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Abstract: Measuring systemic chronic inflammatory markers in the blood may be one way of
understanding the role of inflammation in breast cancer risk, and might provide an intermediate
outcome marker in prevention studies. Here, we present the results of a systematic review of
prospective epidemiologic studies that examined associations between systemic inflammatory
biomarkers measured in blood and breast cancer risk. From 1 January 2014 to 20 April 2020,
we identified 18 unique studies (from 16 publications) that examined the association of systemic
inflammatory biomarkers measured in blood with breast cancer risk using prospectively collected
epidemiologic data. Only one marker, C-reactive protein, was studied extensively (measured in
13 of the 16 publications), and had some evidence of a positive association with breast cancer risk.
Evidence associating other inflammatory biomarkers and more comprehensive panels of markers
with the development of breast cancer is limited. Future prospective evidence from expanded
panels of systemic blood inflammatory biomarkers is needed to establish strong and independent
links with breast cancer risk, along with mechanistic studies to understand inflammatory pathways
and demonstrate how breast tissue responds to chronic inflammation. This knowledge could
ultimately support the development and evaluation of mechanistically driven interventions to reduce
inflammation and prevent breast cancer.

Keywords: breast cancer risk; blood inflammatory biomarkers; c-reactive protein; intervention
research; prospective epidemiologic studies; systematic review

1. Introduction

The relationship between chronic inflammation and cancer is complex and bidirectional. In this
review, we focus on the role of inflammation in the development of breast cancer. The mechanisms
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through which chronic inflammation might lead to cancer have been detailed elsewhere [1,2] and
include DNA damage and genomic, epigenomic, and cellular alterations and interactions [1,2]. Regular
use of aspirin and other non-steroidal anti-inflammatory drugs (NSAIDs) has been consistently
associated with reduced risk of cancers, including breast cancer [3], and reduced breast cancer risk in
high-risk women with BRCA1 and BRCA2 mutations [4]. These observations provide indirect evidence
of a potential link between inflammation and risk of developing breast cancer.

Chronic inflammation can occur in response to lifestyle and environmental factors that are
associated with breast cancer. For example, weight gain in adulthood and being overweight or obese
after menopause are associated with both chronic inflammation and breast cancer risk [5–7]. There
is also some evidence linking other measures related to metabolic disease, including waist-to-hip
ratio, insulin resistance, and lipids, with risk of postmenopausal breast cancer [8,9]. Other exposures
associated with breast cancer risk, including environmental chemical exposures and selected dietary
content and patterns, might also increase chronic inflammation [10], although evidence is limited by
the fact that many of these exposures are difficult to measure in large epidemiologic studies. It is also
hypothesized that one pathway linking stress to increased cancer risk is through inducing a chronic
inflammatory state [11].

Measuring systemic chronic inflammatory markers in the blood may be one way of understanding
the role of inflammation in breast cancer risk and might provide intermediate outcome markers in
prevention studies. Inflammatory markers, such as C-reactive protein (CRP), interleukin-6 (IL-6), and
tumor necrosis factor-α (TNF- α) are shown to markedly increase in response to infection and tissue
damage, as well as in active state of disease [12]. Variations within the reference range also predict
the onset of health events, such as cardiovascular disease [13] and disability [14,15] in individuals
without an obvious inflammatory stimulus [12]. Both cancer risk and plasma levels of inflammatory
markers increase with age [16–18], but it is unclear whether variations in levels of different circulating
inflammatory markers are associated with increased risk of cancer [12]. Rodent studies provide direct
evidence that some environmental exposures and obesity increase inflammatory cellular influx to
the mammary gland, cytokine production, and morphological changes [19,20]. Here, we summarize
the current evidence from prospective epidemiologic studies on the association between systemic
inflammatory biomarkers measured in blood and breast cancer risk. We follow up this review with
a broader discussion of different opportunities for understanding the link between inflammatory
processes and the development of breast cancer, and the potential for chronic inflammation measures
to be used as intermediate outcome markers in intervention studies.

2. Materials and Methods

We conducted a systematic review of prospective epidemiologic studies investigating
the association between circulating inflammatory biomarkers measured in blood and breast cancer
risk. We performed a search of the PubMed database to identify studies published from 1 January
2014 to 20 April 2020. We selected these dates because three meta-analyses were published in 2015,
which searched the literature up until December 2014 [21,22] or February 2015 [23], and so we
wanted to compare findings from these reviews with more recent studies that used contemporary
(broad-base) biomarker measurement methods, since these have changed substantially over time [24].
We restricted our search to studies that were conducted in humans, published in the English language,
and prospectively collected blood samples prior to breast cancer incidence. We used the following mesh
terms in our literature search: “breast cancer” AND “inflammation” OR “inflammatory biomarker”
OR “blood biomarker” OR “fibrinogen” OR “C-reactive protein” OR “adiponectin”. Our initial search
of the PubMed database returned 1,465 publications for further screening. Two authors independently
reviewed titles and abstracts, which led to the identification of 30 publications for full-text review.
Fourteen publications were subsequently excluded due to outcome (n = 5 assessed breast cancer
survival rather than incidence), exposure ascertainment (n = 1 inflammatory biomarker measured in
urine rather than blood), or study design (n = 8 case-control study). Case-control studies were excluded
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because temporality cannot be clearly established for biomarkers that may be affected by the disease
process. The remaining 16 publications were included in our review. We searched the reference lists of
the included publications for additional eligible publications, but no additional studies were identified.
We extracted data on study population, study design, sample size, exposure assessment, confounding
assessment, and relevant effect estimates, and the corresponding 95% confidence intervals (CIs)
from the included publications. We did not conduct a quantitative meta-analysis because there was
substantial heterogeneity across studies in terms of which systemic blood biomarkers were evaluated.

3. Results

We identified 18 unique studies from 16 publications (one publication included results from
a nested case-control study, prospective cohort study, and a meta-analysis [21]) that examined
the association of systemic inflammatory biomarkers measured in blood with breast cancer risk
using prospectively collected epidemiologic data [21–23,25–37]. This included six nested case-control
studies [21,25,27,29,30,32], nine prospective cohort studies [21,26,28,31,33–37], and three meta-analyses
published in 2015 [21–23]. Our review included only two individual studies [30,36] that were in
the previous meta-analyses [21–23]. The individual studies in this review (excluding meta-analyses)
were conducted in eleven unique cohorts in the United States, Europe (France, Sweden, Norway,
Denmark, and Italy), and China (refer to Table 1 for further details on study population, sample size, and
study design). CRP, a protein produced by the liver in response to systemic inflammation, was measured
in 12 of the 15 new studies [21,25,26,28,30–32,34–37], and was the focus of all three meta-analyses [21–23].
Eight of the 12 new studies used a high-sensitivity measure of CRP [21,26,28,31,34–36], which captures
lower levels of circulating CRP compared to a standard CRP test, while the other four studies used
a standard CRP test [25,30,32,37]. Two of the three studies that did not consider CRP evaluated
various other individual inflammatory blood biomarkers, including pro-inflammatory cytokines (e.g.,
TNF-α, IL-1β, IL-6), markers of oxidative stress (e.g., ox-LDL), and factors associated with coagulation
(e.g., fibrinogen) [29,33]; the third study evaluated a panel of 28 inflammatory-related proteins (10
chemokines, 12 cytokines, and six growth factors) [27].
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Table 1. Studies of inflammatory biomarkers measured in blood and breast cancer risk, published January 2014 to April 2020 in PubMed.

Unique
Study #

Citation
# Author, Year PMID Population, Sample Size Study Design Biomarkers

1 25 Agnoli, 2017 28983080
351 cases and 351 controls; ages 35–69 years at
baseline (1992–1997); 14.9 years of follow-up;

Italy

Nested case-control in
EPIC-Varese cohort

CRP, TNF-α, IL-6, leptin,
adiponectin

2 26 Allin, 2016 27194008
822 cases (n = 44,715); ages 48–67 at baseline
(2003–2012); median follow-up of 4.8 years;

Denmark

Population-based
prospective cohort

hsCRP, fibrinogen,
leukocyte count,

inflammatory score

3 27 Berger, 2018 30018397
167 cases and 249 controls; mean age of 52.8
years at baseline (1990–2008); 15.5 years of

follow-up; Italy and Sweden

Nested case-control in
EPIC-Italy and NSHDS Inflammatory score

4 28 Busch, 2018 29614476

394/4,328 invasive and 100/1049 in situ cases (n
= 14,375/130,844) for CRP/WBC count; 50–79
years at baseline (1993–1998); 18.6 years of

follow-up; USA

Prospective cohort study in
the Women’s Health

Initiative
hsCRP, WBC count

5 23 Chan, 2015 26224798 12 prospective studies involving a total of
3,522 cases (n = 69,610); published 2005–2015 Meta-analysis CRP

6 29 Dias, 2016 27391324
446 cases and 885 controls; ages 55–74 years at

baseline (1991–1996); followed through
December, 2010; Sweden

Nested case-control in
Malmö Diet and Cancer

cohort

Ox-LDL, IL-1β, IL-6, IL-8,
TNF-α, WBC count,
lymphocyte count,
neutrophil count

7 30 Dossus, 2014 24504436

549 cases and 1,040 controls; mean age of
57.7/57.4 years (cases/controls) at baseline
(1995–1999); followed through July, 2005;

France

Nested case-control in
French E3N cohort CRP

8 31 Frydenberg,
2016 26740213

192 cases (n = 8,130); mean age of 49.8 years at
baseline (1994–2008); 14.6 years of follow-up;

Norway

EBBA-Life sub-study in
the Tromsø

population-based
prospective cohort

hsCRP and WBC count

9 32 Gunter, 2015 26185195
875 cases and 839 controls; ages 57–69 years at
baseline (1993–1998); followed through June,

2004; USA

Nested case-control in
Women’s Health Initiative

cohort

CRP, leptin, adiponectin,
resistin, IL-6, TNF-α, PAI-1,

HGF
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Table 1. Cont.

Unique
Study #

Citation
# Author, Year PMID Population, Sample Size Study Design Biomarkers

10 22 Guo, 2015 26001129
13 prospective studies involving a total of

4,724 cases
(n = 403,836); published 2005–2014

Meta-analysis CRP

11 33 Kabat, 2016 26317383
275 cases (n = 5,287); 50–79 years at baseline
(1993–1998); median follow-up of 11.4 years;

USA

Prospective cohort study in
the Women’s Health

Initiative

Fibrinogen, factor VII
antigen activity, factor VII

concentration

12 34 Nelson, 2017 28292922
1114 cases (n = 17,841); 50–79 years at baseline

(1993–1998); mean follow-up of 13.6 years;
USA

Prospective cohort study in
the Women’s Health

Initiative
hsCRP

13 35 Tobias, 2018 28641369
1497 cases (n = 27,071); mean age of 54.5 years
at baseline (1992–1995); median follow-up of

19 years; USA

Prospective cohort study in
the Women’s Health Study

hsCRP, fibrinogen, GlycA,
sICAM-1

14 21 Wang, 2015 25994740
943 cases and 1,221 controls; ages 43–69 years
at baseline (1989–1990); followed through June,

1998; USA

Nested case-control in
the Nurses’ Health Study hsCRP

15 21 Wang, 2015 25994740
1,919 cases (n = 27,900); mean age of 55.6/54.6
years (cases/non-cases) at baseline (1992–1995);

median follow-up of 19 years; USA

Prospective cohort study in
the Women’s Health Study hsCRP

16 21 Wang, 2015 25994740
11 prospective studies involving a total of

5,371 cases
(n = 73,525); published 2006–2015

Meta-analysis CRP

17 36 Wang, 2015 25490990
87 cases (n = 19,437); mean age of 49.2 years at

baseline (2006–2007); followed through
December, 2011; China

Prospective cohort study in
the Chinese Kailuan Female

Cohort
hsCRP

18 37 Wulaningsih,
2015 26130675

6606 cases (n = 155,179); mean age of 50.3/46.3
years (cases/non-cases) at baseline (1985–1996);

mean follow-up of 18.3 years; Sweden

Prospective cohort study in
the Apolipoprotein

Mortality Risk Study

CRP, WBC count, albumin,
haptoglobin

Notes: EPIC = European Prospective Investigation into Cancer and nutrition; NSHDS = Northern Sweden Health and Disease Study. Unique study # distinguishes the 18 different studies
from the 16 publications identified in this review and can be used to cross-reference with Table 1. Citation # corresponds to the reference number of each publication in this review and can
be cross-referenced with the Reference list at the end of the paper.
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Table 2 provides a summary of findings for the association of CRP with breast cancer risk from
the three meta-analyses and 12 unique studies, subdivided into the eight different cohorts assessed
(three studies used data from the Women’s Health Initiative (WHI) but considered different stratification
groups [28,32,34], and two studies used data from the Women’s Health Study (WHS) [21,35]). Each
meta-analysis included a common core of prospective studies [30,36,38–44], and all found a statistically
significant positive association between circulating CRP levels and breast cancer risk (Table 2). These
estimates ranged from 7% per doubling of CRP concentration (relative risk (RR): 1.07, 95% confidence
interval (CI): 1.02, 1.12) [23] to 26% comparing the highest to lowest category of CRP concentration (RR
1.26, 95% CI 1.07, 1.49) [21]. The meta-analysis by Chan et al. found that the positive association with
circulating CRP concentration was similar when focused only on postmenopausal breast cancer risk (RR
1.06, 95% CI: 1.01, 1.11); numbers were too small to assess premenopausal breast cancer separately [23].
Chan et al. also reported that the positive association between circulating CRP and breast cancer
risk was observed in studies that examined reverse causation by excluding cases diagnosed in early
years of follow-up [23]. All three meta-analyses found evidence for heterogeneity between studies
(I2 = 45–47%) [21–23]. The level of control for confounders was identified as a possible source of
heterogeneity, as studies that did not adjust for hormone replacement therapy (HRT) use, physical
activity, or alcohol use reported, on average, stronger associations than studies that adjusted for these
factors [23]. Geographic region, menopausal status, CRP markers, and case diagnosis method were
identified as other possible sources of heterogeneity [22]. There was also some evidence for publication
or small study bias in the meta-analyses (Egger’s test p = 0.08–0.17) [22,23].

Three of the 12 new studies found an overall statistically significant positive association between
CRP and overall breast cancer risk, including a population-based cohort study of 44,715 women
(baseline age range = 48–67 years) in Denmark (highest versus lowest tertile: RR 1.30, 95% CI: 1.07,
1.57) [26], a population-based cohort study of 8,130 women (mean baseline age = 49.8 years) in Norway
(highest versus lowest tertile: hazard ratio (HR) 1.53, 95% CI: 1.03, 2.28) [31], and a cohort study of 19,437
women (mean baseline age = 49.2 years) in China (CRP > 3 versus < 1 mg/L concentration: HR 1.74,
95 CI: 1.01, 2.97) [36]. All three of these studies used a high-sensitivity measure of CRP and adjusted
for age, BMI, and smoking status [26,31,36]; additional covariates, including alcohol consumption,
physical activity, oral contraceptive use, HRT use, diabetes, and marital status were adjusted for in
some, but not all, of these estimates. An additional three studies reported point estimates that were
not statistically significant, but >1.10 (HR/odds ratio (OR) ranged from 1.13–1.27) [21,30,32]. Eight of
the twelve studies considered associations of CRP with breast cancer risk by different stratifying factors,
including menopausal status [25,31,35–37], body size [30,34,35], and use of HRT [31,32,35]. Findings
were inconsistent across the five studies that examined the association of CRP with breast cancer risk
stratified by menopausal status [25,31,35–37]. Two studies found a statistically significant positive
association between CRP and breast cancer risk for postmenopausal women (highest versus lowest
tertile: HR 1.87, 95% CI: 1.17, 2.98 [31] and RR 2.42, 95% CI: 1.17, 5.00 [25]), but not for premenopausal
women (HR 0.89, 95% CI: 0.37, 2.15 [31] and RR 0.74, 95% CI: 0.40, 1.37 [25], respectively). In contrast,
two studies found a statistically significant positive association between CRP and breast cancer risk
for premenopausal women (CRP > 3 versus < 1 mg/L concentration and dichotomized at 10 mg/L
concentration, respectively: HR 2.76, 95% CI: 1.18, 6.48 [36] and HR 1.18, 95% CI: 1.08, 1.30 [37]), but
not for postmenopausal women (HR 1.34, 95% CI: 0.68, 2.64 [36] and HR 1.00, 95% CI: 0.93, 1.07 [37],
respectively). One study found no association for either postmenopausal (per 1 standard deviation
(SD) increase in concentration: HR 1.02, 95% CI: 0.93, 1.12) or premenopausal (HR 0.96, 95% CI: 0.84,
1.10) women [35]. Three studies were stratified by body mass index (BMI), but findings were again
inconsistent [30,34,35]. For example, Nelson et al. found a statistically significant positive association
for postmenopausal women with a BMI <25 kg/m2 (per 1 SD increase in natural log concentration: HR
1.17, 95% CI: 1.03, 1.33), but not for postmenopausal women with a BMI ≥ 25 kg/m2 (HRs ranged from
0.94–1.04 for postmenopausal women in the highest three BMI categories) [34]. In contrast, Dossus et al.
found a statistically significant positive association for postmenopausal women with a BMI of≥25 kg/m2
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(per natural log increase in concentration: OR 1.52, 95% CI: 1.16, 2.00), but not for postmenopausal
women with a BMI < 25 kg/m2 (OR 1.02, 95% CI: 0.86, 1.21) [30]. Dossus et al. also found a statistically
significant positive association between CRP and breast cancer risk for postmenopausal women with
a waist circumference of ≥88 cm (per natural log increase in concentration: OR 1.74, 95% CI: 1.13,
2.66), but not for postmenopausal women with a waist circumference of <88 cm (OR 1.08, 95% CI:
0.93, 1.26) [30]; this was the only study to stratify by waist circumference. Three studies stratified
by HRT use [31,32,35], two of which suggest an elevated risk of postmenopausal breast cancer for
non-users of HRT with high CRP levels (highest versus lowest tertile and highest versus lowest quartile,
respectively: HR 2.08, 95% CI: 1.16, 3.76 [31] and HR 1.63, 95% CI: 0.95, 2.80 [32]), but not for users of
HRT (HR 1.32, 95% CI: 0.57, 3.05 [31] and HR 0.90, 95% CI: 0.53, 1.53 [32]). The third study found no
association between CRP and breast cancer risk for non-users (per 1 SD increase in concentration: HR
1.02, 95% CI: 0.92, 1.14), past users (HR 0.85, 95% CI: 0.67, 1.08), or current (HR 1.00, 95% CI: 0.90, 1.11)
users of HRT, but these associations were not stratified by menopausal status [35].

Table 3 summarizes the findings from studies that examined associations of other, non-CRP,
inflammatory blood biomarkers in association with breast cancer risk. This includes studies that
assessed blood levels of pro-inflammatory biomarkers, including factor VII antigen activity [33],
factor VII concentration [33], fibrinogen [26,33,35], GlycA (circulating N-acetyl methyl groups) [35],
haptoglobin [37], hepatocyte growth factor (HGF) [32], interleukin (IL)-1β [29], IL-6 [25,29,32],
IL-8 [29], leptin [25,32], leukocyte count [26], lymphocyte count [29], neutrophil count [29], oxidized
(OX)-LDL [29], plasminogen activator inhibitor (PAI)-1 [32], resistin [32], soluble intercellular cell
adhesion molecule (sICAM)-1 [35], TNF-α [25,29,32], and white blood cell (WBC) count [28,29,31,37],
as well as anti-inflammatory biomarkers, including adiponectin [25,32] and albumin [37]. These
biomarkers have not been consistently considered across the studies, and each biomarker was only
analyzed in one or up to four of the publications included in this review. None of the three meta-analyses
included in this review considered systemic blood biomarkers of inflammation other than CRP.

A statistically significant positive association was found between fibrinogen and breast cancer
risk in the WHS cohort (highest versus lowest quintile: HR 1.25, 95% CI: 1.03, 1.51) [35], but not in
a population-based cohort in Denmark (highest versus lowest tertile: HR 1.05, 95% CI: 0.87, 1.27) [26],
nor in the WHI cohort, which included only postmenopausal women (≥324.5 versus <274.5 mg/dL at
baseline: HR 0.92, 95% CI: 0.67, 1.26) [33]. When the WHS cohort was stratified by menopausal status,
the statistically significant positive association between fibrinogen and breast cancer risk was found
for premenopausal women (per 1 SD increase in concentration: HR 1.19, 95% CI: 1.03, 1.38), but not
for postmenopausal women (HR 1.07, 95% CI: 0.98, 1.18) [35]. When the WHS cohort was stratified
by BMI, a statistically significant positive association between fibrinogen and breast cancer risk was
found for women with a BMI < 25 kg/m2 (per 1 SD increase in concentration: HR 1.12, 95% CI: 1.01,
1.24), but not for women with a BMI ≥ 25 kg/m2 (HR 1.03, 95% CI: 0.94, 1.14) [35].
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Table 2. Association of C-reactive protein (CRP) measured in blood with breast cancer risk from studies published January 2014 to April 2020 in PubMed.

Unique
Study #

[Citation #] Author, Year Biomarker Analytic Sample Cases Estimate
Units of

Comparison Covariates

Meta-analyses
5 [23] Chan, 2015 CRP all women in study 3522 RR 1.07, 95% CI: 1.02, 1.12 per doubling of

concentration
varied by study

CRP postmenopausal women 2516 RR 1.06, 95% CI: 1.01, 1.11

10 [22] Guo, 2015 CRP all women in study 4724 OR 1.14, 95% CI: 1.04, 1.25
per natural log

increase in
concentration

varied by study

16 [21] Wang, 2015 CRP all women in study 5371 RR 1.26, 95% CI: 1.07, 1.49 highest vs. lowest
category varied by study

Women’s Health Initiative
4 [28] Busch, 2018 hsCRP postmenopausal women 394 HR 1.03, 95% CI: 0.83, 1.27 dichotomized at 3

mg/L
age, race/ethnicity, cohort enrollment,

age at menarche, age at menopause, HRT
use, breastfeeding, BMI, smoking status,
caregiving, negative life events, physical

activity, sleep quality
hsCRP postmenopausal, in situ cancer 100 HR 1.02, 95% CI: 0.67, 1.55

9 [32] Gunter, 2015 CRP postmenopausal women 875 HR 1.24, 95% CI: 0.86, 1.80 highest vs. lowest
quartile

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

CRP postmenopausal, HRT non-users 412 HR 1.63, 95% CI: 0.95, 2.80

CRP postmenopausal, HRT users 463 HR 0.90, 95% CI: 0.53, 1.53

12 [34] Nelson, 2017 hsCRP postmenopausal women 1114 HR 1.05, 95% CI: 0.98, 1.12
per 1 SD increase

in natural log
concentration

BMI, race/ethnicity, diabetes,
hypertension, smoking, HRT use

hsCRP postmenopausal, BMI < 25 kg/m2 na HR 1.17, 95% CI: 1.03, 1.33
hsCRP postmenopausal, BMI 25–30 kg/m2 na HR 1.04, 95% CI: 0.93, 1.16
hsCRP postmenopausal, BMI 30–35 kg/m2 na HR 0.94, 95% CI: 0.82, 1.08
hsCRP postmenopausal, BMI >35 kg/m2 na HR 0.97, 95% CI: 0.81, 1.16

Women’s Health Study

13 [35] Tobias, 2018 hsCRP all women in study 1497 HR 0.84, 95% CI: 0.69, 1.04 highest vs. lowest
quintile

age, BMI, treatment allocation, family
history of BC, history of BBD,

race/ethnicity, menopausal status, HRT
use, age at menarche, parity, age at first

birth, OC use, mammography screening,
Alternative Healthy Eating Index 2010

score, physical activity, alcohol, smoking,
other measured inflammatory

biomarkers

hsCRP postmenopausal women 859 HR 1.02, 95% CI: 0.93, 1.12

per 1 SD increase
in concentration

hsCRP premenopausal women 393 HR 0.96, 95% CI: 0.84, 1.10
hsCRP HRT non-users 682 HR 1.02, 95% CI: 0.92, 1.14
hsCRP HRT past users 134 HR 0.85, 95% CI: 0.67, 1.08
hsCRP HRT current users 679 HR 1.00, 95% CI: 0.90, 1.11
hsCRP women with BMI < 25 kg/m2 759 HR 1.02, 95% CI: 0.93, 1.12
hsCRP women with BMI ≥ 25 kg/m2 727 HR 0.95, 95% CI: 0.86, 1.06



Int. J. Environ. Res. Public Health 2020, 17, 5445 9 of 24

Table 2. Cont.

Unique
Study #

[Citation #] Author, Year Biomarker Analytic Sample Cases Estimate
Units of

Comparison Covariates

15 [21] Wang, 2015 hsCRP all women in study 1919 HR 0.89, 95% CI: 0.76, 1.06 highest vs. lowest
quintile

BMI, family history of BC, history of
BBD, age at menarche, parity, age at first
birth, alcohol, smoking, physical activity

Nurses’ Health Study

14 [21] Wang, 2015 hsCRP all women in study 943 RR 1.27, 95% CI: 0.93, 1.73 highest vs. lowest
quintile

BMI, family history of BC, history of
BBD, age at menarche, parity, age at first
birth, alcohol, smoking, physical activity

Women’s Health Study and Nurses’ Health Study

14-15 [21] Wang, 2015 hsCRP all women in study 2862 RR 1.04, 95% CI: 0.74, 1.46 highest vs. lowest
quintile

age, BMI, treatment allocation,
menopausal status, HRT use, family
history of BC, history of BBD, age at
menarche, parity, age at first birth,
alcohol, smoking, physical activity

Population-based cohort in Denmark

2 [26] Allin, 2016 hsCRP all women in study 822 RR 1.30, 95% CI: 1.07, 1.57 highest vs. lowest
tertile

age, BMI, physical activity, smoking,
alcohol, OC use, HRT use

Population-based cohort in Norway

8 [31] Frydenberg,
2016 hsCRP all women in study 192 HR 1.53, 95% CI: 1.03, 2.28

highest vs. lowest
tertile

age, BMI, number of children, smoking
hsCRP postmenopausal women 149 HR 1.87, 95% CI: 1.17, 2.98
hsCRP premenopausal women 43 HR 0.89, 95% CI: 0.37, 2.15
hsCRP
hsCRP

HRT non-users
HRT users

130
44

HR 1.69, 95% CI: 0.99, 2.78
HR 0.91, 95% CI: 0.42, 1.99

hsCRP postmenopausal HRT non-users 99 HR 2.08, 95% CI: 1.16, 3.76
hsCRP postmenopausal HRT users 37 HR 1.32, 95% CI: 0.57, 3.05

Chinese Kailuan Female Cohort
17 [36] Wang, 2015 hsCRP all women in study 87 HR 1.74, 95% CI: 1.01, 2.97

>3 vs. <1 mg/L age, BMI, smoking, alcohol, diabetes,
physical activity, marital statushsCRP postmenopausal women 57 HR 1.34, 95% CI: 0.68, 2.64

hsCRP premenopausal women 30 HR 2.76, 95% CI: 1.18, 6.48

Apolipoprotein Mortality Risk Study

18 [37] Wulaningsih,
2015 CRP all women in study 6606 HR 0.99, 95% CI: 0.92, 1.06 dichotomized at 10

mg/L

age, SES

postmenopausal women 5623 HR 1.00, 95% CI: 0.93, 1.07
premenopausal women 3379 HR 1.18, 95% CI: 1.08, 1.30
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Table 2. Cont.

Unique
Study #

[Citation #] Author, Year Biomarker Analytic Sample Cases Estimate
Units of

Comparison Covariates

Nested case-control in EPIC-Varese
1 [25] Agnoli, 2017 CRP all women in study 351 RR 1.15, 95% CI: 0.75, 1.76

highest vs. lowest
tertile

age, BMI, family history of BC, age at
menarche, parity, OC use, smoking

education, alcohol
CRP postmenopausal women 167 RR 2.42, 95% CI: 1.17, 5.00
CRP premenopausal women 180 RR 0.74, 95% CI: 0.40, 1.37

Nested case-control in French E3N
7 [30] Dossus, 2014 CRP postmenopausal women 549 OR 1.13, 95% CI: 0.98, 1.29

per natural log
increase in

concentration

age, menopausal status, year of blood
collection, study center, age at

menopause

CRP postmenopausal, BMI < 25 kg/m2 394 OR 1.02, 95% CI: 0.86, 1.21
CRP postmenopausal, BMI ≥ 25 kg/m2 156 OR 1.52, 95% CI: 1.16, 2.00
CRP postmenopausal, WC < 88 cm 482 OR 1.08, 95% CI: 0.93, 1.26
CRP postmenopausal, WC ≥ 88 cm 67 OR 1.74, 95% CI: 1.13, 2.66
CRP postmenopausal, HC < 97 cm 238 OR 1.14, 95% CI: 0.92, 1.42
CRP postmenopausal, HC ≥ 97 cm 311 OR 1.13, 95% CI: 0.94, 1.37
CRP postmenopausal, WHR < 0.80 383 OR 1.06, 95% CI: 0.89, 1.26
CRP postmenopausal, WHR ≥ 0.80 166 OR 1.28, 95% CI: 0.99, 1.65

Notes: BBD = benign breast disease; BC = breast cancer; BMI = body mass index; CRP = C-reactive protein; HC = hip circumference; HRT = hormone replacement therapy; hsCRP =
high-sensitivity CRP; na = not available; OC = oral contraceptive; SES = socioeconomic status; WC = waist circumference; WHR = waist-to-hip ratio. Unique study # distinguishes the 18
different studies from the 16 publications identified in this review and can be used to cross-reference with Table 1. Citation # corresponds to the reference number of each publication in this
review and can be cross-referenced with the Reference list at the end of the paper.

Table 3. Associations of other, non-C-reactive protein (CRP), inflammatory biomarkers measured in blood with breast cancer risk from studies published January 2014
to April 2020 in PubMed.

Unique
Study #

[Citation #]
Author, Year Study Analytic Sample Cases Units of Comparison Estimate Covariates

Adiponectin
1 [25] Agnoli, 2017

EPIC-Varese
all women in study 351 highest vs. lowest tertile RR 0.73, 95% CI: 0.48, 1.11 age, BMI, family history of BC, age at

menarche, parity, OC use, smoking,
alcohol, education

postmenopausal women 167 RR 0.37, 95% CI: 0.19, 0.72
premenopausal women 180 RR 1.11, 95% CI: 0.61, 2.03
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[Citation #]
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9 [32] Gunter, 2015 WHI postmenopausal women 875 highest vs. lowest quartile HR 0.76, 95% CI: 0.55, 1.06

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

Albumin

18 [37] Wulaningsih,
2015 AMRS

cohort
all women in study 6606

dichotomized at 40 g/L
HR 0.97, 95% CI: 0.91, 1.05 age, SES

postmenopausal women 5623 HR 0.95, 95% CI: 0.88, 1.03
premenopausal women 3379 HR 0.92, 95% CI: 0.83, 1.02

Factor VII antigen activity

11 [33] Kabat, 2016 WHI postmenopausal women 275 baseline ≥ 135.5 vs.
<110.5 mg/dL HR 1.12, 95% CI: 0.83, 1.52 age, BMI, education, ethnicity, treatment

allocation

Factor VII concentration

11 [33] Kabat, 2016 WHI postmenopausal women 275 baseline ≥ 135.5 vs.
<110.5 mg/dl HR 1.02, 95% CI: 0.75, 1.38 age, BMI, education, ethnicity, treatment

allocation

Fibrinogen

2 [26] Allin, 2016 Danish
cohort all women in study 822 highest vs. lowest tertile RR 1.05, 95% CI: 0.87, 1.27 age, BMI, physical activity, smoking,

alcohol, OC use, HRT use

11 [33] Kabat, 2016 WHI postmenopausal women,
baseline measure 275 ≥ 324.5 vs. <274.5 mg/dL HR 0.92, 95% CI: 0.67, 1.26 age, BMI, education, ethnicity, treatment

allocationpostmenopausal women,
average measure 260

average ≥ 316.6 vs.
<273.1 mg/dL

HR 0.86, 95% CI: 0.63, 1.18

postmenopausal women,
1-3 years measure 108 HR 0.80, 95% CI: 1.47, 1.34 *

postmenopausal women,
2-4 years measure 100 HR 0.94, 95% CI: 0.56, 1.60

postmenopausal women,
3-5 years measure 98 HR 1.14, 95% CI: 0.67, 1.95
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Study #

[Citation #]
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13 [35] Tobias, 2018 WHS all women in study 1497 highest vs. lowest quintile HR 1.25, 95% CI: 1.03, 1.51 age, BMI, treatment allocation, family
history of BC, history of BBD,

race/ethnicity, menopausal status, HRT
use, age at menarche, parity, age at first

birth, OC use, mammography screening,
Alternative Healthy Eating Index 2010

score, physical activity, alcohol, smoking,
other measured inflammatory

biomarkers

postmenopausal women 859

per 1 SD increase in
concentration

HR 1.07, 95% CI: 0.98, 1.18

premenopausal women 393 HR 1.19, 95% CI: 1.03, 1.38

HRT non-users 682 HR 1.07, 95% CI: 0.96, 1.20

HRT past users 134 HR 1.25, 95% CI: 0.97, 1.60
HRT current users 679 HR 1.05, 95% CI: 0.94, 1.16

women with BMI < 25 kg/m2 759 HR 1.12, 95% CI: 1.01, 1.24
women with BMI ≥ 25 kg/m2 727 HR 1.03, 95% CI: 0.94, 1.14

GlycA (circulating N-acetyl methyl groups)
13 [35] Tobias, 2018 WHS all women in study 1497 highest vs. lowest quintile HR 0.96, 95% CI: 0.79, 1.17 age, BMI, treatment allocation, family

history of BC, history of BBD,
race/ethnicity, menopausal status, HRT
use, age at menarche, parity, age at first

birth, OC use, mammography screening,
Alternative Healthy Eating Index 2010

score, physical activity, alcohol, smoking,
other measured inflammatory

biomarkers

postmenopausal women 859

per 1 SD increase in
concentration

HR 0.95, 95% CI: 0.87, 1.03
premenopausal women 393 HR 0.97, 95% CI: 0.85, 1.10

HRT non-users 682 HR 0.97, 95% CI: 0.88, 1.07
HRT past users 134 HR 0.87, 95% CI: 0.70, 1.07

HRT current users 679 HR 1.02, 95% CI: 0.92, 1.13
women with BMI < 25 kg/m2 759 HR 1.00, 95% CI: 0.91, 1.10
women with BMI ≥ 25 kg/m2 727 HR 0.96, 95% CI: 0.87, 1.06

Haptoglobin

18 [37] Wulaningsih,
2015

AMRS
cohort all women in study 4764

dichotomized at 1.4 g/L
HR 1.09, 95% CI: 1.00, 1.18 age, SES

postmenopausal women 4113 HR 1.09, 95% CI: 1.00, 1.19
premenopausal women 2514 HR 0.94, 95% CI: 0.83, 1.07

Hepatocyte growth factor

9 [32] Gunter, 2015 WHS postmenopausal women 874 highest vs. lowest quartile HR 1.20, 95% CI: 0.87, 1.65

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

Inflammatory
Score

2 [26] Allin, 2016 Danish
cohort all women in study 822 3 vs. 0 high inflammatory

markers RR 1.42, 95% CI: 1.11, 1.80 age, BMI, physical activity, smoking,
alcohol, OC use, HRT use
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[Citation #]
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3 [27] Berger, 2018 EPIC-Italy
and

NSHDS

all women in study 167
score difference in cases

and controls

β −1.72, 95% CI: −3.86, 0.42
age, study center, BMI, smoking, alcohol,
physical activity, education, menopausal

status, contraceptive use, age at
menarche, HRT use, parity

time to diagnosis ≤ 6 years 49 β −2.88, 95% CI: −5.47,
−0.29

time to diagnosis > 6 years 41 β −0.06, 95% CI: −2.86, 2.74
all women in study 167

PC1 difference in cases
and controls

β −1.00, 95% CI: −2.12, 0.12

time to diagnosis ≤ 6 years 49 β −1.55, 95% CI: −2.92,
−0.18

time to diagnosis > 6 years 41 β −0.09, 95% CI: −1.56, 1.38

Interleukin-1β

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest category vs. none OR 1.71, 95% CI: 1.05, 2.79

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Interleukin-6
1 [25] Agnoli, 2017 EPIC-Varese all women in study 351

highest vs. lowest tertile
RR 1.58, 95% CI: 0.89, 2.82 age, BMI, family history of BC, age at

menarche, parity, OC use, smoking,
alcohol, education

postmenopausal women 167 RR 1.53, 95% CI: 0.59, 3.96
premenopausal women 180 RR 1.89, 95% CI: 0.83, 4.28

9 [32] Gunter, 2015 WHI postmenopausal women 856 highest vs. lowest quartile HR 1.20, 95% CI: 0.85, 1.69

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest vs. lowest tertile OR 0.80, 95% CI: 0.56, 1.15

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Interleukin-8

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest vs. lowest tertile OR 1.09, 95% CI: 0.71, 1.66

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Leptin
1 [25] Agnoli, 2017 EPIC-Varese all women in study 351

highest vs. lowest tertile
RR 0.83, 95% CI: 0.51, 1.37 age, BMI, family history of BC, age at

menarche, parity, OC use, smoking,
alcohol, education

postmenopausal women 167 RR 1.74, 95% CI: 0.83, 3.63
premenopausal women 180 RR 0.43, 95% CI: 0.20, 0.89
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9 [32] Gunter, 2015 WHI postmenopausal women 874 highest vs. lowest quartile HR 1.39, 95% CI: 0.93, 2.09

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

Leukocyte
count

2 [26] Allin, 2016 Danish
cohort all women in study 822 highest vs. lowest tertile RR 1.33, 95% CI: 1.11, 1.58 age, BMI, physical activity, smoking,

alcohol, OC use, HRT use

Lymphocytecount

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest vs. lowest tertile OR 0.94, 95% CI: 0.68, 1.28

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Neutrophil
count

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest vs. lowest tertile OR 1.04, 95% CI: 0.74, 1.46

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Oxidized-LDL

6 [29] Dias, 2016 MDC
cohort postmenopausal women 446 highest vs. lowest tertile OR 0.63, 95% CI: 0.45, 0.89

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

Plasminogen activator inhibitor-1
9 [32] Gunter, 2015 WHI postmenopausal women 858

highest vs. lowest quartile
HR 1.33, 95% CI: 0.96, 1.86 age, BMI, ethnicity, alcohol, family

history of BC, parity, years of
menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

postmenopausal, HRT
non-users 403 HR 1.71, 95% CI: 1.02, 2.89

postmenopausal, HRT users 455 HR 1.17, 95% CI: 0.71, 1.93

Resistin

9 [32] Gunter, 2015 WHI postmenopausal women 875 highest vs. lowest quartile HR 0.93, 95% CI: 0.68, 1.27

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity
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Soluble intercellular cell adhesion molecule-1
13 [35] Tobias, 2018 WHS all women in study 1497 highest vs. lowest quintile HR 0.79, 95% CI: 0.66, 0.94 age, BMI, treatment allocation, family

history of BC, history of BBD,
race/ethnicity, menopausal status, HRT
use, age at menarche, parity, age at first

birth, OC use, mammography screening,
Alternative Healthy Eating Index 2010

score, physical activity, alcohol, smoking,
other measured inflammatory

biomarkers

postmenopausal women 859

per 1 SD increase in
concentration

HR 0.95, 95% CI: 0.88, 1.02
premenopausal women 393 HR 0.96, 95% CI: 0.86, 1.08

HRT non-users 682 HR 0.97, 95% CI: 0.89, 1.06
HRT past users 134 HR 0.95, 95% CI: 0.78, 1.15

HRT current users 679 HR 0.90, 95% CI: 0.83, 0.98
women with BMI < 25 kg/m2 759 HR 0.93, 95% CI: 0.86, 1.01
women with BMI ≥ 25 kg/m2 727 HR 0.94, 95% CI: 0.86,1.01

Tumor necrosis factor-α
1 [25] Agnoli, 2017 EPIC-Varese all women in study 351

highest vs. lowest tertile
RR 1.36, 95% CI: 0.79, 2.34 age, BMI, family history of BC, age at

menarche, parity, OC use, smoking,
alcohol, education

postmenopausal women 167 RR 0.86, 95% CI: 0.39, 1.89
premenopausal women 180 RR 2.15, 95% CI: 0.95, 4.86

9 [32] Gunter, 2015 WHI postmenopausal women 856 highest vs. lowest quartile HR 0.82, 95% CI: 0.59, 1.14

age, BMI, ethnicity, alcohol, family
history of BC, parity, years of

menstruation, age at first birth, HRT use,
endogenous estradiol levels, history of

BBD, physical activity

6 [29] Dias, 2016 MDC
Cohort postmenopausal women 446 highest vs. lowest tertile OR 0.65, 95% CI: 0.43, 0.99

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education

White blood cell count

4 [28] Busch, 2018 WHI postmenopausal, invasive
cancer 4328 dichotomized at 10,000

cells/uL
HR 1.06, 95% CI: 0.87, 1.30 age, race/ethnicity, cohort enrollment,

age at menarche, age at menopause, HRT
use, breastfeeding, BMI, smoking status,
caregiving, negative life events, physical

activity, sleep quality

postmenopausal, in situ
cancer 1049 HR 1.65, 95% CI: 1.17, 2.33

6 [29] Dias, 2016 MDC
Cohort postmenopausal women 446 highest vs. lowest tertile OR 0.93, 95% CI: 0.67, 1.30

age, week of blood sampling, BMI, WHR,
HRT use, parity, smoking, alcohol,

physical activity, education
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8 [31] Frydenberg,
2016 Norwegian

cohort
all women in study 192

highest vs. lowest tertile
HR 1.04, 95% CI: 0.77. 1.41

age, BMI, number of children, smoking
postmenopausal women 149 HR 1.03, 95% CI: 0.73, 1.46
premenopausal women 43 HR 1.02, 95% CI: 0.54, 1.94

18 [37] Wulaningsih,
2015

AMRS
cohort all women in study 2265

dichotomized at 10 109/L
HR 1.07, 95% CI: 0.90, 1.28 age, SES

postmenopausal women 1960 HR 1.06, 95% CI: 0.88, 1.28
premenopausal women 962 HR 1.04, 95% CI: 0.81, 1.32

Notes: AMRS = Apolipoprotein Mortality Risk Study; BBD = benign breast disease; BC = breast cancer; BMI = body mass index; EPIC = European Prospective Investigation into
Cancer and nutrition; HRT = hormone replacement therapy; MDC = Malmö Diet and Cancer; NSHDS = Northern Sweden Health and Disease Study; OC = oral contraceptive; SES =
socioeconomic status; WHI = Women’s Health Initiative; WHS = Women’s Health Study; WHR = waist-to-hip ratio; * 95% CI appears as reported in original publication. Unique study #
distinguishes the 18 different studies from the 16 publications identified in this review and can be used to cross-reference with Table 1. Citation # corresponds to the reference number of
each publication in this review and can be cross-referenced with the Reference list at the end of the paper.
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Statistically significant positive associations with breast cancer risk were found for IL-1β (a
pro-inflammatory cytokine) in a Swedish nested case-control study of postmenopausal women (highest
category versus none: HR 1.71, 95% CI: 1.05, 2.79) [29], and for leukocyte count in a population-based
cohort in Denmark (highest versus lowest tertile: RR 1.33, 95% CI: 1.11, 1.58) [26]. When the WHI
cohort was stratified by HRT use, a statistically significant positive association between PAI-1 (a
pro-inflammatory adipokine) and breast cancer risk was found for postmenopausal women who did
not use HRT (highest versus lowest quartile: HR 1.71, 95% CI: 1.02, 2.89), but not for postmenopausal
women who used HRT (HR 1.17, 95% CI: 0.71, 1.93) [32]. In a separate analysis of the WHI cohort,
a statistically significant positive association was found between WBC count and in situ breast cancer
risk (dichotomized at 10,000 cells/µL: HR 1.65, 95% CI: 1.17, 2.33) [28].

Several studies found a negative association between specific inflammatory biomarkers in blood
and breast cancer risk. A nested case-control study in the European Prospective Investigation into
Cancer and the nutrition (EPIC)-Varese cohort found a statistically significant negative association
between adiponectin (an anti-inflammatory molecule that is involved in the inhibition of IL-6 production,
accompanied by induction of the anti-inflammatory cytokines IL-10 and IL-1 receptor antagonists [45])
and breast cancer risk for postmenopausal women (highest versus lowest tertile: RR 0.37, 95% CI:
0.19, 0.72), but not for premenopausal women (RR 1.11, 95% CI: 0.61, 2.03) [25]. This same study
found a statistically significant negative association between leptin, which is shown to be involved in
pro-inflammatory activities, such as the protection of T lymphocytes from apoptosis and the modulation
of T cell proliferation [45], and breast cancer risk for premenopausal women (highest versus lowest
tertile: RR 0.43, 95% CI: 0.20, 0.89), but not for postmenopausal women (RR 1.74, 95% CI: 0.83, 3.63) [25].
A nested case-control study in the Malmö Diet and Cancer cohort of postmenopausal women in
Sweden found statistically significant negative associations with breast cancer risk for OX-LDL (highest
versus lowest tertile: OR 0.63, 95% CI: 0.45, 0.89) and TNF-α (OR 0.65, 95% CI: 0.43, 0.99) [29]. Finally,
an analysis of the WHS cohort found an overall statistically significant negative association between
sICAM-1, which mediates leukocyte adhesion and trafficking as part of the immune response and
vascular inflammation [35], and breast cancer risk (highest versus lowest quintile: HR 0.79, 95% CI: 0.66,
0.94) [35]. When this study was stratified by HRT use, a statistically significant negative association
between sCIAM-1 and breast cancer risk was found for current users of HRT (per 1 SD increase in
concentration: HR 0.90, 95% CI: 0.83, 0.98), but not for past or non-users of HRT (HR 0.95, 95% CI: 0.78,
1.15 and HR 0.97, 95% CI: 0.89, 1.06, respectively) [35].

Two studies considered composite scores of inflammatory biomarkers [26,27]. Using
a population-based cohort in Denmark, Allin et al. created an inflammatory score based on the number
of biomarkers with high concentration levels, defined as levels in the third tertile [26]. Biomarkers
included high-sensitivity CRP, fibrinogen and whole blood leukocyte count, and scores ranged from
zero to three. Women with an inflammatory score of three had a 42% higher risk of breast cancer
compared to women with an inflammatory score of zero (RR 1.42, 95% CI: 1.11, 1.80) [26]. However,
this association was found to attenuate as follow-up time increased. For example, when follow-up
time was terminated after one year, the hazard ratio comparing women with three versus zero
elevated biomarkers was 2.01 (95% CI: 1.17, 3.46) [26]. By contrast, the hazard ratio comparing
women with three versus zero elevated biomarkers was 1.33 (95% CI: 0.99, 1.79) after four years
of follow-up [26]. The second study to use an inflammatory score was a nested case-control study
conducted in the EPIC-Italy and the Northern Sweden Health and Disease Study (NSHDS) cohorts.
This study constructed an inflammatory score using a panel of 12 cytokines, 10 chemokines, and six
growth factors measured in peripheral blood samples [27]. They also used the first principal component
(PC1) from a principal component analysis of the 28 inflammatory markers (PC1 explained 32.6% of
the total variance) to further evaluate the association of inflammation with breast cancer risk [27]. This
study found an overall negative, but not statistically significant, association with breast cancer risk for
both the inflammatory score (β −1.72, 95% CI: −3.86, 0.42) and PC1 (β −1.00, 95% CI: −2.12, 0.12) [27].
When the analysis was stratified by time to diagnosis, a statistically significant negative association
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was found for both the inflammatory score (β −2.88, 95% CI: −5.47, −0.29) and PC1 (β −1.55, 95%
CI: −2.92, −0.18) with breast cancer risk for women diagnosed within six years of baseline [27]. No
associations were found for women diagnosed with breast cancer after six years from baseline [27].

4. Discussion

We systematically reviewed the literature on circulating blood biomarkers of inflammation
available since the last meta-analysis published in 2015. Only one marker, CRP, has been studied
extensively. Three meta-analyses published in 2015 each found a consistent, positive association
between elevated blood levels of CRP and breast cancer risk. However, for the new studies identified in
this updated review, only half of the studies (6 of 12) reported point estimates >1.10 [21,26,30–32,36], of
which only three were statistically significant [26,31,36]. Positive associations were found for subgroups
of women stratified by menopausal status, BMI, or HRT use, although findings were inconsistent
across studies. There might be several reasons for the inconsistency in findings across more recent
studies, including differences in assay methods (e.g., 8 of 12 studies used a high-sensitivity compared
with a standard measure of CRP) and differences in covariate adjustment. For example, physical
activity and alcohol consumption were not consistently controlled for across studies. Interestingly,
none of the studies in this review adjusted for NSAID use, which could be an important confounder.
There were also differences across studies regarding sample size and number of breast cancer events
(some studies may have been underpowered, which could explain differences between results from
meta-analyses and individual studies), median age at baseline, and median length of follow-up time.
Length of follow-up is important to consider when interpreting study results, as long-term follow-up
is needed to rule out reverse causality. A few studies in this review found stronger associations of
CRP with breast cancer risk in the first few years of follow-up, which might be more indicative of
consequence rather than causes of underlying cancer [26,27], but the meta-analysis by Chan et al.
found that positive associations remained in studies that excluded early years of follow-up [23]. Given
these inconsistencies across studies, further research is needed to confirm the positive relationship
between blood levels of CRP and breast cancer risk.

CRP is a sensitive and widely used systemic marker of inflammation that, compared with other
inflammatory markers, had several advantages as a chronic inflammation marker for past epidemiologic
studies, including the availability of reliable assays and temporal stability [22]. Yet, it is important to
remember that CRP is a liver-derived indicator of systemic inflammation, and other inflammatory
biomarkers in blood may be more specific to breast-related changes. For example, breast cancer
cells are shown to respond to higher circulating levels of certain pro-inflammatory cytokines, such
as TNF-α, IL-1β, and IL-6 by increasing the expression of P450 aromatase [29,46]. However, there is
currently insufficient epidemiologic evidence for other, non-CRP, inflammatory biomarkers or panels
(e.g., inflammation scores) of biomarkers. Further prospective evidence, such as from studies using
expanded panels of systemic blood inflammatory biomarkers that reflect breast-specific effects, is thus
needed to support a strong and independent link between chronic inflammation and breast cancer risk.
In addition to a need for prospective evidence using expanded panels of systemic blood inflammatory
biomarkers, understanding the causal role of inflammatory processes in the etiology of breast cancer
will require other lines of evidence, including (1) epidemiologic studies on medical conditions related
to chronic inflammation and breast cancer risk; (2) animal studies of inflammation and mammary
tissue morphology; and (3) studies of breast tissue morphology in humans.

4.1. Medical Conditions Related to Chronic Inflammation and Breast Cancer Risk

A growing number of studies have examined whether different medical conditions that are related
to chronic inflammation are also associated with breast cancer risk by comparing women with these
conditions to women without, in terms of the incidence of breast cancer [47]. However, many different
conditions, including rheumatoid arthritis, have been inconsistently associated with breast cancer
risk and do not support a strong association between chronic inflammatory conditions and breast
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cancer risk. The inconsistent evidence between medical conditions related to inflammation and breast
cancer risk contrasts with other cancers, such as colorectal cancer, which have a much more consistent
relationship with several chronic inflammatory [48]. The inconsistent evidence for breast cancer may be
due to the timing of when inflammatory conditions were measured with respect to different windows
of susceptibility for breast cancer. For example, inflammation might play a different mechanistic
role in postmenopausal breast cancer compared with premenopausal breast cancer, especially given
that obesity, which is associated with a state of chronic low-grade inflammation, is associated with
a higher risk for postmenopausal breast cancer but a lower risk for premenopausal breast cancer [49,50].
The complex relationships between stress, hormone levels, and inflammation [11,51] might also drive
differences in younger and older women, but this area of research remains understudied. It is also
important to note that confounding might contribute to age-specific findings, as risk for other chronic
diseases that drive inflammation increases with age, along with cancer risk, and plasma levels of
inflammatory markers are shown to increase with age [16–18]. This review was not able to establish
the role of inflammation in postmenopausal breast cancer compared with premenopausal breast cancer,
as findings were inconsistent across studies for both subgroups and the lack of repeated measures
and consistent time between blood measures and age at diagnoses made it challenging to interpret
the findings for women across the menopausal transition. Similar to the studies of inflammatory
blood biomarkers and breast cancer risk, there is currently a complete absence of information on
the effect of inflammation during key windows of susceptibility on breast cancer risk, even though we
know that the pregnancy/lactation cycle induces an inflammatory state akin to wound healing and
that breasts also change in form and function around the menopausal transition, a time in life when
subgroups of women also experience weight gain and increases in other chronic disease risk factors [10].
Further, in a recent study evaluating transcriptomic pathways differentially expressed in breast tissue
samples from overweight/obese (OB) vs. normal weight adolescents, analyses identified inflammatory
genes (cytokines CSF1 and IL-10, chemokine receptor CCR2) as among the most highly activated
upstream regulators in the OB breast [52]. This suggests that there are innate inflammatory responses
within the OB breast even in early life, again supporting a need to study windows of susceptibility.
The inconsistent evidence for breast cancer may also be due to the available treatments for chronic
conditions, which may affect cancer risk. For example, women with diabetes may be taking metformin,
which in turn may reduce their breast cancer risk [53]. Nevertheless, extensive medical data sets within
large health systems may make feasible the longitudinal studies that are needed, providing definitive
evidence regarding whether selected conditions related to chronic inflammation are also associated
with breast cancer risk.

4.2. Inflammation and Mammary Tissue Morphology in Animal Models

There is a fair amount of evidence in experimental models of breast cancer that obesity and fatty
diet are linked to inflammation within the mammary tissue (macrophage-induced crown-like structures
or CLS), morphological increases in fibrous tissue, upregulation of aromatase activity (associated with
increased number of fat cells expressing the gene) and other biomarkers of inflammation, such as
CC-chemokine ligand 2 (CCL2). CCL2 is an inflammatory cytokine that recruits macrophages to sites of
injury. Macrophage-associated CLS has been linked to increased proinflammatory mediators (TNF-α,
IL-1β, Cox-2) and aromatase expression, and may be an indicator of mammary tumor risk in rodent
models [54]. Caloric restriction reversed CLS presence within the mouse mammary gland, normalized
aromatase expression, and decreased proinflammatory indicators in one study of obese mice [55].
Overexpression of CCL2 in transgenic mice had an increased number of macrophages, density of stroma
and collagen, and genes encoding matrix remodeling enzymes in their mammary tissue compared to
non-transgenic controls, as well as an increased susceptibility to the development of carcinogen-induced
mammary tumors [56]. These studies together strengthen evidence that inflammation is not only
associated with endogenous gene and protein changes that may be evident in the circulation, but also
morphological changes that may be reflected in the breast of women.
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4.3. Studies of Breast Tissue Morphology in Humans

Critical to understanding the role of chronic inflammation and breast cancer risk is the need
to appreciate that breast tissue is metabolically active and can change in form and function with
metabolic disease and risk factors. Therefore, along with the need for studies that examine systemic
inflammation, studies are needed that examine how the breast responds to chronic inflammation.
This will require non-invasive ways to measure breast tissue changes. While standard screening
methods, including mammography and magnetic resonance imaging (MRI) without background
parenchymal enhancement (BPE), do not capture the metabolic activity in breast tissue, there are
alternative non-screening methods that can be used to evaluate metabolic changes in breast tissue in
association with inflammation. Such non-screening and non-diagnostic methods include thermography,
Diffuse Optical Tomography (DOT), and optical spectroscopy (OS) [57–59]. All three of these methods
measure tissue vasculature, and hence may be a biosensor or biomarker for metabolic changes in
the breast tissue, which can also be achieved with BPE on MRI. Early data support a very strong
(~10-fold) [60], and independent, increase in breast cancer risk from BPE separate from breast density,
suggesting that measures that map to changes in metabolic activity in the breast may also be important
in predicting risk.

These alternative non-invasive methods (thermography, DOT, and OS) do not expose the breast
tissue to radiation and can be used to assess changes over short durations of time. Therefore, if
validated in different settings, such methods could be used as an outcome for intervention studies,
as they represent a non-invasive method to measure vascular changes in the breast tissue. A key
advantage of combining these non-invasive measures of breast tissue changes with blood biomarkers is
that, in combination, they may be a powerful biosensor and/or intermediate outcome for intervention
studies. In addition to being advantageous for intervention studies, these non-invasive measures of
breast tissue changes could also be used in etiologic studies to explore the role of chronic inflammation
in breast tissue composition and metabolic function.

5. Conclusions

The development of a validated panel of chronic inflammatory markers that can be utilized as an
intermediate outcome, with or without non-invasive breast tissue measurements, would be useful in
intervention studies. Moreover, the use of validated non-invasive biomarkers that are predictive of
breast cancer would enhance breast cancer risk reduction and risk stratification. This would be similar
to how other chronic diseases are monitored through blood tests combined with intermediate measures
(e.g., lipids or blood pressure for heart disease risk). However, this review found that only CRP has been
extensively studied in association with breast cancer risk. Few epidemiologic studies have evaluated
other inflammatory biomarkers, individually or in panels, that may be more specific to breast-related
changes. Future prospective studies utilizing expanded panels of systemic blood inflammatory
biomarkers, along with serially collected measurements, are thus needed to strengthen the evidence
on inflammation with breast cancer risk. In addition to building the epidemiologic evidence, it
will also be important to conduct mechanistic studies to understand inflammatory pathways and
demonstrate how breast tissue responds to chronic inflammation, such as through altered metabolic
activity. This knowledge could ultimately support the development and evaluation of mechanistically
driven interventions to reduce inflammation and prevent breast cancer.
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