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G protein-coupled receptors (GPCRs) are the largest family of
human proteins. They have a common structure and, signaling
through a much smaller set of G proteins, arrestins, and effectors,
activate downstream pathways that often modulate hallmark
mechanisms of cancer. Because there are many more GPCRs than
effectors, mutations in different receptors could perturb signaling
similarly so as to favor a tumor. We hypothesized that somatic
mutations in tumor samples may not be enriched within a single
gene but rather that cognate mutations with similar effects on
GPCR function are distributed across many receptors. To test this
possibility, we systematically aggregated somatic cancer muta-
tions across class A GPCRs and found a nonrandom distribution
of positions with variant amino acid residues. Individual cancer
types were enriched for highly impactful, recurrent mutations at
selected cognate positions of known functional motifs. We also
discovered that no single receptor drives this pattern, but rather
multiple receptors contain amino acid substitutions at a few cog-
nate positions. Phenotypic characterization suggests these muta-
tions induce perturbation of G protein activation and/or β-arrestin
recruitment. These data suggest that recurrent impactful onco-
genic mutations perturb different GPCRs to subvert signaling and
promote tumor growth or survival. The possibility that multiple
different GPCRs could moonlight as drivers or enablers of a given
cancer through mutations located at cognate positions across
GPCR paralogs opens a window into cancer mechanisms and
potential approaches to therapeutics.

G protein-coupled receptor (GPCR) j cancer j evolutionary action (EA) j
mutational signatures j β-arrestin

G protein-coupled receptors (GPCRs), the largest class of
membrane receptors, with over 800 individual human

proteins, are increasingly implicated in human tumorigenesis
and cancer progression (1, 2). They play essential and diverse
roles in cellular homeostasis (3), and some GPCRs are involved
in cancer hallmarks in at least 13 cancer types (4), making
them potential targets for anticancer drugs (5). However, the
mutational heterogeneity in driver genes often clouds their dis-
covery, due to low recurrent mutation rates and a high number
of background mutations (6, 7).

To increase the statistical power of cancer driver gene discov-
ery, one computational approach groups mutations across bio-
logically similar genes based on gene networks, pathways, or
protein similarity (8, 9). By accounting for strict comparisons
with gene-specific mutational frequencies in noncancerous tis-
sues, the MutSigCV method was able to find genes with a
mutational frequency that is greater than random in cancer
(10). Such studies recently identified mutated residues in hyper-
mutated GPCR genes near conserved structural motifs in

cancer samples (11) and reported preferential disruption of
receptors coupled to Gαi/o (12). In a domain-centric approach,
cancer variants were found to be enriched in protein families,
such as kinases, sharing similar functional and structural
domains (13–16). Thus, an emerging possibility, supported by
their large number of paralogs, is that cognate mutations in dif-
ferent GPCRs are associated with cancer, as already observed
in kinases (16).

The GPCR family is defined by a highly conserved tertiary
structure with evolutionarily important motifs mediating their
dynamic shifting between various active and inactive states (17,
18). Consequently, signaling is often a tangled, interconnected
web with different receptors using overlapping sets of down-
stream effectors and pathways. Because there are many more
GPCRs than effectors, mutations in different GPCRs could
perturb signaling similarly so as to favor a tumor. With many of
these pathways modulating hallmarks of cancers, we hypothe-
size that somatic mutations found repeatedly at cognate struc-
tural positions across many receptors have a high functional
impact, funneling their phenotypic effect into cancer-enabling
cellular disruptions. To test this possibility, we create an in silico
model that accounts for not only cancer-specific nucleotide
substitution frequency, but also innate codon composition of
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aligned amino acid positions in paralogous proteins, and, in
this way, we are able to systematically compute expected muta-
tion rates at individual residue positions across paralogous
proteins.

Here, we used sequence homology to identify somatic cancer
mutations in 651 class A GPCRs, which include 284 nonolfac-
tory and 367 olfactory GPCRs, occurring at cognate structural
positions. In order to discriminate between functionally impor-
tant mutations and noise contributed by benign and low-impact
mutations, we used Evolutionary Action (EA) (19) to quantify
the predicted impact of mutations on protein function and the
Evolutionary Trace (ET) (20, 21) to identify evolutionarily
important positions under significant mutational burden in can-
cer. While mutation frequencies in most residues are linearly
correlated with expected mutational frequencies in cancers, we
found that mutations at a few selected positions within the
DRY and NPxxY motifs are enriched across class A GPCRs in
cancer genomes. These motifs were reported as mutational hot-
spots in previous studies applying gene- and domain-centric
approaches (11, 12). While the agreement between different
methods further validated potential oncogenic effects of muta-
tions near DRY and NPxxY motifs, the increased resolution of
analysis from genes and protein domains to individual residues
enables examination of more GPCRs with rare variants.
Our data also showed that olfactory GPCRs have distinct muta-
tional rates and patterns compared to nonolfactory GPCR
in cancers, but there are highly mutated positions on both
olfactory and nonolfactory GPCRs located at evolutionarily
important residues, which are considered to be deleterious.
Phenotypic characterization of these mutations indicates severe
functional perturbations including loss of cell surface expres-
sion and altered G protein and β-arrestin signaling. These data
suggest cognate driver mutations may flexibly distribute across
protein paralogs to induce functional perturbations to promote
disease.

Results
Cancer Somatic Mutations Are Nonrandomly Distributed Throughout
the GPCR Structure and Target Select Functional Motifs. In order to
search for mutationally enriched positions within class A
GPCRs, we aligned the amino acid sequences of 651 class A
GPCRs (284 nonolfactory and 367 olfactory GPCRs) (SI
Appendix, Table S1) to define cognate sequence positions. To
eliminate possible misalignments, we focused our investigation
on the 269 positions that are represented by fewer than 10%
of gaps in class A GPCRs multiple sequence alignments (SI
Appendix, Table S2). For each receptor, we tallied all the
somatic mutations recorded in The Cancer Genome Atlas
Research Network (TCGA, https://www.cancer.gov/about-nci/
organization/ccg/research/structural-genomics/tcga) to compre-
hensively characterize changes in 33 human cancer types. Our
analysis is restricted to receptors expressed in any cancer cells
according to RNA sequencing (RNA-seq) data, using a strin-
gent threshold of fragment per kilobase of transcript per mil-
lion mapped reads (FPKM) greater than one (SI Appendix, Fig.
S1). In comparison with variations from a healthy population
[1000 Genome Project (22)], we observed that the distribution
of mutations in GPCR genes in TCGA is distinctly different
(Fig. 1 A–D). On a residue position basis, the nonsynonymous
substitution rate tends to be twice as high for both nonolfactory
(median = 0.0023) and olfactory (median = 0.0025) GPCR
than for synonymous substitutions (median = 0.0012 for nonol-
factory; median =0.0011 for olfactory), and the shapes of
distributions differ significantly between nonsynonymous and
synonymous substitutions (Kolmogorov–Smirnov test P value of
<0.0001 for both olfactory and nonolfactory GPCRs; Fig. 1 A
and B). In contrast, in a healthy population, the overall

variation rates are much lower than ones in TCGA, while distri-
butions of nonsynonymous and synonymous substitutions are
still statistically distinct (Kolmogorov–Smirnov test P value of
<0.0001). The nonsynonymous substitution rate is lower than
that of the synonymous rate in nonolfactory GPCRs (median =
0.0003 for nonsynonymous; median = 0.0006 for synonymous),
but the nonsynonymous rate is still higher in olfactory GPCRs
(median = 0.0022 for nonsynonymous; median = 0.0007 for
synonymous) (Fig. 1 C and D).

We next investigate the nonsynonymous substitutions rate at
cognate residue positions and the listing of residues follows the
Ballesteros–Weinstein numbering system (23) in transmem-
brane regions, and, otherwise, residue numbering is based on
the human β2 adrenergic receptor. Residue 3.50 in nonolfac-
tory GPCRs is the most highly mutated in TCGA pan-cancer (z
score of 7.20) compared to 1000 Genome cohorts (z score of
�0.39) (Fig. 1E). In addition to residue 3.50, other highly
mutated positions are 8.51 (z score of 6.01), and 7.50 (z score
of 2.92). In olfactory GPCRs, 3.50 is also the most highly
mutated position, both in TCGA pan-cancer and 1000 Genome
cohorts (z score of 7.26 in TCGA; z score of 5.18 in 1000
Genome) (Fig. 1F), although the subset of receptors mutated
at this position is different for each cancer cohort. Among the
56 olfactory receptors having mutations at 3.50 in the TCGA
database, 24 are uniquely associated with TCGA (SI Appendix,
Figs. S2 and S3). There is a growing appreciation of a role for
olfactory receptors in signaling outside of the olfactory system
(24), and our data suggest that mutations in subsets of olfactory
receptors that are pan-cancer–specific may benefit cancer pro-
gression by modulating DRY motif functionality.

To further investigate the structural distribution of synony-
mous and nonsynonymous mutations, we next mapped sepa-
rately the 50 most highly mutated positions onto the β2AR
inactive structure [Protein Data Bank (PDB) ID code 2RH1
(25)]. In the measurement of structural clustering using selec-
tion clustering weight (26), nonolfactory nonsynonymous muta-
tions in TCGA pan-cancer are statistically clustered (z score of
1.7; SI Appendix, Fig. S4) in the structure around functional
motifs with 16 residues directly in or within 8 Å of the DRY,
NPxxY, or PIF motif. These data suggest that the increased
rate of nonsynonymous mutations in cancers is nonrandomly
enriched in structure and function.

Biases in Nucleotide Substitution Frequency and Codon Composition
Are Insufficient to Explain Mutational Enrichment. Different nucleo-
tide substitution biases have been observed in different cancer
types (27). Therefore, we created an in silico model to test
whether the mutation rate at each position could be explained
solely by the variation in the nucleotide substitution biases of
each cancer type and the codon composition of each alignment
position (Fig. 2 A–D; see Materials and Methods). In the model,
individual codons experience varied mutation frequencies
depending on the nucleotide biases exhibited in different can-
cers (SI Appendix, Fig. S5). Therefore, some alignment posi-
tions are expected to experience increased mutation rates due
solely to nucleotide substitutions that are random within the
constraints of the tumor substitution frequency matrix.

We observed that expected mutation frequency based on the
random simulation in the pan-cancer model correlated linearly
with the observed mutation frequency both in olfactory (R2 =
0.47) and nonolfactory (R2 = 0.43) GPCRs (Fig. 2 E and F),
indicating mutations at most positions are consistent with the
random background mutation rate. Strikingly, residues 3.50 and
8.51 in nonolfactory GPCRs (χ2 p value < 0.005, z score > 5.0),
and residues 3.21 and 2.47 in olfactory GPCRs (χ2 p value <
0.005, z score > 2.0), were significantly hypermutated compared
to the simulation: Residues 3.50 and 8.51 had 58 and 62 more
mutations than expected, respectively; and residues 3.21 and 2.47
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had 24 and 17 more mutations than expected, respectively (SI
Appendix, Table S3). These data indicate that the increased muta-
tion rate at these positions cannot be attributed to codon compo-
sition and nucleotide substitution biases.

Nonsynonymous Mutations Display Cancer Type–Specific Patterns
of Mutation. In previous studies, individual cancer types were
shown to be driven by type-specific driver mutations (28–30).
We therefore repeated the above analyses on all individual can-
cer types within the TCGA, focusing on the five cancer types
with the largest rate of GPCR mutations (UCEC, SKCM,
LUAD, COAD, and STAD) (SI Appendix, Fig. S6; TCGA can-
cer study abbreviations in SI Appendix, Table S4). In nonolfac-
tory GPCRs, residue 3.50 is the most hypermutated in all five
cancers (χ2 test P values are, 3:84 � 10�11 in UCEC, 5:20 �
10�2 in SKCM, 3:38 � 10�2 in LUAD, 8:14 � 10�3 in COAD and 1:09 �
10�3 in STAD), followed by residue 8.51 in UCEC and COAD
(χ2 test P values are 6:78 � 10�6, 1:94 � 10�17 and 3:38 � 10�2,
respectively), and residue 7.42 in UCEC, LUAD, and COAD
(χ2 test P values are 1:25 � 10�2, 4:55 � 10�2 and 2:70 � 10�3,
respectively). In olfactory GPCRs, on the other hand, residue
3.50 is the most hypermutated in COAD (χ2 test P values is

4:67 � 10�3), and residue 7.50 is the most hypermutated in SKCM
and STAD (χ2 test P values are 7:06 � 10�6 and 3:39 � 10�2).
These data suggest that the significant overlap in hypermutated
positions may benefit cancer progression through similar cognate
functional perturbations in multiple cancer types.

However, we also observed marked differences between indi-
vidual cancer types. In nonolfactory GPCRs, residue 7.50 is
hypomutated in UCEC (chi-squared test P value 8:48 � 10�4),
whereas it is hypermutated in SKCM (chi-squared test P value
3:35 � 10�6). In both olfactory and nonolfactory GPCRs, resi-
due 1.49 is hypomutated in UCEC (chi-squared test P value
9:81 � 10�3 for olfactory and 3:89 � 10�2 for nonolfactory
GPCRs), while being hypermutated in SKCM (chi-squared test
P value 8:64 � 10�7 for olfactory and 2:68 � 10�2 for nonolfactory
GPCRs).

Hypermutated Positions Target Evolutionarily Important Residues
with Mutations Predicted to Be Highly Impactful. Using ET, we
next quantified the functional and structural importance of the
top 10 ranked hypermutated positions compared with the hypo-
mutated positions (SI Appendix, Figs. S7 and S8) in the five
cancer types with the highest GPCR mutation rates: UCEC,

A

E

F

B C D

Fig. 1. Mutational burden in class A GPCRs. (A–D) The substitution rate per position is shown as histograms. Nonsynonymous substitution rate for olfac-
tory and nonolfactory GPCRs in pan-cancer, and for olfactory in 1000 Genome Project are significantly right-shifted compared to that of synonymous sub-
stitution. In contrast, the synonymous substitution rate is higher than nonsynonymous for nonolfactory GPCRs in the 1000 Genome Project.
Kolmogorov–Smirnov distances are (A) 0.725, (B) 0.662, (C) 0.201, and (D) 0.350, and, for all four distribution, P values are less than 0.0001. (E and F) The
z score of nonsynonymous substitutions at cognate residue positions. Positions of residues discussed in the text are indicated.
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SKCM, LUAD, COAD, and STAD. ET uses phylogenetic line-
age analysis to identify correlations between evolutionary
changes in genotype and changes in the phylogenetic tree
representing divergences in function (20, 31, 32). Genotypic
changes correlating with larger phenotypic divergence are con-
sidered more important than positions correlating to smaller
evolutionary divergences (21). Missense hypermutated and
hypomutated positions were enriched for evolutionarily impor-
tant residues as we would expect, given the essential roles of
GPCRs (Fig. 3A).

Given that mutations may have varying impacts on protein
function, we used EA to predict functional impacts quantita-
tively (19). EA predicts the impact of a mutation on protein
function by combining the ET importance of each position and
the severity of the substitution, quantified using substitution log
odds across evolution, where scores range from 0 (benign) to
100 (drastic functional perturbation) (33). Among the top 10
hypermutated positions in UCEC, SKCM, LUAD, COAD, and
STAD, four positions in nonolfactory GPCRs (3.50, 7.42, 7.50,
and 8.51) show significant bias toward highly impactful muta-
tions (Mann–Whitney p value < 0.0001) in comparison with the
distribution of EA scores of mutations from a healthy popula-
tion (Fig. 3 B and C and SI Appendix, Fig. S9). Although hyper-
mutated positions in olfactory GPCRs have less overlap
between cancers, EA scores for mutations at positions 1.49,

3.50, and 7.50 are highly biased toward drastic functional per-
turbations (Fig. 3C and SI Appendix, Fig. S9). To investigate the
structural distribution of those hypermutated positions, we
mapped them onto the β2AR inactive structure, PDB ID code
2RH1 (25) (Fig. 3D). Strikingly, 1.49, 3.50, 7.42, 7.50, and 8.51
are all located near or within known functional motifs: 3.50
within the DRY motif, 7.50 within NPxxY motif, and 7.42 proxi-
mal to the toggle switch. Notably, 1.49 and 7.50, while distant
in sequence space, are structurally proximal to NPxxY, suggest-
ing a nonrandom enrichment in structure and function. Taken
together, mutational patterns and rates are distinct between
olfactory and nonolfactory GPCRs, but the hypermutated and
hypomutated positions were enriched for evolutionarily impor-
tant residues for both olfactory and nonolfactory GPCRs.
Overall, these data show class A GPCRs in cancer samples
are enriched for recurrent, nonrandom, high-impact mutations,
occurring at evolutionarily important positions at or near
known functional motifs.

We next investigated whether the GPCR mutations in can-
cer are preferentially associated with specific Gα proteins.
The primary G protein association is only available for a sub-
set of GPCRs (256 out of 284 class A nonolfactory GPCRs)
from GPCRdb (34), and olfactory receptors were excluded in
this analysis because they preferentially use the olfactory-
specific Gαolf in their native cell types (35). We observed that

A B

C

D F

E

Fig. 2. Controlling for nucleotide substitution biases and variable codon mutation expectation. (A) Flowchart of the simulation using UCEC as an exam-
ple. (B) The observed nucleotide substitution frequencies were tabulated across all proteins for a given cancer type, creating five nucleotide substitution
frequency matrices. UCEC is shown here for example. The other cancer types are shown in SI Appendix, Fig. S5. (C) A random GPCR and a random codon
within aligned class A GPCRs were chosen, and the codon was mutated following the nucleotide substitution matrix calculated in step B. In this example,
GPCR3 and position 3 are randomly selected, and nucleotide C is changed to U. (D) The random simulation in step C results in the expected mutation rate
matrix. The codon frequency at each position was then calculated by counting the number of times each codon occurs at every position within the multi-
ple sequence alignment. The expected mutation count at position p is the sum over all codons i of the number of occurrences of that codon at position p
(Vp,i) multiplied by the expected mutation rate at a given codon (Mi). (E and F) Expected versus observed pan-cancer positional mutation rate at (E) nonol-
factory GPCRs and (F) olfactory GPCRs.
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the primary Gα coupling profile of GPCRs mutated at 1.49,
3.50, 7.42, 7.50, and 8.51 is similar to the overall preference
for primary Gα protein couplings in class A nonolfactory
GPCRs expressed in cancer (Fig. 3E and SI Appendix,
Fig. S10).

Loss of Function Phenotypes of Mutant GPCRs. To investigate the
functional consequences of substitutions at hypermutated posi-
tions with high EA scores, we assayed plasma membrane locali-
zation, G protein activation, and β-arrestin recruitment in
mutants of four GPCRs. The five identified positions (1.49,
3.50, 7.42, 7.50, and 8.51) were mutated to match the most
frequent substitutions found at those positions (SI Appendix,
Fig. S11). Diverse receptors were chosen: dopamine D2 recep-
tor (DRD2), gastrin-releasing peptide receptor (bombesin
receptor 2; GRPR), hypocretin receptor 2 (orexin receptor
type 2; HCRTR2), and melatonin receptor 1A (MTNR1A).
All four receptors were represented in the TCGA dataset
of mutations at the experimentally tested positions, although
none were mutated at all of the positions (SI Appendix,
Table S5).

Using transiently transfected cells loaded with a Ca2+ indica-
tor dye, we measured the ability of mutant receptors to mobi-
lize Ca2+ release from internal stores via endogenous Gαq, or,
in the case of Gαi/o coupled DRD2 and MTNR1A, via cotrans-
fected chimeric Gαqo (36) (Fig. 4). We measured β-arrestin
recruitment using the Tango assay (Fig. 5), in which recruit-
ment of an arrestin–TEV protease fusion protein mediates
cleavage of a transcription factor fused to the GPCR, leading
to luciferase reporter expression (37). The GPCRs in both
assays were modified by the addition of an N-terminal signal
peptide and FLAG tag, and the Tango assay construct was
additionally fused at the C terminus to the Vasopressin 2 recep-
tor tail and a transcription factor. Plasma membrane expression
of the two different protein constructs was assayed in the
respective cell lines by labeling with FLAG antibody in nonper-
meabilizing conditions.

In both functional assays (G protein activation and β-arrestin
recruitment), most of the mutants exhibited reduced potency,
efficacy, or both, where the losses of functional activity are con-
sistent with high EA scores. The 7.50H mutation, located in the
NPxxY motif, severely compromised activity in all receptors,
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such that an effective concentration, 50% (EC50) could not be
measured in most cases. This loss of function is likely explained
by misfolding and/or mislocalization, as surface expression was
severely reduced or not detectable for all of the 7.50H mutants,
with the exception of the MTNR1ATango construct. The 1.49E
mutation, also located near the NPxxY motif, led to very low or
undetectable surface expression in most mutants. Despite the
low surface expression of 1.49E mutants, G protein activation
was measurable, albeit with significantly reduced potency and/

or efficacy, indicating the relative insensitivity of the enzyme-
linked immunosorbent assay (ELISA) for detecting surface
expression. These results are consistent with roles for residues
in the vicinity of the NPxxY motif in folding and/or localization,
as well as in potency of agonist-induced G protein activation.
The 3.50H mutation, located in the DRY motif, led to signifi-
cantly reduced potency and efficacy for G protein activation in
all receptors, including HCRTR2 and MTNR1A, in which sur-
face expression was not significantly different from wild type

A

B

C

D

Fig. 4. G protein activation by (A) DRD2, (B) GRPR, (C) HCRTR2, and (D) MTNR1A mutants. (i) Representative time courses showing G protein activation
at a single ligand concentration. Lines indicate means ± SD of technical replicates at each timepoint. (ii) Representative dose–response curves generated
from maximum activation values from data as in i. Points indicate means ± SEM of technical replicates. (iii–v) EC50 (iii) and efficacy (Emax) (iv) were deter-
mined from dose–response curve fits, and surface expression (v) was measured by cell ELISA, as described in Materials and Methods. Points represent
means from independent experiments, and error bars show SEM. Mutants were compared to WT using one-way ANOVA and Dunnett’s posttest (*P ≤
0.05; **P ≤ 0.01; ***P ≤ 0.001). Mutants for which an EC50 could not be determined are indicated by “NA.” For mutants which did not reach a plateau in
the dose–response curves, EC50 and efficacy determinations are estimates and represent lower limits. Error bars that are not visible are smaller than the
associated symbol.
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(WT). In contrast, the 3.50H mutation led to reduced potency,
but not efficacy, for β-arrestin recruitment, with the exception
of the GRPR mutant which had severely reduced surface
expression and no activity.

In general, 7.42Tand 8.51H were the least deleterious muta-
tions with respect to G protein activation. The substitution
8.51H exhibited near-normal potency and/or efficacy in all four
receptors, while 7.42T exhibited near-normal potency and/or
efficacy in all but DRD2, despite reduced surface expression in
some cases. However, in the β-arrestin recruitment assay, the
DRD2 and GRPR 8.51H mutants had no detectable activity or
surface expression, suggesting defects in folding or stability due
to this mutation that are exacerbated by the large fusion pro-
tein required for the Tango assay.

In contrast to the loss of function phenotypes observed with
most mutants, the DRD2 1.49E mutant had striking constitu-
tive β-arrestin recruitment activity (Fig. 5A). Although dopa-
mine dose-dependent β-arrestin recruitment was impaired,
activity was near WT efficacy in the absence of ligand. The
Ca2+ mobilization assay for G protein activation does not
report constitutive activity. However, cells transfected with the
DRD2 1.49E mutant tended to detach from wells during the
course of the assay, suggesting that this mutant may be deleteri-
ous for cell health. We also observed detachment of cells trans-
fected with HCRTR2 1.49E and 7.50H mutants in some G
protein activation experiments.

In the case of GRPR and MTNR1A constructs for β-arrestin
recruitment, surface expression was not detectable in ELISA,
even for WT. Therefore, as a complementary and more
sensitive method, we labeled cells in nonpermeabilizing
conditions and imaged by confocal microscopy (Fig. 5 B and D
and SI Appendix, Figs. S12–S15). Results for DRD2 and
HCRTR2 are similar to those obtained with ELISA, and
surface expression was measurable for GRPR and MTNR1A.
Further, labeling of total protein in permeabilizing conditions
was detected at similar levels for all mutants, indicating that all
mutants were expressed, but some had defects in folding and/or
trafficking that resulted in impaired surface expression. Specific
labeling of cell boundaries in nonpermeabilizing conditions,
clearly distinguishable from the labeling pattern in
permeabilizing conditions, further validates the specificity of
ELISA for detecting cell surface epitopes.

Discussion
We present a combined genomic and structural analysis of class
A GPCR mutations in cancers. The observation of an increased
rate of nonsynonymous mutations compared to synonymous
mutations, per residue position (Fig. 1), is consistent with previ-
ous studies showing an increased ratio of nonsynonymous to
synonymous (dN/dS) mutations in cancer cells compared to
germline variants from a healthy population (38, 39). We
observed that the rate of nonsynonymous mutations was non-
randomly distributed in the GPCR structure, and that certain
cognate residue positions were enriched for nonsynonymous
mutations across class A GPCRs in pan-cancer compared with
mutations from a healthy population (Figs. 2 and 3). Further-
more, the predicted impacts of mutations at enriched residue
positions in cancers were significantly more severe than those
of overall mutations in a healthy population (Fig. 3 and SI
Appendix, Fig. S9). These results suggest the increased rate of
nonsynonymous mutations in cancers in comparison with
healthy population is nonrandomly distributed in GPCR struc-
ture, and those recurrently observed mutations at cognate posi-
tions in paralogous GPCRs could share similar phenotypic
consequences in cells, since sequence comparisons of class A
receptors make apparent that all share evolutionary and struc-
turally conserved functional motifs (40).

No attempt is made in this study to address germline muta-
tions that may predispose to cancer. Rather, our goal has been
to contrast statistical properties of common inherited variations
in 1000 Genomes with impactful and cancer-specific somatic
mutations, and to identify positions across a set of paralogous
genes that are hypermutated in tumors, and therefore candi-
dates for positions at which mutations favor cancer progression.

Although the role of olfactory GPCRs in cancer has not
been well studied, overexpression of certain olfactory receptors
has been reported in various cancers including skin, breast,
prostate, colorectal, lung, and bladder (41–46). Our results
show that a large number of olfactory receptors are expressed
in cancer samples (SI Appendix, Figs. S1 and S3). Despite simi-
lar nonsynonymous mutation positional rates between TCGA
pan-cancer and 1000 Genomes, olfactory mutations in cancers
are more often located at evolutionarily important residues,
which are considered to be deleterious (Figs. 1 and 4 and SI
Appendix, Fig. S4). This result suggests that nonsynonymous
mutations on olfactory GPCRs are enriched at highly impactful
and cognate positions across paralogues proteins, and thus may
have functional roles in cancer tissues.

Unlike nonolfactory GPCRs, numerous healthy individuals
have loss of function variants in olfactory GPCRs, including
mutations at residue 3.50, and different subsets of inactivated
olfactory GPCRs play important roles in smell sensitivity and
preferences in humans (47). Although olfactory GPCRs typi-
cally couple to the heterotrimeric G protein subunit Gαolf, they
may also couple to Gαs and Gα15 (48, 49), mediating adenylate
cyclase and phospholipase C activation. In cancers, Gαolf is
expressed in all 33 cancer types but at low levels, while expres-
sion of Gα15 is relatively highly expressed on LAML, HNSC,
CESC, THYM, BLCA, and LUSC (SI Appendix, Figs. S16 and
S17) Indeed, activation of olfactory receptors in cancer cell
lines, such as OR10H1 in bladder cancer (46), OR51E2 in
prostate cancer (45), OR2AT4 in leukemia (50), and OR2J3 in
non-small-cell lung cancer (43), inhibits cell proliferation and
induces apoptosis mediated by adenylate cyclase. While more
experiments are required to measure potential oncogenic
effects from individual olfactory GPCRs, our finding of the
unique subsets of olfactory receptor mutations in cancer tissues
suggests that these receptors might contribute to cancer pro-
gression by modulating DRY motif functionality.

Repeated and independent testing of identical mutations in
different nonolfactory GPCRs has revealed that they often lead
to conserved functional perturbations. For instance, mutations
at 3.50 and 7.50 are associated with many different diseases,
including cancers, and have been previously characterized in
multiple receptors. Mutation at 3.50 in AVPR2 (51, 52),
ADRA1B (53), GPR33 (54), HRH2 (55), and CCR5 (56) result
in a complete loss of G protein–dependent signaling with
severely decreased cell surface expression and can also trigger
constitutive β-arrestin–mediated desensitization. A recent study
revealed mutually exclusive mutational patterns between inacti-
vating DRY mutations in GPCR coupled to adenylyl cyclase
inhibitor Gαi and activating mutations in adenylyl cyclase acti-
vator Gαs (12). Likewise, mutations to 7.50 within CHRM3
(57) and V2R (51) severely impair or eliminate G protein–
dependent signaling and cell surface expression. In addition,
GPCR signaling through β-arrestins has been reported to serve
physiological roles within cancer development, including cell
proliferation and migration, in addition to controlling antiapop-
totic pathways (58). Consistent with these observations, we
observed hypermutated positions located at DRY and NPxxY
motifs and significant loss of function in 3.50 and 7.50 mutants
of DRD2, GRPR, HCRTR2, and MTNR1A (Figs. 5 and 6).
Furthermore, our residue-specific mutational enrichment analy-
sis enabled us to identify additional hypermutated positions at
residues 1.49, located close to 7.50 in the NPxxY motif, 7.42,
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and 8.51. Mutations at these positions were also detrimental
(Fig. 6). The receptors tested were selected primarily as conve-
nient and diverse examples of class A GPCR, but there is evi-
dence for their involvement in cancers. Melatonin receptors
have been reported to play oncostatic roles by stimulating

apoptosis and inhibiting angiogenesis and metastasis (59, 60).
Epidemiological studies show the deficiency of melatonin raises
risk in ovarian cancer (61), breast cancer (62), and prostate
cancer (63), and adjuvant therapy with melatonin has been
reported to lead to substantial improvements in solid tumors

A

B

C

D

Fig. 5. β-arrestin recruitment activity of (A) DRD2, (B) GRPR, (C) HCRTR2, and (D) MTNR1A mutants. (i) Representative Tango assay dose–response curves.
Points indicate means ± SEM of technical replicates. EC50 (ii) and efficacy (iii) were determined from dose–response curve fits, and surface expression (iv)
was measured by cell ELISA (DRD2, HCRTR2) or immunofluorescence microscopy (GRPR, MTNR1A), as described in Materials and Methods. Points represent
means from independent experiments, and error bars show SEM. Mutants were compared to WT using one-way ANOVA and Dunnett’s posttest, except
where only one mutant was analyzed, in which case a t test was used (*P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001). For mutants which did not reach a plateau in
the dose–response curves, EC50 and efficacy determinations are estimates and represent lower limits.
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(64) and colorectal cancer (65). Dopamine D2 receptors con-
tribute to preventing tumor growth by inhibiting vascular endo-
thelia growth factor (VEFG)-mediated angiogenic activities
(66), and D2 agonists are reported to inhibit tumor progression
in lung cancer (67). A proapoptotic role of orexin receptors has
been shown to significantly reduce tumor growths in colon can-
cers, liver metastases, and glioblastoma (68–70). Given that
receptors’ function is to sense the environment and regulate
cells’ behavior in cancers, the altered responses in G protein acti-
vation and/or β-arrestin recruitment caused by hypermutations at
cognate positions could alter responses to the environment and
cause dramatic changes, ultimately leading to cancers.

The present study demonstrated that somatic mutations in
tumor samples are distributed across many different class A
GPCRs and enriched near functional motifs and have similar
effects on GPCR functions. Our results provide insight into
flexible use of GPCR paralogs as a functional onco-group and
suggest strategies for future studies to discover new therapeutic
targets and common downstream pathways shared between
GPCRs in specific cancer types. Our in silico tool provides an
approach to compute expected mutation rates in cognate posi-
tions, allowing identification of mutational hotspots, while tak-
ing into account variation in nucleotide substitution biases of
each cancer type and the codon composition of each alignment
position, without excluding genes with rare variants. Although
our current study focuses on class A GPCRs, this tool is widely
applicable to different protein families.

Materials and Methods
Sequence Alignment and Position Selection. A list of 651 class A GPCR was
obtained from International Union of Basic and Clinical Pharmacology/British
Pharmacological Society (IUPHAR/BPS, https://www.guidetopharmacology.
org). The primary sequence for each GPCR was obtained from Uniprot (https://
www.uniprot.org) in FASTA format. The sequences were aligned using PRO-
MAL3D (71) using default parameters provided on the web interface. Only
alignment positions present (amino acid mapped to that location) in greater
than 90% of all GPCR sequences were used for subsequent analyses. This
resulted in 269 “high-coverage” positions. Positions below this threshold dem-
onstrated too much variation for confident alignment. In order to eventually

visualize the mutation pattern, we further mapped the 269 positions to
ADRB2 and the corresponding structure (PDB ID code 2RH1).

GPCR Mutation Acquisition and Mapping. TCGA has over 10,000 samples from
33 cancer types including ACC, BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA,
GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, MESO, OV,
PAAD, PCPG, PRAD, READ, SARC, SKCM, STAD, TGCT, THCA, THYM, UCEC,
UCS, and UVM (SI Appendix, Table S4). Seven different mutation calling algo-
rithm results were combined by using theMC3 pipeline (72), and only proteins
whose expression levels were above a threshold of one FPKM in the RNA-seq
data were included. Mutations occurring within class A GPCRs were mapped
onto the GPCR alignment, for each cancer type within the TCGA, to identify
mutations occurring at identical positions across all GPCRs. Both synonymous
and nonsynonymous mutations were mapped in this way. Only mutations
occurring at the 269 high-coverage positions were considered for further anal-
ysis. In cases with multiple mutated isoforms of the same protein, we used the
sequence position of the primary isoform of the protein (as annotated by Uni-
prot). Frameshift, stop mutations (nonsense mutations), and INDELS (insertion
and/or deletion mutations) were beyond the scope of this analysis.

In Silico Simulation of GPCR Mutation Patterns.

1) We retrieved the nucleotide sequence of class A GPCRs from University of
California Santa Cruz (UCSC) Genome Browser (https://genome.ucsc.edu/)
using Human nucleotide RefSeq ID (starting with “NM_”), ensuring that
the annotated sequence matched the primary amino acid sequence listed
within Uniprot. From these sequences, for each GPCR, the codon triplets
corresponding to the 269 high-coverage amino acid alignment positions
were obtained. In this way, we calculated how frequently each of the 61
nonstop codons occurred at each “high-coverage” position.

2) The nucleotide substitution frequency across all proteins and all patients
for each cancer type was tabulated from TCGA database. For internal con-
sistency, INDELS and nonsense mutations were ignored in this calculation.
This process resulted in a 4 × 4 nucleotide substitution frequency matrix
for each cancer type.

3) Using this nucleotide frequency matrix, we computed the expected codon
substitution rate for all 61 nonstop codons. Specifically, given the number
of observed GPCR mutations, N, in each cancer type, we calculated how
often we would expect to see each nucleotide substitution, by multiplying
Mrate by N to obtainMcount. For each nucleotide substitution pair, from i to
j, in Mcount, we simulated Mcount (i,j) number of mutations by selecting a
random codon position in a random codon in a random protein where
the original position was nucleotide i and subsequently substituted that
position to nucleotide j. This was repeated for all i, j pairs to quantify

Fig. 6. Summary of mutation profiles at each position. The axes show fold change of measured parameters EC50, Emax, and surface expression (SE), rela-
tive to WT (Mut/WT), annotating WT = 1, GOF > 1, and LOF < 1 on the graphs. Values that are closer to the origin represent more severe loss of function
(LOF), while values toward the outermost ring indicate more gain of function (GOF).
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how frequently each codon was mutated and how often each codon tran-
sitioned to the other 61 codons, resulting in the codon × codon mutation
frequency Ccount. The sum across the rows of Ccount provides an array, P, of
the expectedmutation count for each original codon for that cancer type.

4) The expected mutation count at each position is therefore the sum of the
normalized mutation count for each codon at that position. If we expect
100 mutations at codon Ci, we normalized this value by dividing by the
total number of occurrences of Ci across all GPCRs, resulting in an array of
the number of mutations per codon occurrence, Crate.

Code is available at https://github.com/LichtargeLab.

Scoring Protein Position Importance and Predicting the Impact of Mutations.
We used the Evolutionary Trace Webserver (http://lichtargelab.org/software/
traceview) to quantify the importance of each sequence position. Using the
input sequence of each GPCR in FASTA format, ET performs a blast search of
homologous proteins, removes redundant and noisy sequences, aligns protein
sequences, and then computes a score for each position quantifying the corre-
lation of changes in genotype to those in phenotype. For this analysis, we
used the default parameters available on the webserver.

To quantify the predicted impact a mutation would have on protein func-
tion, we used EA. EA is a first-principles–based equation that calculates muta-
tion impact by multiplying the evolutionary importance of the sequence
position (ET) by substitution log odds which are measurements for the magni-
tude of the substitution (19). Mutations are scored from 0, no impact, to 100,
highly impactful on protein function. This technique is purely sequence based,
utilizing evolutionary patterns and data that can further incorporate second-
ary structure for improved prediction.

Enrichment of Analysis of EA, ET, and Structural Positions and Motifs. Enrich-
ments of EA and ET scores were determined using a Mann–Whitney test to
measure the level of distribution shift against mutations from a healthy popu-
lation. Explicitly, each mutation’s EA score or ET score was appended to an
array. This array distribution was then compared against the null set. In the
case of EA, the null set consisted of EA scores for class A GPCR variants in a
healthy population (1000 Genome Project). The null set for ETwas all 269 posi-
tions. To identify proximal residues (8 Å) to the GPCR functional motifs, the
three-dimensional molecular structure of the β2-adrenergic receptor (gene
name B2AR, PDB ID code 2RH1) was used to measure interresidue distance
from atomic x, y, z coordinates.

Enrichment of a Single G Protein Signaling Pathway. To measure whether
GPCR mutations preferentially occurred within GPCRs which signal through a
specific G protein, we determined the primary G protein for each GPCR as
reported in GPCRdb (https://gpcrdb.org) (34). For this analysis, we have
ignored olfactory receptors, as their signaling pathways in the absence of Golf

are not fully understood. Using these data, we were able to determine how
many class A GPCRs signaled through each of the primary G proteins.

Cell Lines and Growth Conditions. FreeStyle 293-F cells (Gibco) were pur-
chased from Thermo Fisher andmaintained in FreeStyle media (Gibco) supple-
mented with 2% fetal bovine serum (FBS) (Sigma). The HTLA cell line, which is
a HEK293 line stably expressing a tetracycline transactivator (tTA)-dependent
luciferase reporter and βarrestin2 fused to a TEV protease, was a gift from
Bryan Roth, University of North Carolina, Chapel Hill, NC. HTLA cells were
maintained in Dulbecco’s modified Eagle’s medium (DMEM; Corning) supple-
mented with 10% FBS, 2 μg/mL puromycin, and 100 μg/mL hygromycin B. For
Tango assays, HTLA cells were seeded in media without antibiotics. All cells
were grown in a 37 °C humidified incubator with 5% CO2.

DNA Constructs. Tango constructs containing human GRPR, HCRTR2, DRD2, or
MTNR1A with an N-terminal hemaglutinin signal sequence (73) (HAss) fol-
lowed by a FLAG tag, and C-terminally fused to the vasopressin 2 receptor tail
and TEV protease cleavage site followed by tTA in a pCDNA3.1 backbone (37),
were obtained from Addgene (a gift from Bryan Roth; Addgene plasmids
66394, 66399, 66269, and 66443). Mutants were constructed from Tango con-
structs by site-directed mutagenesis using the Quickchange method. For Ca2+

mobilization assays, WT and mutant GPCRs, along with the N-terminal HAss
and FLAG tag, were PCR amplified from Tango constructs, adding a stop
codon, and cloned into pCDNA3.1. GPCR-containing open reading frames
were confirmed in all constructs by Sanger sequencing. Empty pCDNA3.1 was
used as the empty vector (EV) control for both Tango and Ca2+ mobilization
assays. Chimeric G protein Gαqo consisting of mouse Gαq with the last five
amino acids swapped with those from Gαo and an HA tag replacing Gαq resi-
dues 125 to 130, allowing Gi/o coupled receptors to engage the Gq pathway

(36), was a gift from Bruce Conklin, University of California, San Francisco, CA,
andwas subcloned into pCDNA3.1.

Ligands. Dopamine hydrochloride was purchased from Sigma, and freshly pre-
pared immediately before use. The peptides Bombesin and Orexin-A were
from Cayman Chemical, and stock solutions were prepared in water and
stored at �80 °C. Melatonin was purchased from Cayman Chemical or Tocris
Bioscience, and stock solutions were prepared in dimethyl sulfoxide (DMSO);
experimental samples contained a final concentration of 0.1%DMSO or less.

Ca2+ Mobilization Assay for G Protein Activation. Black clear-bottom poly-D-
Lysine–coated 96-well plates (Corning BioCoat) were seeded with 40,000 HEK
293-F cells per well. The next day, cells were transfected with 50 ng per well
pCDNA3.1-HAss-FLAG-GPCR constructs using Lipofectamine 2000 (Invitrogen)
according to the manufacturer’s instructions. For DRD2 and MTNR1A, cells
were cotransfected with 150 ng of chimeric Gαqo. Approximately 38 h to 46
h posttransfection, Ca2+ mobilization assays were performed essentially as
described (74). Cells were washed once with KRH buffer (120 mM NaCl, 4.7
mM KCl, 2.2 mMCaCl2, 10 mMHepes, 1.2 mM KH2PO4, 1.2 mMMgSO4, 1.8 g/L
glucose, pH 7.4, supplemented with 1 mM probenecid), and loaded with 2.7
μM Fluo-4 AM (Invitrogen) in KRH with 0.01% Pluronic F-127 (Biotium) for 1
h at room temperature in the dark. Cells were washed once with KRH; then
120 μL of KRHwas added to each well. The assay plate and drug plate contain-
ing 4× drug dilutions in KRH were preincubated for 10 min in a plate reader
(Flex Station 3, Molecular Devices) preheated to 37 °C. Measurements were
acquired every ∼1.6 s (Ex/Em 488/520); 40 μL of 4× drug were added after 20 s.
For DRD2, incubations and dopamine dilutions were done in KRH supple-
mentedwith 1 mM ascorbic acid.

Tango Assay for β-Arrestin Recruitment. Tango assays were performed as
described (37), with modifications. Clear-bottom or opaque poly-D-Lysine–-
coated 96-well plates (Corning BioCoat) were seeded with 35,000 to 40,000
HTLA cells per well. The next day, cells were transfected with 50 ng per well
(DRD2, GRPR, and HCRTR2) or 1 ng per well (MTNR1A) Tango constructs
(HAss-FLAG-GPCR-V2tail-TEV-tTA) using Lipofectamine 2000 (Invitrogen)
according to themanufacturer’s instructions. Approximately 24 h posttransfec-
tion, the media was changed to 100 μL of DMEM with 1% dialyzed FBS
(Omega Scientific), and, ∼42 h to 43 h posttransfection, 50 μL of 3× drug
diluted in the same media were added to each well. For DRD2, dopamine was
prepared in media with 1 mM ascorbic acid. Approximately 20 h after drug
addition, media was removed, and 80 μL of BrightGlo luciferase substrate
(Promega) diluted 10-fold in 10 mM Hepes pH 7.3 were added to each well,
and luminescence (all wavelengths) was read 3 min to 5 min later (Flex Station
3, Molecular Devices).

Functional Assay Data Analysis. All functional assays were performed with
three technical replicates for each condition, as well as WT controls on the
same plate on at least three separate days. For Ca2+ assays, data from each
well were baseline corrected by subtracting the average of the first 12 points
(∼18 s to 19 s), and the maximum of baseline-corrected data between ∼20 and
60 s was extracted, with custom scripts in Mathematica v.12 (Wolfram). Maxi-
mum responses from triplicate wells were fit with sigmoidal dose–response
curves using Prism v.5 (GraphPad). For Tango assays, raw luminescence values
were fit with sigmoidal dose–response curves. Wells with vehicle only (no
drug) were included in the curve fits by assigning them a drug concentration
of 10�13 M (three to four orders of magnitude lower than the lowest drug
concentration), except for MTNR1A, where 10�14 was used. Log (EC50) values
obtained from the curve fits are reported; for mutants with no response to
ligand or a nonconverging curve fit, no EC50 values could be determined. Effi-
cacy was calculated as the top plateau minus the bottom plateau of the curve
fit and divided by the corresponding WT control from the same plate. For
mutants with no response to ligand or a nonconverging curve fit, technical
replicates were averaged, and the efficacy was calculated as the maximum
drug-induced response minus the no-drug value, and divided by WT. For dis-
play only, time courses and dose–response curves from multiple plates are
shown together by normalizing as follows: Time courses are shown normal-
ized to the maximum of the WT control from the same plate, and
dose–response curves are shown normalized to the top plateau of the curve
fit forWT from the same plate.

Cell ELISA for Surface Expression. The ELISA procedure was adapted from
Sung et al. (73). HEK293F cells in 96-well poly-D-Lysine–coated plates were
transfected with 50 ng per well Ca2+ assay constructs, and fixed ∼40 h to 45
h later. HTLA cells transfected with 50 ng per well Tango constructs were
changed to DMEM+1% dialyzed FBS media ∼24 h later and fixed 1 d to 2 d
after that. Cells were fixed with 2% paraformaldehyde in phosphate-buffered
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saline (PBS) for 10 min, then washed with PBS and blocked in PBSA (PBS with
1% bovine serum albumin) for 15 min, followed by incubation with FLAG anti-
body (rabbit monoclonal, Cell Signaling #14793) diluted 1:1,000 in PBSA for 1 h.
Cells were washed and incubated with horseradish peroxidase-conjugated goat
anti-rabbit secondary antibody (Jackson ImmunoResearch) 1:1,000 (0.8 μg/mL
antibody) in PBSA for 30 min. Cells were washed again, 50 μL of SuperSignal
Pico substrate (Thermo) were added to each well, and luminescence (all
wavelengths) was read immediately. ELISAs were performed with five or six
technical replicates for each mutant, along with WT and EV controls on the
same plate. Replicates were averaged, and relative surface expression values
were calculated by subtracting the EV value and then dividing by WT from the
same plate. In some cases, negative values were obtained—these were set
at zero.

Immunofluorescence Microscopy and Image Processing. HTLA cells on poly-D-
lysine–coated coverslips in 24-well plates were transfected with 400 ng of
Tango assay constructs, along with 200 ng of pCDNA3.1-EGFP to identify
transfected cells. Two days posttransfection, cells were fixed, blocked, and
labeled with FLAG antibody in nonpermeabilizing conditions as described
above for ELISAs. Coverslips were then incubated with Alexa-555–conjugated
donkey anti-rabbit secondary antibody (Invitrogen), 2 μg/mL, in PBSA for 30

min, washed, and mounted with Prolong Diamond (Invitrogen). For analysis
of total protein in permeabilizing conditions, PBSA was supplemented with
1% Triton X-100 for blocking and antibody steps.

Cells were imaged with a Zeiss LSM-710 confocal microscope using a 63×
oil immersion objective (Zeiss, Plan-Apochromat 63×/1.4 Oil DIC M27) with
Immersol 518F immersion oil (Zeiss). Single optical sections in Alexa 555 and
EGFP channels were acquired sequentially with 561- and 488-nm lasers, with
laser power and gain adjusted to avoid saturated pixels. For each GPCR, WT
and mutant constructs were imaged with identical settings. Three images
were acquired for each coverslip, total intensity in the Alexa 555 channel was
measured for each image using Mathematica (Wolfram), and values for
mutants were normalized by dividing by the values for their respective WT
control.

Data Availability. All study data are included in the article and/or SI Appendix
and our code is publicly accessible on GitHub (https://github.com/
LichtargeLab/Recurrent-High-Impact-Mutations-on-Class-A-GPCRs.git).
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