,8,10,11].
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than GSH, yielding oxidized ovothiol OSSO. At the same time, the redox potential of OSH 
is more positive than that of GSH and the equilibrium in Equation (1) is shifted well to 
the right [4,8,10,11]. 
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Citation: Osik, N.A.;  

Zelentsova, E.A.; Tsentalovich, Y.P. 

Kinetic Studies of Antioxidant  

Properties of Ovothiol A.  

Antioxidants 2021, 10, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor: Mirko Zaffagnini 

Received: 19 August 2021 

Accepted: 13 September 2021 

Published: 15 September 2021 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (http://crea-

tivecommons.org/licenses/by/4.0/). Scheme 1. Structures of the reduced forms of ovothiol A (OSH) and of kynurenic acid (KNA).

Antioxidants 2021, 10, 1470. https://doi.org/10.3390/antiox10091470 https://www.mdpi.com/journal/antioxidants

https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com
https://orcid.org/0000-0002-1380-3000
https://doi.org/10.3390/antiox10091470
https://doi.org/10.3390/antiox10091470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/antiox10091470
https://www.mdpi.com/journal/antioxidants
https://www.mdpi.com/article/10.3390/antiox10091470?type=check_update&version=1


Antioxidants 2021, 10, 1470 2 of 12

OSSO + GSH � GSSG + OSH. (1)

In biological systems, OSH and GSH act in tandem, with OSH neutralizing oxidants,
such as reactive oxygen species (ROS) and free radicals, and GSH maintaining ovothiol in
the reduced state [12,13]:

ROS + OSH → stable products + OSSO, (2)

OSSO + 2GSH → 2OSH + GSSG, (3)

GSSG + NAD(P)H
glutathione reductase−→ 2GSH + NAD(P). (4)

OSH was first discovered in eggs of marine invertebrates [14–18]. It has been sug-
gested [7,11,17,19] that the primary role of OSH is the protection of eggs from the dele-
terious effect of H2O2 produced during the respiratory burst of fertilization. Later on,
OSH was found in other species, including marine algae [20,21], marine ragworm [22] and
intracellular pathogens [23]. Biosynthesis of OSH is based on the coupling of histidine and
cysteine molecules; the reaction is catalyzed by enzyme OvoA [12,24,25]. Evolutionary
analysis of OvoA in metazoans [25] has shown that the gene coding OvoA was lost in bony
fishes. Nevertheless, OSH was unexpectedly found in fish tissues [13,26,27]. Especially
high concentrations of OSH (up to several mM) were observed in the fish lens. Most
likely, a fish acquires OSH with food and accumulates OSH in the lens using OSH-specific
transporter proteins. This finding indicates an important role of OSH in the protection of
the fish lens—a tissue subjected to the irradiation by UV-visible light.

The deleterious effect of solar irradiation on biological tissues includes two major
mechanisms, light-induced ROS generation and formation of highly reactive triplet species
able to react with lens proteins. Since the lens tissue mostly consists of fiber cells without
inner cellular apparatus, lens protection relies on metabolites. For example, the protection
of the human lens from solar irradiation is provided by UV filters (kynurenine and its
derivatives) absorbing light in the UV-A region, triplet-state quencher ascorbate, and
glutathione being able to effectively reduce free radicals formed under irradiation [28–31].
The fish lens does not have UV filters (more precisely, no UV filters in the fish lens have
been found so far) and the ascorbate level is rather low [26,27]. Thus, one can assume that
high concentrations of OSH in the lens indicates not only its ability to reduce ROS, but also
the ability to quench light-induced triplet states.

For a better understanding of chemical and biochemical processes occurring in the
fish lens under oxidative stress or UV irradiation, one needs to know the mechanisms and
the rate constants of both the thermal reactions of OSH oxidation and OSSO reduction and
of the photochemical reactions involving OSH. This work is aimed at the determination of
rate constants of elementary steps of antioxidant activity of OSH: OSH oxidation by H2O2,
OSSO reduction by GSH and triplet-state quenching by OSH. To this end, we performed
direct kinetic optical measurements and laser flash photolysis (LFP) experiments. The
kinetic optical measurements were carried out with the temperature variation from 5 ◦C
to 25 ◦C in order to estimate the Arrhenius parameters of the reactions under study and
the pH variation from 6.8 to 7.4 for the evaluation of the influence of pH on the observed
rate constants.

2. Materials and Methods
2.1. Materials

Kynurenic acid and reduced glutathione from Sigma-Aldrich (St. Louis, MO, USA),
chloroform from Chimmed (Moscow, Russia), methanol from Merck (Darmstadt, Germany),
D2O 99.9% from Armar Chemicals (Döttingen, Switzerland) and 10% aqueous hydrogen
peroxide solution from Panreac (Vallès, Spain) were used as received. H2O was deionized
using an Ultra Clear UV plus TM water system (SG water, Hamburg, Germany) to the
quality of 17.8 MOhm. Chemicals for HPLC were purchased from Sigma-Aldrich (St.Louis,
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MO, USA) and Cryochrom (Petersburg, Russia). All samples were prepared in 20 mM
phosphate buffered saline (PBS).

The disulfide form of ovothiol A was isolated from the lens tissue of pike-perch
(Sander lucioperca), as described previously [13]. Briefly, the lens tissue was homogenated
with a TissueRuptor II homogenizer (Qiagen, Venlo, The Netherlands) in cold (−20 ◦C)
MeOH and then water and chloroform was added so that the volumetric ratio of wa-
ter:chloroform:methanol was 2:2:1. The mixture was shaken in a shaker for 15 min and left
at −20 ◦C for 30 min. Then, the mixture was centrifuged at 16,100× g, +4 ◦C for 30 min
and the upper (MeOH–H2O) layer was collected. To provide only one form of ovothiol
A in the extract, namely OSSO, hydrogen peroxide was added to the solution (10 µL of
10% aqueous solution per 1 mL of extract). The isolation of ovothiol A from the extract
was performed by HPLC. The LC separation of the metabolomic fraction and collection
of OSSO were performed on an UltiMate 3000RS chromatograph (Dionex, Germering,
Germany) using a hydrophilic interaction liquid chromatography (HILIC) method on a
TSKgel Amide-80 HR (Tosoh Bioscience, Griesheim, Germany) column (4.6 × 250 mm,
5 µm). The detection of eluted compounds was performed simultaneously with a flow cell
diode array UV-vis detector and an ESI-q-TOF high-resolution hybrid mass spectrometer
maXis 4G (Bruker Daltonics, Bremen, Germany) connected to the chromatograph. The
collected OSSO solution was aliquoted, lyophilized and frozen at −70 ◦C until use.

2.2. Optical Measurements

Steady-state and time-resolved UV-Visible absorption measurements were performed
using an Agilent 8453 spectrophotometer from Hewlett-Packard (La Jolla, CA, USA). All
measurements were carried out in a 10 × 10 mm2 quartz cell. During the time-resolved
measurements, optical absorption spectra were recorded at 1 s intervals. To study the
kinetics of the process, current optical density at 6 fixed wavelengths (220 nm, 240 nm,
265 nm, 300 nm, 310 nm and 320 nm) was displayed. The required temperature in the
cell was maintained with an Agilent 89090A (La Jolla, CA, USA) temperature control unit
(available temperature range from −10 ◦C to 120 ◦C). During the experiment, the solution
in the cell was constantly stirred with a magnetic stirrer. All solutions were bubbled with
argon for 15 min prior to optical measurements.

2.3. Laser Flash Photolysis Measurements

The nanosecond laser flash photolysis (LFP) setup was described previously [32].
Briefly, sample excitation in a 10 × 8 mm2 quartz cell was performed using a Quanta-Ray
LAB-130-10 Nd:YAG laser from SpectraPhysics (Mountain View, CA, USA) at 355 nm and
the detection was performed using light from a DKSh-150 xenon short-arc lamp from Stella
Ltd. (Moscow, Russia). All solutions were bubbled with argon for 15 min prior to and
during irradiation.

2.4. NMR Measurements

1H NMR measurements were carried out at the Center of Collective Use «Mass
spectrometric investigations» SB RAS with the use of a NMR spectrometer AVANCE III
HD 700 MHz (Bruker BioSpin, Rheinstetten, Germany) equipped with a 16.44 Tesla Ascend
cryomagnet, as described previously [13]. The solutions for NMR measurements were
prepared in 20 mM deuterated phosphate buffer (pH 7.2) containing 2 × 10−5 M sodium
4,4-dimethyl-4-silapentane-1-sulfonic acid (DSS) as an internal standard.

3. Results
3.1. Absorption Spectra of OSSO and OSH

Dry OSSO (the structure is shown in Scheme S1, Supplementary Materials) was
dissolved in PBS and the UV-Vis absorption spectrum was measured (Figure 1). The
concentration of OSSO in solution and its purity was controlled using NMR spectroscopy
by integration of the OSSO signal relatively to the DSS signal. The obtained spectrum had
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a maximum at 265 nm with ε265(OSSO) = 7780 M−1cm−1, which is in a good agreement
with the spectrum published in [33]. Then, a two-fold amount of glutathione GSH was
added to the OSSO solution and bubbled with argon for 30 min; then, the spectrum was
measured. The OSH spectrum (Figure 1; ε240(OSH) = 10320 M−1cm−1) was obtained as a
difference between the obtained spectrum and the spectrum of oxidized glutathione GSSG
formed during the reaction of OSSO reduction by GSH.
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3.2. OSSO Reduction by GSH

The reduction of OSSO to OSH upon interaction with GSH is a two-stage process
proceeding through the formation of the OSSG (Scheme S1, Supplementary Materias)
intermediate [4]:

OSSO + GSH
k1→ OSSG + OSH, (5)

OSSG + GSH
k2→ GSSG + OSH. (6)

The determination of the reaction rate constants k1 and k2 was performed with the use
of kinetic optical measurements. To this purpose, a 3.7 × 10−5 M solution of OSSO in PBS
(20 mM, pH of 7.4) was placed into the quartz cell of a spectrophotometer and bubbled for
15 min with argon; then, the excess GSH was added to the solution. During the experiment,
the solution in the cell was constantly stirred with a magnetic stirrer and the temperature
of 25 ◦C was maintained with a temperature control unit. The initial concentrations of
GSH were 0.2 mM, 0.3 mM and 0.5 mM, i.e., in all cases, the concentration of GSH was
significantly higher than that of OSSO. The monitoring of the optical absorption of the
sample during the reaction was performed for six wavelengths (220 nm, 240 nm, 265 nm,
300 nm, 310 nm and 320 nm), where the difference in the absorption between OSSO and
OSH was the highest (Figure 1).

Examples of the kinetic curves are shown in Figure 2. One can see two distinct pro-
cesses, a fast reaction (5) completing within the first 50 s and a much slower reaction (6).
Since the concentration of GSH was much higher than that of OSSO and OSSG, both reac-
tions can be considered as pseudo-first order ones, k1

′ = k1 × [GSH] and k2
′ = k2 × [GSH].

The obtained kinetic curves were fitted to biexponential function; the obtained results
are shown in Figure 2. The calculated values of the rate constants k1 and k2 are given in
Table 1.
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Table 1. Rate constants of the reactions of OSSO reduction and OSH oxidation.

T, ◦C pH
k1, M−1s−1 k2, M−1s−1 k3, M−1s−1 k4, s−1

OSSO + GSH OSSG + GSH OS− + H2O2 OSOH Decay

5
7.4

270 ± 20 7.8 ± 0.7 1.0 ± 0.1 (7 ± 2) × 10−4

15 420 ± 40 14.4 ± 0.8 1.8 ± 0.1 (9 ± 3) × 10−4

25 790 ± 70 25.6 ± 1.5 3.7 ± 0.2 (10 ± 3) × 10−4

25 7.2 520 ± 40 20.5 ± 1.7 – –
25 6.8 240 ± 20 12.8 ± 1.4 3.6 ± 0.2 –

The same measurements were performed for two other temperatures, 15 ◦C and
5 ◦C. The Arrhenius plots for rate constants k1 and k2 are shown in Figure 2 and the
obtained Arrhenius parameters are A1 = (2.2 ± 0.2) × 109 M−1s−1, Ea1 = 36 ± 4 kJ/mol,
A2 = (3.8 ± 0.2) × 108 M−1s−1 and Ea2 = 41 ± 4 kJ/mol. Taking into account that the
measurements were performed for a relatively narrow temperature range, from 5 ◦C to
25 ◦C, the obtained parameters should be considered as a good estimation rather than the
exact data.

The measurements of the k1 and k2 dependences on pH were performed only for
T = 25 ◦C. At a pH of 7.2, the obtained values were k1 = 520 M−1s−1 and k2 = 20.5 M−1s−1;
the pH decrease, down to 6.8, resulted in the rate constant decrease to k1 = 240 M−1s−1

and k2 = 12.8 M−1s−1 (Table 1). Apparently, this effect should be attributed to the reduced
deprotonation of GSH at low pH values. The pKa value of the SH group of glutathione
was equal to 8.7 and the percentage of chemically active thiolate form GS- decreased from
5% at a pH of 7.4 to 3.2% at a pH of 7.2 and to 1.3% at a pH of 6.8.

The optical absorption of the solution during the reaction was determined by the
concentrations and electronic spectra of the reactants; at every wavelength and time point,
the observed optical density of solution can be expressed as

OD = ε(OSSO)[OSSO] + ε(GSH)[GSH] + ε(OSSG)[OSSG] + ε(OSH)[OSH] + ε(GSSG)[GSSG], (7)

where ε is the absorption coefficient.
The absorption spectra of OSH, OSSO (Figure 1), GSH and GSSG are already known

and the concentrations of compounds at every time point can be calculated using the values
of the rate constants k1 and k2. Thus, the only unknown variable in Equation (7) is the
absorption spectrum of the intermediate OSSG. This spectrum was obtained by subtraction
of the calculated optical densities of OSH, GSH, OSH and GSSG from the observed optical
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densities of the solution OD for three time points, 50 s, 139 s and 189 s. For all three time
points, similar spectra of OSSG have been obtained; the resulting spectrum in units of
absorption coefficient is shown in Figure 1. Similarly to OSH, the spectrum of OSSG had
an absorption maximum at 240 nm with ε240 = 7310 M−1cm−1.

3.3. OSH Oxidation by Hydrogen Peroxide

To obtain the reduced ovothiol OSH, we dissolved the OSSO extracted from the fish
lens in PBS (pH of 7.4, 20 mM). The solution concentration measured by OSSO absorption
at 265 nm (ε265 = 7780 M−1cm−1) was adjusted to 2.3 × 10−5 M and then 4.6 × 10−5 M
GSH was added. The solution was stirred under argon bubbling for 30 min to achieve the
complete transformation of OSSO into OSH via the reaction with GSH.

The kinetic measurements were performed in the same way as we did in the OSSO
reduction experiments; the solution of OSH was placed into the cell of the spectrophotome-
ter and then the excess of H2O2 was added. The optical absorption of the solution was
monitored at the wavelengths 240 nm, 265 nm, 300 nm, 310 nm and 320 nm; typical kinetic
curves are shown in Figure 3. The measurements were performed for three temperatures,
25 ◦C, 15 ◦C and 5 ◦C. The concentrations of added H2O2 were 3 mM, 6 mM and 9 mM.
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It was found that the signal decay at 240 nm and 265 nm and signal growth at
300 nm, 310 nm and 320 nm were exponential and their rates linearly depended on the
H2O2 concentration. At sufficiently high H2O2 concentrations, one can observe that the
signal growth at 300 nm, 310 nm and 320 nm transforms into slow decay (Figure 3). The
observed kinetics are in a good agreement with the reaction scheme of thiol reactions with
H2O2 [34–39]:

OS− + H2O2
k3→ OSOH + HO−, (8)

OS− + OSOH → OSSO + HO−, (9)

OSOH + OSOH → OS(O)SO H2O, (10)

OSOH + H2O2 → OSO2H + H2O. (11)

According to this scheme, the initial spectral variations correspond to the reaction (8) of
OS− with H2O2, followed by a significantly slower decay of sulfenic acid OSOH (Scheme S1
of Supplementary Materials). The initial parts of the kinetic curves were treated as exponen-
tial functions, with k3

′ = k3 × [H2O2]; the values of the second order rate constant k3 were
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calculated from the slope of the k3
′ dependence on the H2O2 concentration (Figure S5 of

Supplementary Materials). The obtained values of k3 for 25 ◦C, 15 ◦C and 5 ◦C are collected
in Table 1. The Arrhenius plot (Figure 3) for k3 yielded A3 = (7.2 ± 0.7) × 108 M−1s−1 and
Ea3 = 47 ± 4 kJ/mol.

The slow decay of the OSOH signal monitored at 265 nm, 300 nm, 310 nm and 320 nm
did not depend on the H2O2 concentration and, therefore, cannot be attributed to the
reaction (11). The values of the decay rate constant k4 obtained from the exponential fit
of the far parts of the kinetics are given in Table 1. One can see that the signal decay
continues even when all OSH is already consumed in the reaction with hydrogen peroxide,
so the involvement of the reaction (9) is also rather unlikely. Most likely, the signal
decay corresponds to the bimolecular reaction (10) or other unknown reactions of sulfenic
acid OSOH. We should notice that, under our experimental conditions, only the initial
parts of kinetics of OSOH decay were recorded (especially for samples with low H2O2
concentrations) and the obtained k4 values are rather imprecise.

The pH decrease down to 6.8 did not result in noticeable changes in the rate of
reaction (8). That is not surprising, since OSH remains in the thiolate form in a broad
pH range.

At the time point of 156 s, practically all OSH had already been converted into OSOH,
while the decay of OSOH had only started. Thus, at this time point, the only compounds
present in the solution were hydrogen peroxide and sulfenic acid and the difference
between the observed absorption spectrum at t = 156 s and the spectrum of H2O2 yielded
the absorption spectrum of OSOH. The obtained spectrum is shown in Figure 1.

3.4. Triplet Quenching by OSH

To study the reaction of the triplet-state quenching by OSH, we took kynurenic acid
(KNA, Scheme 1) as a model photosensitizer due to the very convenient properties of
this compound; KNA readily dissolves in water, absorbs in the UV-B region and, under
irradiation, it efficiently (quantum yield of 0.82) forms a triplet state with the strong
absorption band at 600 nm [40]. LFP measurements were performed for 2.6 × 10−4 M
KNA solution in PBS (pH of 7.2) in the absence and presence of OSH in solution. The KNA
concentration of 2.6 × 10−4 M provided optimal absorption (OD = 0.83) in the photolytic
cell at 355 nm, the wavelength of the laser irradiation.

Solutions of KNA with OSH were prepared by addition of OSSO and excess of GSH
into the KNA solution. The presence of the rest of GSH in solution did not influence the
kinetics of TKNA quenching, since GSH at a neutral pH is a rather bad triplet quencher [30]
and does not absorb in the UV-A region. The final concentrations of OSH were 1 × 10−4 M,
2 × 10−4 M and 3 × 10−4 M.

The kinetics of TKNA decay was detected at 600 nm. For every OSH concentra-
tion, the measurements were performed 4–5 times with laser energy varying from 1 to
5.9 mJ/pulse in order to separate the contributions from the first and second order reac-
tions. Figure 4 demonstrates the kinetic curves obtained with different OSH concentrations.
Without triplet quenchers, TKNA decays almost purely by the second order reaction of
triplet annihilation [30,40]. In the presence of OSH, the triplet decay significantly ac-
celerates and becomes exponential. The Stern–Volmer plot of the dependence of the
observed pseudo-first order rate constant of triplet decay on the OSH concentration (in-
set in Figure 4) yields the second order rate constant of triplet KNA quenching by OSH,
kq = (1.9 ± 0.1) × 109 M−1s−1.
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4. Discussion

The results of the present work demonstrate that, in biological systems, the combined
actions of OSH and GSH provide very reliable antioxidant protection. At neutral conditions
(pH of 7.4) and T = 25 ◦C, the rate constant of the OSH reaction with hydrogen peroxide
(3.7 M−1s−1) is four-fold higher than that for GSH (0.87 M−1s−1, pH of 7.4 [41]). It should
be noted that the published data on the rate constant of the GSH reaction with H2O2 range
from 0.43 M−1s−1 (pH of 7.2) [42] to 1.6 M−1s−1 (pH not shown) [6]. Most likely, these
differences correspond to the high sensitivity of the reaction to the solution pH. The rate
constant data can be combined with the real levels of antioxidants in living nature. For
example, the concentration of OSH in the lens of Sander lucioperca varies between 1.5 mM
and 3 mM and the GSH level is approximately 0.5 mM [26,27]. Thus, one can estimate that
the reduction of H2O2 by GSH alone would take more than half an hour, while the presence
of OSH reduces this time down to 2–3 min. Oxidized ovothiol OSSO is then reduced by
GSH back to OSH. Taking into account the values of the rate constants k1 and k2 measured
in this work, the complete restoration of OSH occurs within several minutes. Previously,
it has been shown that OSH and its analogs can effectively scavenge other ROS, such as
superoxide [5] and hydroxy radical [9].

The rate-constant values obtained in the present work can be compared with the
previously published data. The reaction between OSH and hydrogen peroxide was studied
in works [6,42]. The reported values k3 = 2 M−1s−1 [42] and 3.18 M−1s−1 [6] are in a fair
agreement with our results. The rate constants k1 of the GSH reaction with OSSO and k2
of the GSH reaction with OSSG are reported in this work for the first time, as well as the
absorption spectra of reaction intermediates OSSG and OSOH.

The important finding of the present work is that OSH is an excellent triplet-state
quencher; the reaction between triplet KNA and OSH proceeds with the rate constant
kq = 1.9 × 109 M−1s−1. In mammalian eye lens, the quenching of triplet states is provided
by high concentrations of ascorbate [29,31,43,44], which reacts with triplet KNA with an
almost diffusion-controlled rate kq = 1.4 × 109 M−1s−1 [30]. For instance, the level of
ascorbate in the human lens is approximately 0.5–1.0 mM [29,31,44]. The concentration of
OSH in the fish lens is even higher than the level of ascorbate in the human lens and the rate
constant of the triplet quenching by OSH is higher than that by ascorbate. Besides, photo-
induced oxidation of ascorbate inside the lens results in the formation of dehydroascorbate,
which eventually leads to the accumulation of advanced glycation end products [45]. The
decay of OS• radicals most likely proceeds via the radical combination with the formation
of harmless OSSO. Therefore, OSH in the fish lens provides at least as good a protection
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against photo-generated triplet states as ascorbate in the human lens. Previously [46], it has
been shown that the rate constants of the triplet-state quenching by other thiols (cysteine
and GSH) increases with the pH increase. This indicates that deprotonated thiols readily
donate electron to triplet molecules and a high rate of the triplet-state quenching by OSH
at neutral pH values should be attributed to the very low pKa value of the SH group of
this compound.

We have recently shown [26] that the OSH level in lenses of freshwater fish during the
winter undergoes significant seasonal variations; the OSH concentration in late autumn
is 2–3 times higher than that in early spring. This finding was attributed to the decreased
level of dissolved oxygen in ice-covered water bodies, decreased feeding activity of fish
and, correspondingly, deceleration of metabolic processes in fish, including the OSH
accumulation. However, an alternative explanation of this effect might be almost complete
darkness in water under ice. Without solar radiation, the generation of triplet states,
radicals and ROS decreases, causing the decrease in OSH production as a response. In
recent works [21,47], it has been shown that the expression of the gene encoding the key
ovothiol biosynthetic enzyme, ovoA, in diatoms depends on the light conditions. The
enhanced expression of ovoA under light irradiation can be explained as the need of its
presence for both reduction of light-induced ROS and quenching of reactive triplet states.

Unique antioxidant properties of OSH cause increased interest for its use in medicine.
Pilot studies on this subject were performed with the use of cell cultures [12,33,48]. In
particular, it has been demonstrated [33] that OSH reduces proliferation of human liver
carcinoma cells and does not affect normal human embryonic lung cells. An especially
promising direction of the use OSH in medicine is the treatment of diseases associated
with oxidative stress and inflammation, such as diabetes or cardiovascular diseases. In a
recent paper [12], it was shown that oxidized ovothiol OSSO is readily taken up by human
endothelial cells, transforms into its reduced form (OSH) inside the cells and then acts as
an antioxidant scavenging reactive oxygen and nitrogen species. These results indicate the
therapeutic potential of OSH in the treatment of a broad range of diseases from tumors
to cardiovascular diseases. We believe that the results obtained in the present work are
useful both for a better understanding of redox reactions occurring in living nature and for
a development of new medicine for treatment of human diseases.

5. Conclusions

The results obtained in this work demonstrate the unique functionality of ovothiol A
and emphasize the importance of further studies on this metabolite. By entering cells as an
external antioxidant and photoprotector, it can effectively integrate into the intracellular
antioxidant defense system based on glutathione. Then, acting together with glutathione,
ovothiol A is able to actively scavenge ROS and free radicals, as well as quenching dan-
gerous triplet states, thus inhibiting oxidative stress and photoinduced damage. Taking
into account the deleterious effect of oxidative stress for cells and tissues, OSH has great
therapeutic and pharmacological potential.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/antiox10091470/s1, Figure S1: Absorption spectra of aqueous solution (pH 7.4, T = 15 ◦C)
containing 3.7 × 10−5 M OSSO before addition of GSH and 50 s and 189 s after the addition of
0.2 mM GSH, Figure S2: Dependence of the pseudo-first order rate constant k1

′ on GSH concen-
tration, Figure S3: Dependence of the pseudo-first order rate constant k2

′ on GSH concentration,
Figure S4: Absorption spectra of aqueous solution (pH 7.4, T = 25 ◦C) containing 4.6 × 10−5 M OSH
and 2.3 × 10−5 M GSSG before addition of H2O2 and 156 s and 258 s after the addition of 6 mM
H2O2, Figure S5: Dependence of the pseudo-first order rate constant k3

′ on H2O2 concentration,
Scheme S1: Structures of compounds used or detected in this work: oxidized ovothiol (OSSO),
reduced glutathione (GSH), sulfenic acid (OSOH) and ovothiol-glutathione adduct (OSSG).
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