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Abstract: Lifestyle is a well-known environmental factor that plays a major role in facilitating
the development of metabolic syndrome or eventually exacerbating its consequences. Various
lifestyle factors, especially changes in dietary habits, extreme temperatures, unusual light–dark cycles,
substance abuse, and other stressful factors, are also established modifiers of the endocannabinoid
system and its extended version, the endocannabinoidome. The endocannabinoidome is a complex
lipid signaling system composed of a plethora (>100) of fatty acid-derived mediators and their
receptors and anabolic and catabolic enzymes (>50 proteins) which are deeply involved in the control
of energy metabolism and its pathological deviations. A strong link between the endocannabinoidome
and another major player in metabolism and dysmetabolism, the gut microbiome, is also emerging.
Here, we review several examples of how lifestyle modifications (westernized diets, lack or presence
of certain nutritional factors, physical exercise, and the use of cannabis) can modulate the propensity
to develop metabolic syndrome by modifying the crosstalk between the endocannabinoidome and
the gut microbiome and, hence, how lifestyle interventions can provide new therapies against
cardiometabolic risk by ensuring correct functioning of both these systems.
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1. Introduction

Diets poor in essential nutritional factors (e.g., dietary fibers or vitamins) and rich in high-calorie
nutrients, lack of exercise, and uncontrolled use of recreational substances or certain therapeutic drugs,
together with other environmental challenges such as recently changed lifestyle habits in populations
living at extreme temperatures or regarding night–day cycles, are all known to negatively affect the
body’s ability to regulate energy metabolism and, hence, contribute to the development of metabolic
syndrome [1]. A plethora of epidemiological studies point to these aspects as major predictors of
various forms of dysmetabolism, including obesity and visceral adipose tissue accumulation [2], glucose
intolerance, pre-diabetes and type 2 diabetes [3], dyslipidemia [4], hypertension [5] and, eventually,
the development of atherogenic inflammation [6] and the ensuing cardiovascular disorders [7].
By contrast, several other studies show how fighting bad dietary habits and the introduction of
some dietary supplements and vitamins, as well as the increase of physical exercise, can successfully
counteract many features of metabolic syndrome [1,8,9].
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At the same time, multifaceted lifestyle aspects are emerging as having a strong impact
on an endogenous system of lipid signals known as the endocannabinoid system and its more
recent expansion to the endocannabinoidome (see below), which play an important role in several
physiological and pathological conditions and, particularly, in the control of energy metabolism and its
dysfunctions [10,11]. Endocannabinoids and endocannabinoidome mediators are ultimately derived
from long-chain fatty acids, and it is therefore predictable that prolonged diets rich in some fatty
acids rather than others can affect the tissue concentrations of these molecules in as much as they
can change the fatty acid composition of phospholipids acting as biosynthetic precursors [12,13].
Additionally, there is evidence that pre- and probiotics can produce beneficial effects partly mediated
by endocannabinoidome mediators, pointing to the possibility that at least some of the numerous
physiological and pathological actions respectively displayed by a healthy or disrupted gut microbiota
(known as dysbiosis) may be due to changes in this complex system of lipid chemical signals, both
at the central nervous system and peripheral tissue level. This seems to be particularly true in the
context of metabolic control in which the intestinal flora, like the endocannabinoidome, is known
to play a major role [14–16]. This evidence is reinforced by the recent finding that some commensal
bacteria produce endocannabinoid-like compounds able to activate the same receptors as their host cell
counterparts [17]. Conversely, in mice, pharmacological or tissue-selective genetic manipulation of the
tissue concentrations and receptor-mediated activity of endocannabinoids and endocannabinoid-like
molecules was found to affect, at the same time, the relative composition in phyla, orders, genera,
and species of microorganisms that populate the intestinal tract as well as the metabolic response to
high-fat diets [18–21]. If one considers that gut microbiota composition is altered by the same dietary
and environmental factors and unhealthy behaviors that affect the endocannabinoid system [20,22–24],
then it is perhaps not so farfetched to suggest that the lifestyle–gut microbiome–endocannabinoidome
triangle plays a crucial role in the development of metabolic syndrome.

In this article, we shall discuss several ways through which lifestyle-induced alterations of the
endocannabinoidome—very often through direct or indirect effects on the gut microbiome (µB; that is
the ensemble of genes, proteins, and metabolites provided by intestinal microorganisms)—can either
worsen or ameliorate energy metabolism in mammals and, hence, influence the development of the
metabolic syndrome.

2. The Endocannabinoidome

The very popular drug of abuse, marijuana, is prepared from the flowers of Cannabis sativa varieties
containing relatively high contents of the non-psychotropic precursor of ∆9-tetrahydrocannabinol
(THC), i.e., ∆9-tetrahydrocannabinolic acid, wherefrom the better known THC is obtained following
desiccation and/or heating. However, Cannabis sativa—including those varieties that have been used
for centuries for their fibers and employed to make ropes and paper—contains more than one hundred
other THC and THC acid-like compounds in the inflorescence. These compounds have little or no
psychotropic action and, together with THC and THC-acid, are known as cannabinoids. The euphoric,
appetite-stimulating, and many other “central” actions of THC, are due to its unique capability to bind
and activate a G-protein-coupled receptor (GPCR), the cannabinoid receptor type-1 (CB1), whereas
another GPCR, the cannabinoid receptor type-2 (CB2), with little more than 50% homology with
CB1 [1,2], is responsible for the immune-modulatory effects of this compound. So far, THC is the only
plant-derived cannabinoid known to be capable of potently and efficaciously activating these receptors
(which is why they should, in our opinion, be renamed “THC receptors”), although a THC congener,
∆9-tetrahydrocannabivarine (THCV), was more recently shown to antagonize CB1 [25]. The discovery
of cannabinoid receptors suggested the existence of endogenous ligands for such receptors. Two small
lipids ultimately derived from arachidonic acid, N-arachidonoylethanolamine (AEA or anandamide)
and 2-arachidonoylglycerol (2-AG), were indeed identified and shown to be capable of high-affinity
binding to both CB1 and CB2 receptors, stimulating their activity with good efficacy [26,27]. These
molecules were named endocannabinoids (eCBs) [28].
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The eCBs come with their own anabolic and catabolic routes and enzymes, biosynthetic precursors,
and hydrolysis products, which are inactive at cannabinoid receptors. By the turn of the last century, it was
established that AEA is biosynthesized from the hydrolysis of N-arachidonoyl-phosphatidylethanolamines
catalyzed by an N-acyl-phosphatidylethanolamine-specific phospholipase D-like enzyme (NAPE-PLD),
whereas 2-AG is produced from the hydrolysis of 1-acyl-sn-2-arachidonoyl-glycerols (AcArGs), catalyzed
by either sn-1 selective diacylglycerol lipase-α or -β (DAGLα or DAGLβ). AEA is hydrolyzed to
arachidonic acid (AA) and ethanolamine by fatty acid amide hydrolase (FAAH), and 2-AG to AA and
glycerol by monoacylglycerol lipase (MAGL) [29–32]. This ensemble of lipids, enzymes, and CB1 and
CB2 receptors is known as the “endocannabinoid system”. While the enzymes mentioned above are
historically considered to be the canonical ones that regulate endocannabinoid levels, it must be noted
that other pathways have also been identified (see Figure 1B, recently reviewed in [33]). For example,
AEA may be synthesized by the combined action of ABDH4 and GDE1 [34] or PTPN22 [35].

It was soon realized that AEA and 2-AG, like several other lipid mediators, are quite promiscuous
in their pharmacological activity in as much as they were suggested to modulate the activity of other
proteins at concentrations often, but not necessarily, higher than those required to activate CB1 and
CB2. These receptors were later found to often be even better targets for some of the congeners of
AEA and 2-AG, i.e., the long-chain N-acylethanolamines (NAEs) and 2-monoacylglycerols (2-MAGs),
respectively, and include (1) thermosensitive transient receptor potential (TRP) channels, such as
the “capsaicin receptor”, or TRP of vanilloid type-1 (TRPV1), the “menthol receptor”, or TRP of
melastatin type-8 (TRPM8), and the TRP of vanilloid type-2 (TRPV2) channels, as well as the T-type
Ca2+ channel (Cav.3.1); (2) some orphan GPCRs, such as GPR55, GPR110, or GPR119; and (3) peroxisome
proliferator-activated receptor-α and -γ (PPARα and PPARγ) (Figure 1A; recently reviewed in [33].
The eCB congeners, which are biosynthesized using NAPE-PLD or DAGLs from precursors similar to
those of the two eCBs, and inactivated to the respective fatty acids and ethanolamine or glycerol by
FAAH and MAGL, can also be produced and degraded via alternative pathways and enzymes, and,
as mentioned above, this also applies to AEA and 2-AG (Figure 1B). Finally, several other long-chain
fatty acid derivatives have also been identified during the last 15 years, including primary fatty
acid amides and several N-acylated amino acids and neurotransmitters that often share molecular
targets and/or inactivating enzymes with eCBs (Figure 1A,B). These findings led to the definition
of the “expanded eCB system” or endocannabinoidome (eCBome), which includes a plethora of lipid
mediators (including some enzymatic oxidation products of AEA and 2-AG) and tens of proteins
acting as biosynthetic and inactivating enzymes, or molecular targets, for these mediators (recently
reviewed in [33]).

The existence of the eCBome complicates the development of selective pharmacological and
genetic tools to be used for the understanding of the several tissue-specific local functions of the eCBs,
and for the exploitation of this knowledge for the development of new therapies against pathological
conditions in which AEA and 2-AG are involved. On the other hand, if one looks at the eCBome
as a whole and as the potential target of several physiopathological and environmental clues, and
at eCBome profiles as possible personalized fingerprints of disease and responses to lifestyle, this
complex signaling hypersystem, no matter how challenging, may open new therapeutic and diagnostic
avenues. Indeed, as will be discussed below, diet and dietary components, habits, exercise, and the
environment strongly impact on the eCBome—to an extent of which we have had perhaps, so far, only
a partial view.
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Figure 1. Endocannabinoidome mediators and their receptors (A) and anabolic and catabolic enzymes 
(B). Interactions are indicated by dark shaded boxes, and anabolic enzymes that function in concert 
are grouped together; “X” indicates inhibitory interactions; “a” indicates that enzymes only function 
with arachidonoyl homologs. A lighter shade of gray indicates a lower interaction with the receptors 
or a lesser role of the enzymes in biosynthesis or degradation. 
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Figure 1. Endocannabinoidome mediators and their receptors (A) and anabolic and catabolic
enzymes (B). Interactions are indicated by dark shaded boxes, and anabolic enzymes that function in
concert are grouped together; “X” indicates inhibitory interactions; “a” indicates that enzymes only
function with arachidonoyl homologs. A lighter shade of gray indicates a lower interaction with the
receptors or a lesser role of the enzymes in biosynthesis or degradation.
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3. Dietary Fats and the Endocannabinoidome

In the obese state, the eCB system is modulated at the level of anabolic and catabolic enzyme
activity, endocannabinoid levels, and CB1 receptor expression, resulting in a generally increased eCB
tone “in the wrong place and at the wrong time” [36]. BMI positively correlates with circulating
AEA and 2-AG levels, especially when fat distribution is partitioned more towards intra-abdominal
stores [37–39]. However, the levels of AEA are dysregulated in obesity with respect to responses to
feeding or the time of day as viscerally obese men were found to have significantly lower levels of
AEA in the morning than normoweights [38]. The observed increases in AEA and 2-AG levels appear
to be due to changes in expression of adipose tissue-metabolizing enzymes, as the AEA-catabolizing
enzyme FAAH was decreased and the 2-AG-anabolizing enzyme DAGLα was increased in the
adipose tissue from obese individuals in conjunction with decreased CB1 expression, perhaps as a
homeostatic compensatory response [37,39,40]. Changes in eCBome gene expression within adipose
tissue appear to be depot-specific, however, since gluteal subcutaneous adipose tissue from obese
subjects had decreased eCBome gene expression (including FAAH, DAGLα, and CB1) while abdominal
subcutaneous adipose tissue showed the opposite trend, with visceral adipose tissue similarly having
increased CB1 expression [41].

Obesogenic diets characterized by high fat content are increasingly prevalent in westernized
societies. High-fat diets increase AEA and/or 2-AG levels [12,13]. While N-oleoylethanolamine (OEA),
N-palmitoylethanolamine (PEA), and N-linoleoylethanolamine (LEA) levels are reduced in the jejunum
and/or stomach in response to 1 week [42] or up to 8 weeks [43] of high-fat feeding, prolonged feeding
(14 weeks) increased OEA levels in the stomach concomitant with increased NAPE-PLD and decreased
FAAH expression [43]. In the liver, a high-fat diet increased AEA levels and CB1 signaling, which
contributed to the activation of genetic programs that increase fatty acid production [13]. In a very
recent study in which circulating eCBome levels were tracked over time in mice on a high-fat diet,
AEA, PEA, and N-docosahexanoylethanolamine (DHEA) levels increased rapidly over the course
of a week, while SEA and 2-AG increases became significant only after 4 weeks and, finally, OEA
increased after 10 weeks [44]. While gene expression changes in eCBome enzymes were observed in
muscle and liver tissues, they were transient; however, the expression of the 2-AG anabolic enzyme
DAGLβ was constantly increased in white and brown adipose tissue (BAT) from 4 weeks, while the
NAE anabolic enzyme NAPE-PLD was constantly increased only in the BAT from 3 days on [44]. This
study supports the conclusions inferred from human studies, that adipose tissue is one of the main
regulators of circulating 2-AG in obesity. The potential contribution of BAT (at least in mice) to the
regulation of NAEs was a surprising result, though at least in the case of OEA, it cannot be ruled out
that the intestinal tract is one of the major sources [43].

Changes in eCBome mediator levels in response to high-fat feeding occur very quickly in mice.
Recently, Everard et al. showed that after just 4 h of initial high-fat-diet feeding, jejunal AEA and 2-AG
levels decreased while OEA, 2-OG, 2-LG, and 2-PG levels increased [18], but after 5 weeks of exposure
AEA, LEA increased, as did 2-OG and 2-PG.

In utero or neonatal exposure to dietary perturbations can have long-lasting effects on an individual
and, indeed, the eCBome is significantly impacted by exposure to high-fat diets early on in life with
long-lasting consequences. Maternal high-fat feeding resulted in sustained elevation of CB1/2, FAAH,
and MAGL levels in the livers of adult male rats, with changes in redox homeostasis [45]. Maternal
exposure to high-fat diet also increased CB1 in the male, and CB2 in the female hypothalamus at birth,
while CB1 and FAAH expression were increased, and CB2 and MGLL were decreased in the BAT
of males and females, respectively. Both sexes developed an increased adiposity and preference for
high-fat diets [46].

Dietary linoleic acid (LA) is a major n-6 fatty acid component of Western diets, making up over 80%
of the polyunsaturated fatty acid (PUFA) consumed in the United States [47], resulting in an imbalance
the ratio of n-6/n-3 fatty acids consumed greatly in favor of the former. LA is linked to obesity and
is efficiently converted to the AEA and 2-AG constituent arachidonic acid (AA), thus explaining its
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ability to increase AEA and 2-AG levels and to produce obesogenic effects [48,49]. Indeed, even within
the context of a low-fat diet, high levels of LA increased liver AEA and 2-AG levels, promoting obesity
and associated adipose tissue inflammation [50]. Inclusion of n-3 fatty acids to an LA-rich diet reverses
the latter’s effects on AEA and 2-AG levels [48]. Similar results have been obtained with EPA/DHA n-3
fatty acid-rich krill and, to a lesser extent, fish oil [12,51–53]. Additionally, supplementing young mice
on a lard diet with flax seed oil rich in the n-3 fatty acid α-linolenic acid significantly decreased liver
AEA levels and improved glucose homeostasis after a subsequent 10 weeks on a high-lard diet [54].
These effects are believed to largely be the result of decreasing the n-6/n-3 PUFA ratio, which results
in AA displacement from phospholipid membranes, thus reducing the amounts of the biosynthetic
precursors of AEA and 2-AG. In support of this, n-3 PUFAs provided as phospholipids, rather than
free fatty acids, result in more significant decreases in eCB levels [12,52]. Correspondingly, decreasing
n-3 PUFA phospholipid content increased 2-AG liver levels and promoted hepatosteatosis and insulin
resistance [55].

These data suggest that some of the therapeutic properties against metabolic disorders
(such as against high triglycerides) of n-3 fatty PUFA may be ascribed to a reduction of eCB
overactivity, and this has also been suggested to be the case in obese humans [53]. However,
the metabolic benefits of dietary n-3 PUFAs may also result from the elevation of n-3 PUFA-derived
NAEs (DHEA, N-eicosapentaenoylethanolamine (EPEA)), which has been observed in several
tissues and blood [52,56,57], as well as of the corresponding monoacylglycerols [58] and other
monoacylamides [59], which possess anti-inflammatory and anticancer actions and potential
cardiometabolic- and neuroprotective effects independent of cannabinoid receptors [60–63]. A recent
study comparing DHA and EPA supplementation in diet-induced obese mice and type 2 diabetic
patients found significantly increased levels of DHEA and EPEA in both circulation and adipose tissue,
but decreases in AEA and 2-AG were only observed in mice [64]. Of note, this study by Rossmeisl et al.
utilized n-3 PUFAs as triglycerides; however, when provided mostly as phospholipids (from krill
powder) to obese men, circulating AEA levels were reduced along with triglycerides [53].

Gut microbes (collectively termed the microbiome (µB)), are not a group of commensalist
microorganisms living within animals but, rather, many are mutualists, benefiting the host in a variety
of ways such as aiding in energy harvesting and digestion, modulating the immune system, and
influencing many aspects of metabolic health, including weight, adiposity, and lipid and glucose
metabolism [65]. The µB responds quickly to dietary interventions [66], and westernized diets are
linked to dysbiosis (an imbalance of microbial communities) and associated with obesity, which is
generally characterized by decreased bacterial diversity with an increase in the Firmicutes/Bacteroidetes
phyla ratio [67,68]. Alterations in the µB are associated with other aspects of metabolic syndrome,
including dyslipidemia, hypertension, and insulin resistance (reviewed extensively in [69–72]), and
their consideration for the development of targeted therapies for “precision health” plans has recently
been suggested for diabetes [73,74]. Like the eCBome, the gut µB is modified by dietary fatty acids,
including supplementation with n-3 fatty acids from fish oil and krill oil [22,75,76]. Although few
studies have assessed the effects of α-linolenic acid, at least one clinical trial has indicated that
α-linolenic acid-rich oils can modify the µB at the genera level [77].

In the study by Everard et al. discussed above, the chronic high-fat-diet-induced changes in
the jejunum eCBome lipid levels were associated with significant alterations in the gut µB, with the
proportions of 19 bacterial genera identified as being significantly modified [18]. The same group
had previously shown that 4 weeks of high-fat-diet feeding increased 2-AG levels in the ileum which
was also associated with an altered µB [78]. High-fat-diet-induced µB changes were associated with
increased CB1 expression in the colon whereas FAAH was increased in the jejunum [79]. Thus,
it appears that µB alterations in response to high-fat diets impacts upon the intestinal eCBome directly
which, under obesity-inducing conditions, increases gut barrier permeability, subsequently resulting
in increased circulating bacterially derived lipopolysaccharide (LPS) that subsequently modulates
adipose tissue eCBome and functionality (reviewed in [80]).
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4. Dietary Fiber and Prebiotics: Improving Gut Barrier Function through the Endocannabinoidome

The health benefits of dietary fiber have been extensively studied and reviewed, and there is little
doubt that higher fiber is beneficial for cardiovascular disease, supporting prevalent recommendations
that fiber intake be increased in order to maintain a healthy diet [81]. The positive effects of fiber
on obesity and metabolic syndrome are believed to be intimately linked to alterations of the gut
µB [23,82]. Increasing attention is being paid to “prebiotic” fiber, which is non-digestible by the host
but is metabolized by gut microbiota, resulting in an alteration of the composition and/or activity of
the µB, producing bioactive metabolites (such as short-chain fatty acids) that provide physiological
benefits to the host [83].

One of the main positive effects of prebiotics is in regulating intestinal epithelial barrier permeability,
in which short-chain fatty acids play a crucial role. The term “leaky gut” has been used to
describe the phenomenon in which the tight junctions within the intestinal epithelial lining are
compromised, leading to the movement of bacterially derived LPS into circulation, resulting in
metabolic endotoxemia-induced inflammation that is associated with obesity [84,85]. Supplementing
the diets of genetically (ob/ob) or diet-induced obese mice with the prebiotic oligofructose increases
Bifidobacterium species and Akkermansia muciniphila in association with improved gut barrier function
and decreased inflammation [79,86,87]. Similarly, women with type 2 diabetes who were given
oligofructose-enriched inulin (10 g/day) for 8 weeks had significantly lower circulating levels of LPS and
other inflammatory markers, along with decreased fasting glucose and glycosylated hemoglobin [88].
Finally, administration of pasteurized A. muciniphila improved insulin sensitivity and reduced total
plasma cholesterol levels [89].

The eCBome has been found to regulate intestinal permeability. Using the same genetic model
discussed above (ob/ob mice), Muccioli et al. showed that CB1 antagonism partially rescued tight
junction integrity within the intestinal epithelium and reduced plasma LPS levels, while CB1 agonism
in wild type mice increased gut permeability [79]. Further, blocking CB1 activity in mice on an
obesity-inducing diet not only inhibited the development of obesity and improved glucose homeostasis,
as expected, but also decreased intestinal permeability as evidenced by reduced circulating LPS levels
in association with decreased adipose tissue inflammation and circulating inflammatory cytokine
profile, indicating a decrease in systemic inflammation [21]. Importantly, these changes were observed
in conjunction with an increase in the relative amounts of intestinal A. muciniphila and decreased
Lachnospiraceae. The reduction in metabolic endotoxemia induced in ob/ob mice fed oligofructose
correlated with decreased colonic CB1 expression and AEA levels, with the latter presumably due to
increased expression of the AEA catabolic enzyme FAAH [79]. Thus, CB1 regulation of gut permeability,
under the influence of the µB, is another mechanism by which CB1 regulates inflammation in addition
to direct proinflammatory effects such as, for example, the stimulation of proinflammatory cytokine
release from macrophages, which has developmental consequences for type 2 diabetes [90,91]. These
results collectively support the notion that the cardiometabolic health effects of dietary prebiotic fiber is
associated with alteration of the gut microbiota and intestinal eCBome, resulting in decreased intestinal
permeability and the ensuing metabolic endotoxemia/systemic inflammation.

5. TRPV1: Linking the Endocannabinoidome to the Metabolic Benefits Attributed to Spicy Food

The consumption of spicy food has been associated with overall decreased mortality and
significant reduction in hazard ratios for deaths caused by ischemic heart diseases and, in the case
of the consumption of fresh chili peppers, reduced diabetes [92]. Capsaicin is the active component
endowing chili peppers with their spiciness, due to activation of transient receptor potential vanilloid-1
(TRPV1) cation channels. TRPV1 channels primarily respond to noxious heat (>42 ◦C), but are also
modulated by several eCBome members (including long-chain-saturated NAEs, monoacylglycerols,
N-acyldopamines, and N-acyltaurines) [33]. Several human studies have indicated the various
metabolic benefits of dietary capsaicin, which improved postprandial glucose handling in both
healthy individuals and overweight individuals and women with gestational diabetes [93–95]. While
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a meta-analysis of capsaicin studies supported the positive effects of this dietary component on
energy expenditure and appetite regulation, the overall effects were very small and more evident
at high doses [96]. In rodent models, oral capsaicin is able to combat diet-induced obesity, insulin
resistance, and hepatosteatosis [97]. The positive metabolic effects of capsaicin appear to be mediated
by both TRPV1 and PPARα [97,98]. However, the role of TRPV1 in obesity and associated side
effects—especially dysregulation of glucose homeostasis—is complex, as indicated by contrasting
results from Trpv1−/− mice in diet-induced obesity, in which both beneficial [99] and detrimental [100]
effects have been observed. These differences may be due to variations in the diets used between
studies or the ages of the mice, as Trpv1−/− mice have been shown to have increased activity at young
ages, but decreased activity at older ages, in association with increased weight gain [100,101].

Capsaicin and TRP channels have also been linked to the gut µB. The antiobesity effects of capsaicin
have been associated with changes in the gut µB, including also increases in A. muciniphila [20,102,103].
The gut µB appears to have a causative role in mediating capsaicin antiobesity effects as gut
µB transplantation from capsaicin-treated to germ-free mice replicated the capsaicin-dependent
antimetabolic endotoxemia effects, which were mitigated by antibiotics in capsaicin-treated mice [104].
These changes were defined by decreases in lipopolysaccharide (LPS)-producing, gram-negative
bacteria and LPS biosynthetic genes, and increases in short-chain fatty acid (SCFA)-producing bacteria,
such as Lachnospiraceae, Ruminococcaceae, and Roseburia, as well as decreased colonic CB1 expression [104].
Accordingly, TRPV1 has been suggested to counteract increased intestinal permeability in vitro [105].
Most interestingly, in a human study, different µB enterotypes (different gut µB ecosystems) of
participants were associated with the extent of capsaicin-mediated positive metabolic effects. Capsaicin
increased the Firmicutes/Bacteroidetes ratio and Faecalibacterium abundance more prevalently in
participants with the Bacteroides enterotype than the Prevotella enterotype, in combination with
increased serum incretin (GIP and GLP-1) levels, which stimulate insulin production, and decreased
LBP, which was assessed as a marker of inflammation [106]. As in the case of eCBs and CB1 receptors,
also the communication between TRPV1 and the gut µB seems to be bi-directional. In fact, the visceral
antinociceptive effects of the probiotic Lactobacillus reuteri has been attributed to inhibition of TRPV1
activity in mesenteric neurons [107], indicating also that the eCBome may play a significant role in
mediating the activity of microbial influences on the gut–brain axis, at least with respect to pain.

6. Sunlight Effects on the Endocannabinoidome: A Role for Vitamin D?

Vitamin D deficiency represents a global health issue, with over a billion people being deficient [108],
largely due to inadequate sun exposure. Yet, significant levels of deficiency still occur in populations
living in areas of abundant sunlight [109]. Vitamin D is found only in a few foods and is thus a
common dietary supplement recommended by health authorities, especially in winter months [110].
Several aspects of the metabolic syndrome are associated with vitamin D deficiency, including obesity,
dyslipidemia, insulin resistance, hepatosteatosis, and hypertension [111]. The causal role of vitamin
D in the pathophysiology of these aspects of the metabolic syndrome is not known, but the gut µB
also appears to play a significant role. In a mouse model of diet-induced obesity, vitamin D deficiency
aggravated high-fat-diet-induced insulin resistance and hepatosteatosis along with inflammation.
These results occurred in conjunction with mucosal breakdown within the ileum, endotoxemia
and dysbiosis with increased levels of pathogenic Helicobacter hepaticus, and decreased levels of
the metabolically beneficial A. muciniphila [112]. Vitamin D receptor knockout mice also develop
dysbiosis, exemplified by an alteration in the ratio of Bacteroidetes/Firmicutes phyla with increases in
Lactobacillaceae and Lachnospiraceae families [113]. However, while the mechanisms remain to be
determined, UVR has recently been found to alter the mouse gut µB independently of vitamin D [114].

Endogenous vitamin D is produced upon UV irradiation of 7-hehydrocholesterol in skin, which is
then further metabolized, mostly in the liver and kidney, to produce bioactive 1,25-dihydroxyvitamin
D3 [115]. The skin contains not only 2-AG and AEA, but also several other NAEs in both the dermis
and epidermis [116]. Whether the skin provides a significant source of circulating eCBome mediators
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remains to be determined. However, in vitro exposure of melanocytes to low doses of UVB upregulates
CB1 mRNA expression and increases the levels of AEA, PEA, and 2-AG in keratinocytes [117]. Further,
6 weeks of cutaneous UV exposure increased circulating 2-AG levels in both light- and dark-skinned
people, without significantly altering NAEs [118]. This finding was in apparent contrast to results
obtained earlier by Magina et al., who found that in psoriasis patients, whole-body narrowband UVB
therapy resulted in a decrease in AEA plasma levels without affecting 2-AG [119]. The differences
in these results may have been due to a variety of factors, including the fact that the employed
UV radiation regimens differed between the studies and that Madina et al. studied effects only in
psoriasis patients.

Vitamin D deficiency in mice increased pain sensitization and decreased CB1, but increased
CB2 and PPARα in the spinal cord along with increased AEA and DHEA [120]. In the colon,
2-AG was significantly decreased together with microbial diversity, leading to an increased
Firmicutes/Bacteroidetes ratio and lower levels of A. muciniphila. Treatment of vitamin D-deficient
mice with the PPARα agonist and AEA congener, PEA, reversed the observed pain sensitization in
conjunction with an increase in the levels of several microbial genera, including A. muciniphila [120].

Taken together, these studies suggest that sunlight exposure, and the elevation in vitamin D levels
that results from it, modify the eCBome as well as theµB. Whether there is a link between the two remains
to be determined. For this reason, and given that these alterations are associated with µB changes that
are believed to impact on metabolic health, such as increased Firmicutes/Bacteroidetes ratios and the
presence of low A. muciniphila levels, it will be interesting to investigate if µB–eCBome crosstalk plays a
significant role in regulating obesity and associated metabolic complications downstream of vitamin D.

7. Effects of Exercise on the Endocannabinoidome

Exercise is the second pillar, together with the diet, which maintains metabolic health. Viscerally
obese men who underwent a lifestyle modification program that included the addition of regular
exercise for one year had significant improvements in several metabolic parameters as well as reduced
circulating 2-AG and, to a lesser extent, AEA levels [121]. These latter alterations were very likely
associated with decreased adiposity. However, while physically active men have higher lymphocyte
FAAH activity than sedentary controls, suggesting higher eCBome tone within these cells, basal
circulating levels of AEA, PEA, and 2-AG were not found to be different from those of sedentary
males [122]. By contrast, in a study of normoweight and obese women whose activity was tracked
over 6 days, while 2-AG was associated with BMI, as expected, AEA and OEA levels were positively
associated with moderate–vigorous physical activity [123].

In contrast to the scarcity of data on the effects of chronic physical activity on basal eCBome
mediator levels, much more research has been conducted on their response to acute exercise. Many
studies have shown that physical activity quickly increases circulating AEA, but not 2-AG, levels in
humans ([124–126] and reviewed in [127]). However, a recent study found that 2-AG, and not AEA,
increased after exercise [128], and this discrepancy with previous studies may be due to the fact that
the participants fasted before exercising. Interestingly, AEA increases only appear in response to
medium-intensity exercise [124]. Heyman et al. showed that similar to AEA, PEA and OEA also
increase during and after exercise and, in fact, are more responsive to lower intensity exercise than
AEA [126]. The source of these eCBome mediators remains to be determined. However, in rats, exercise
alters the levels of many NAE metabolic enzymes within the adipose tissue [129]. It has been suggested
that AEA and related NAEs exert positive metabolic effects in muscle, such as improving glucose
uptake and mitochondrial activity by acting at the PPARγ and TRPV1 eCBome receptors [127]. Further,
exercise may modulate AEA levels directly in muscle, as has been found in the extensor digitorum
longus muscles of rats [129].

Several physiological mechanisms by which exercise affects mood have been proposed, including
increasing endorphins, altered mitochondrial function, and thermogenesis, as well as modulation of
the endocannabinoid system [130]. The notion that increased AEA levels may be, in part, responsible
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for feelings of euphoria associated with exercise is supported by the finding in mice that exercise
increased AEA and OEA, but not 2-AG or PEA, levels in association with decreased GABAergic neuron
CB1-dependent anxiety [131]. In fact, exercise also increases eCB tone in the brain. Mice with free
access to a running wheel for 8 days had increased AEA levels and CB1 binding site density in the
hippocampus [132]. Furthermore, wheel running in mice results in potentiated CB1 activity within
the striatum, playing a protective role against stress [133], which does not appear to be simply due to
increased CB1 expression, as chronic exercise does not alter the levels of this receptor in any part of the
brain [134]. Similarly, a recent study showed that singing increased circulating AEA, PEA, and OEA
levels in association with improved positive mood [135]. In the same study, the effects of 30 min of
cycling were also examined, and significantly increased OEA levels were observed, while AEA and PEA
only showed trends towards increases. The lack of statistical increases in AEA, commonly observed in
other studies, may have been due to the intensity of the cycling or the relatively small sample size.
Further, exercise addicts, which have increased negative mood in response to exercise deprivation, also
have lower basal circulating AEA levels than non-addicted regular runners, and exercise withdrawal
and reintroduction only decreases and increases AEA levels, respectively, in non-addicts [136]. The lack
of response of AEA in exercise addicts suggests that perhaps their increased amount of exercise is a
homeostatic attempt to increase eCB tone.

Recent evidence indicates that exercise and the µB interact with each other (reviewed in [24]).
Germ-free mice have decreased exercise performance as compared to conventional controls, and
reintroduction of a single bacterial species (Bacteroides fragilis) partially reversed this [137]. While
the sample sizes were small, Petriz et al. found that moderate exercise differentially changes
the µB in wild type Wistar, obese Zucker, and spontaneously hypertensive rats, suggesting that
exercise-induced changes in the µB may be dependent on the metabolic state of the host organism [138].
Similarly, high-intensity interval training of high-fat-diet-fed mice altered the µB differentially
along the gastrointestinal tract with the most significant changes found in the distal regions [139].
Interestingly, exercise reversed the high-fat-diet-induced decrease in microbial diversity and the
Bacteroidetes/Firmicutes ratio, which are indicative of obesity [139]. Furthermore, fecal microbiota
transplant from exercised mice to mice on a high-fat diet resulted in improved metabolic parameters,
suggesting that that µB can confer, at least in part, the benefits of exercise [140]. However, a more recent
study found that high- or medium-intensity training had no effect on the µB of obese Zucker rats [141].
In humans, studies on professional rugby players found that theirµBs were more diverse than sedentary
controls and produced more short-chain fatty acids, though these changes were also associated with
dietary differences [142,143]. However, other studies have found that independent of diet or BMI,
higher levels of cardiorespiratory fitness correlated with higher µB diversity and short-chain fatty acid
production [144]. Similarly, independent of diet, six weeks of endurance exercise in overweight women
significantly altered the µB of participants with an increase in A. muciniphila [145], which has been
shown to increase the levels of eCBome monoacylglycerols, including 2-AG [87] and, as mentioned
above, to be regulated by both CB1 and TRPV1 activity [21,103]. To date, no studies have examined the
potential link between the eCBome, exercise, and the gut µB. However, given that activities of several
eCBome receptors (CB1, TRPV1, PPARα) have been linked to µB changes [21,103,146], it is possible
that their modulation through exercise-induced changes in eCBome mediator levels may play a role in
exercise-induced changes in the µB, or vice versa.

8. Cannabis Use and Metabolic Health

The principal psychoactive component of marijuana/cannabis (THC), one of the most commonly
used recreational drugs the world over, acts mainly through CB1 activation (reviewed in [25]). Given
the strong association of CB1 and its ligands AEA and 2-AG with several aspects of metabolic syndrome
and obesity in general [10], it is somewhat counterintuitive that cannabis use is generally associated
with an improved metabolic phenotype. Analysis of the NHANES survey from 2005–2010 found
that current and past cannabis use is generally associated with significantly lower odds of metabolic
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syndrome [147]. Combined examination of two large epidemiological studies (NESARC and NCS-R)
concluded that chronic cannabis users had significantly decreased adjusted prevalence rates of obesity,
from 22%–25% in non-users to 14%–17% in users [148]. A very recent prospective analysis of NESARC
data supports the above, finding that cannabis use is inversely associated with BMI increases over
3 years [149]. Several large studies have also shown inverse associations between cannabis and
diabetes [150–152], which were corroborated by a Swedish study involving 18,000 participants, though
the observed protective effects on diabetes were attenuated when adjusted for age [153]. Interestingly,
these associations, observed in large heterogeneous populations, are also observed in Inuit from
the Canadian north, a relatively isolated ethnic group in which the decreased weight associated
with cannabis use was found to account for an association with improved glucose metabolism [154].
Cannabis use is also associated with reduced prevalence of both alcoholic and non-alcoholic fatty
liver disease [155,156]. It should be noted that cannabis use is not always associated with positive
metabolic outcomes; among individuals with type 1 diabetes, it is correlated with an increased risk in
ketoacidosis [157], subclinical atherosclerosis (but only among cigarette smokers) [158], and mortality
in patients with myocardial infarction, despite having lower rates of diabetes and hyperlipidemia [159].

The positive metabolic effects of cannabis have been attributed to the downregulation of CB1 in
response to chronic cannabis use/THC exposure. Post-mortem analysis of chronic cannabis users’ brains
found decreased CB1 (CNR1) mRNA and ligand-binding in several brain regions [160], and in vivo
positron emission tomography (PET) imaging similarly showed globally decreased CB1 availability
compared to controls [161]. Chronic THC administration to rats decreases 2-AG and AEA levels in the
striatum, but increases AEA levels in the limbic forebrain [162], and in chronic cannabis users, AEA
levels are decreased in cerebrospinal fluid while 2-AG levels are increased in the serum as compared to
infrequent users [163]. The mechanism by which eCB levels were altered in these studies are unknown;
however, ex vivo treatment of placental explants with THC for long (72 h) but not short (24 h) periods
of time increased AEA levels, concomitant with a counterintuitive decrease in NAPE-PLD levels
and a trend for increased FAAH levels [164]. In hepatocytes, THC increased both AEA and 2-AG
levels, presumably by blocking the activity of fatty acid binding protein 1 (FABP1), which can act as
an eCB “chaperone”, allowing eCB enzymatic degradation [165]. While THC does not appear to be
able to inhibit eCBome catabolic or anabolic enzymes, several other phytocannabinoids do, though at
relatively high concentrations [166], suggesting that their combination within cannabis may contribute
to its ability to alter eCBome mediator levels.

In agreement with epidemiological studies, chronic THC administration to mice inhibited the
development of obesity in response to a high-fat diet [167]. However, other cannabis-produced
phytocannabinoids are also able to elicit positive metabolic effects. Delta-9-tetrahydrocannabivarin
(THCV) is a CB1 antagonist and cannabidiol (CBD) is a CB1 negative allosteric modulator,) and both
are TRPV1 agonists as well as acting on other receptors (reviewed in [25]). THCV markedly improved
glucose metabolism in genetically, and diet-induced obese mice [168] and as did CBD in a genetic
model of type 1 diabetes [169] Similarly, a clinical study found decreased fasting glucose levels in
participants treated twice per day with 5 mg of THCV [170], whereas both THCV and CBD reduced
hepatic triglyceride content in genetically obese mice [168,171].

More than 25% of non-antibiotic drugs induce dysbiosis of the µB [172]. There is limited evidence
that cannabis use can modulate the gut µB. To date, only two studies have investigated the effects
of cannabis use on the human gut µB. Panee et al. assayed the stools of 19 lifetime cannabis users
and 20 non-users for the relative abundance of only two specific genera, Prevotella and Bacteroides,
given that they are main determinants of human enterotypes [173]. They found that non-users had
an average 13-fold higher Prevotella/Bacteroides ratio than cannabis users, which has been associated
with plant-based as compared to animal-based diets [174]. This raised the possibility that the observed
changes were attributed to alterations in the diets of users vs non-users, consistent with observations
that cannabis users consume fewer fruits and more animal products and have higher caloric intake but,
paradoxically, have similar nutrient serum status and lower BMIs than non-users [175]. In a second
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study, archived anal swabs were used to assess the µBs of HIV-positive individuals [176]. Cannabis
use in these individuals was also associated with alterations in bacterial populations, including a
decreased abundance of Prevotella as well as Acidaminococcus and Dorea, the latter two of which have
been associated with obesity [177,178], along with increased abundances of other genera. The role of
the Prevotella genus in metabolic health is complicated, due likely to the genetic diversity between
individual species and, thus, several conflicting studies exist on its association with obesity, diabetes,
and NAFLD, while others report positive correlations with improvements in various metabolic
parameters (recently reviewed in [179]).

Chronic treatment with THC reduced weight and fat mass gain as well as energy intake
in diet-induced obese but not lean mice, in association with alterations in the gut µB, which
included increased levels of A. muciniphila and inhibition of the obesity-induced shift in the
Firmicutes/Bacteroidetes ratio [167]. In an experimental autoimmune encephalomyelitis mouse
model meant to mimic multiple sclerosis, a combination of the phytocannabinoids THC and CBD
attenuated the induced inflammation and disease scores and significantly modulated the µB, decreasing
the levels of A. muciniphila [180]. Fecal material transplantation confirmed that the protective effects
were mediated by changes in the µB. Further unpublished data suggest that THC-mediated effects on
the µB may be due, in part, to alterations in the host immune system, which has a complex interaction
with the µB throughout a host’s lifespan [181].

It is still unclear if the modulation of the µB by THC is dependent on CB1 activity. However,
inhibition of CB1 with the inverse agonist rimonabant alters the µB composition of diet-induced obese
mice, including increasing A. muciniphila in conjunction with metabolic parameter improvements [21].
Further, an adipose tissue-specific knockout of a major NAE anabolic enzyme, NAPE-PLD, which
reduced local OEA, PEA and SEA, but not AEA levels, inhibited adipose tissue browning, and
led to increased weight gain, glucose intolerance, and dyslipidemia in addition to exacerbating
diet-induced obesity [19]. These effects were associated with an alteration in the gut µB which when
transferred to germ-free mice, partially reproduced the phenotype, and are therefore likely to be
CB1-independent, as the affected NAEs are ligands for other eCBome receptors, including TRPV1,
which, as indicated above, impacts upon metabolic health, at least in part through alteration of the µB.
Taken together, the above studies indicate that cannabis use—through its psychoactive constituent,
THC, and non-psychoactive phytocannabinoids—potentially impacts upon metabolic health, in part
by modulating µB constituents.

9. Conclusions

In summary, we have reviewed several examples of how the lifestyle–eCBome–µB triangle, with
its multifaceted aspects, is likely to play a fundamental role in both metabolic health and metabolic
syndrome (Figure 2). It is likely that several healthy and “bad” lifestyle habits, in synergy with
other environmental factors, independently affect both eCBome signaling and the µB, and hence
help in determining their correct or defective control of energy metabolism, respectively. It is also
possible, however, that eCBome and µB crosstalk—which has not yet been fully explored—directs the
manner in which lifestyle cues result in virtuous or vicious circles that can respectively counteract or
accelerate the development of metabolic syndrome. The molecular aspects of the lifestyle–eCBome–µB
triangle, therefore, need now to be fully elucidated in order to exploit this knowledge for new lifestyle
(e.g., nutritional, physical activity, etc.) and pharmacological interventions aimed at combating
the appearance of one or more of the metabolic syndrome features that together contribute to the
development of type 2 diabetes and cardiovascular risk factors.
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Receptors
Cav3 T-type Ca2+ channel
CB1 cannabinoid receptor 1
CB2 cannabinoid receptor 2
GPR110 G protein-coupled receptor 110
GPR119 G protein-coupled receptor 119
GPR18 G protein-coupled receptor 18
GPR55 G protein-coupled receptor 55
PPARA peroxisome proliferator-activated receptor alpha
PPARG peroxisome proliferator-activated receptor gamma
TRPV1 transient receptor potential cation channel sub-family V member 1
TRPV4 transient receptor potential cation channel subfamily V member 4
Anabolic enzymes
AANATL2 arylalkylamine N-acyltransferase-like 2, isoform A
ABHD4 alpha/beta-hydrolase domain containing 4
DAGLA/B diacylglycerol lipase alpha/beta
GDE1 glycerophosphodiester phosphodiesterase 1
GLYATL3 glycine N-acyltransferase-like protein 3
LPA-Phos lysophosphatidic acid phosphatase
Lyso-PLC lysophospholipase C Lyso-PLC, lysophospholipase D
NAPEPLD N-acyl phosphatidylethanolamine-hydrolyzing phospholipase D
PA-phos. hyd. phosphatidic acid phosphohydrolase
PLA1A phospholipase A1 member A
PLC phospholipase C
PLCB phospholipase C beta
PTPN22 tyrosine protein phosphatase non-receptor type 22
sPLA2 soluble phospholipase A2.
Catabolic enzymes
ABHD12 alpha/beta-hydrolase domain containing 12
ABHD6 alpha/beta hydrolase domain containing 6
COMT catechol-O-methyltransferase
COX2 cyclooxygenase 2
CYP450 cytochrome P450
FAAH fatty acid amide hydrolase
LOX12/15 arachidonate lipoxygenase 12/15
MAGK monoacylglycerol kinase
MGLL monoacylglycerol lipase
NAAA N-acylethanolamine-hydrolyzing acid amidase
PAM peptidyl-glycine α-amidating monooxygenase
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