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Systems biology approaches identify
metabolic signatures of dietary lifespan and
healthspan across species

Tyler A. U. Hilsabeck 1,2,3,11, Vikram P. Narayan1,4,11, Kenneth A. Wilson 1,2,
Enrique M. Carrera1,5, Daniel Raftery 6, Daniel Promislow 7,8,9,
Rachel B. Brem 1,2,10, Judith Campisi 1 & Pankaj Kapahi 1,2

Dietary restriction (DR) is a potent method to enhance lifespan and health-
span, but individual responses are influenced by genetic variations. Under-
standing how metabolism-related genetic differences impact longevity and
healthspan are unclear. To investigate this, we used metabolites as markers to
reveal how different genotypes respond to diet to influence longevity and
healthspan traits. We analyzed data from Drosophila Genetic Reference Panel
(DGRP) strains raised under AL and DR conditions, combining metabolomic,
phenotypic, and genome-wide information. We employed two computational
and complementary methods across species—random forest modeling within
the DGRP as our primary analysis and Mendelian randomization in human
cohorts as a secondary analysis. We pinpointed key traits with cross-species
relevance as well as underlying heterogeneity and pleiotropy that influence
lifespan andhealthspan. Notably, orotatewas linked to parental age at death in
humans and blocked the DR lifespan extension in flies, while threonine sup-
plementation extended lifespan, in a strain- and sex-specific manner. Thus,
utilizing natural genetic variation data from flies and humans, we employed a
systems biology approach to elucidate potential therapeutic pathways and
metabolomic targets for diet-dependent changes in lifespan and healthspan.

Aging is the leading cause of morbidity and mortality in most devel-
oped countries. Dietary restriction (DR), restricting specific nutrients
or total calories without causing malnutrition, has been demonstrated
as a robustly conserved means to extend lifespan and health span.
Diet-responsive pathways such as the Target of Rapamycin and Insulin-
like signaling have been implicated as driving factors of lifespan
extension by DR; however, variation in response to diet between

different individuals within the same species indicate that additional
mechanisms influence diet response and remain yet to be elucidated1.
Recently, genetic variation has been implicated as a significant driver
of these phenotypic responses to DR. Studies in invertebrates2 and
rodents3 have utilized systems biology approaches to identify addi-
tional DR-responsive factors that influence metabolic health and life-
span. Additionally, multi-omics approaches have identified novel
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metabolites that are regulated by genetic variation to influence long-
evity under DR4. Nevertheless, in 2020, Jin and colleagues highlighted
the challenge of establishing a correlation between lifespan and
metabolite traits. This difficulty arises from the strong association
between the DR response in mean lifespan and the metabolite traits
observed in flies following the standard diet (AL). To avoid the con-
founding effects of an AL diet on the DR response, Jin, et al.4 used the
residuals from a simple regression to identify connections between
metabolites and lifespan. Meanwhile, another study conducted by
Wilson, et al.2 highlighted a distinct absence of correlation between
healthspan traits and lifespan traits, revealing disparate genetic reg-
ulators for each facet. Despite the findings from these studies, it
remains unclear how different phenotypic interactions occurring
within an individual influence the relationship between health and
longevity.

A powerful approach to exploring the relationshipbetweenhealth
and longevity is to incorporate convergent data frommultiple species
and multiple genotypes within each species. Research conducted
using model organisms has identified many candidate genes and
pathways responsible for the aging process5,6. Someof thesegenes and
processes belong to evolutionarily conserved nutrient-sensing path-
ways, which suggests theymaybe relevant in humans aswell.However,
several large genome-wide association studies (GWAS) of human
longevity show a surprising lack of association with lifespan-extending
genes identified in model organisms7. Despite this overall disconnect,
there are genes that have repeatedly shown an association with life-
span, such as FOXO3 and APOE8,9. The disconnect might, in part, arise
from the effects of natural variation in a lifespan-associated gene,
highlighting the importance of studying natural variation in model
systems. An effective approach to investigate this variation across
multiple species involves utilizing themetabolome as indicators of the
pathways utilized in an individual’s dietary response, akin to foot-
prints. While utilizing the metabolome has previously been done, as
mentioned above, a fresh approach was required to establish a con-
served connection between variations in metabolites with health span
and lifespan.

Machine learning, which leverages well-established high-dimen-
sional datasets to create more accurate predictive models for specific
phenotypes, has proven valuable in discovering novel factors
impacting a range of biological traits, including those related to
longevity and health10. However, it remains to be seen how the com-
bined utilization of metabolomic and phenotypic indicators can
transcend species and genotypes in response to DR, enabling the
prediction of specific elements contributing to various health and
longevity attributes.

In previous work, we utilized the Drosophila Genetic Reference
Panel (DGRP) to explore the effects of natural genetic variation on DR
response in metabolic phenotypes11, the metabolome4, and lifespan
and healthspan. Across these datasets, we identified that no single
metric could reliably predict lifespan, suggesting that multiple factors
collectively influence the longevity outcomes of DR. Here, we use this
data to probe the interplay between metabolomic, metabolic, and
healthspan-related traits and lifespan. Employing random forest
modeling, we pinpoint the relevance of metabolites orotate, threo-
nine, and choline in constructing multiple lifespan models. This
modeling approach circumvents potential issues arising fromstandard
diet (AL) traits influencing DR response due to its bagging
methodology12–14. Additionally, to identify genes that regulatemultiple
traits, we incorporated previously published GWAS for all traits to
identify genetic candidates that may impact these associations,
including Src64B, which demonstrates an association with mean life-
span. This study represents a pioneering effort, being the first to
leverage genetic data from 174 strains, encompassing 34 distinct
phenotypes and 111 measured metabolites within those strains, while
also investigating targets within a human dataset.

To determine the therapeutic potential of metabolites derived
from machine learning targets in the DGRP, we performed Mendelian
randomization (MR) using metabolomic data from individuals in the
Twins UK and UK Biobank cohorts. In this situation, MR ismore robust
to potential confounding and reverse causality, which may help esti-
mate the causal effects of metabolites on health and lifespan out-
comes. The MR analysis is based on three fundamental assumptions:
Firstly, the instrumental variables (IVs), i.e., single nucleotide poly-
morphisms (SNPs), must be valid proxies associated with the meta-
bolites. Secondly, the IVs must not be associated with potential
confounders or alternate pathways. Lastly, IVs must not influence the
outcome directly but act only through the metabolites. Collectively,
evolutionary conserved findings between humans andDrosophilahave
the potential to shed light on the intricate nature of dietary responses
and their modulation by genetic variation. We evaluated the hypoth-
esis that the metabolites identified through a random forest, together
with their candidate genes influencing longevity in Drosophila, may
also exhibit associations with human health and lifespan. Our findings
uncover factors contributing to lifespan determination under DR
(Fig. 1A). This approach has led us to uncover pathways that could
serve as valuable biomarkers of health and potential therapeutic tar-
gets for augmenting both human lifespan and healthspan.

Results
DGRP strains exhibit a wide variation in metabolite and pheno-
type responses to diet
We combined and reanalyzed data from previously published DGRP
metabolite and phenotype datasets, including Nelson et al.11, Jin4, and
Wilson et al.2, with flies fed both ad libitum (AL, 5.0% yeast extract) and
DR (0.5% yeast extract) dietary conditions. From these data, we sepa-
rated ten primary traits generally used in lifespan and healthspan
determination studies as ‘response’ variables for modeling and used
the remaining traits as ‘predictors’ (Supplementary Data 1). Principal
component analysis (PCA) of predictors, after removing strains with
incomplete data across all traits, failed to cluster into groups by diet.
To determine if trait values from these strains would allow the data to
cluster by diet, we imputed averaged values across all strains for these
missing values (Supplementary Data 1 and 2). Strains with missing
values included four that lacked data for many phenotypes but had
data for all metabolites and 33 additional strains with all metabolite
data but missing at least one phenotype value (Supplementary
Data 1 and 2). PCA of this imputed list clustered by diet and was used
for downstream analysis, similar to what was previously shown4. Diet
was part of principal component 1 (PC1), which explained ~23% of the
data’s variance. Approximately 32 principal components were suffi-
cient to explain 85% of the variance in the data. Since diet explained a
large portion of the variance, we determined the dietary response of
each DGRP strain for each trait (value on AL subtracted from the value
on DR, “DR-AL”). In general, DGRP strains responded to a DR diet
similar to what has been seen before, with over 93% of strains having
decreased body weight and at least 78% having an increase in most
lifespan response metrics (Fig. 1B–E and Supplementary Fig 1). These
data demonstrate the variation in dietary response across the DGRP,
and the few strains that do not have decreased body weight or
increased lifespan from DR can give insight into the mechanisms
underlying these and other positive effects of dietary intervention.

Correlation of dietary response in DGRP strains identifies few
metabolites that correlate with lifespan- and healthspan-related
phenotypes
We looked for correlations between our predictor traits in each diet
and the dietary response (AL, DR, and DR-AL), and found few corre-
lations across data sets, with the majority of these being weak corre-
lations (DR-AL, Fig. 2). Just as observed by Jin et al. in 2020, we also
noted a moderate correlation (r = 0.38, P = 2.14 × 10−6) in median
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lifespanwhen comparing our “DR-AL” and AL datasets, and similar low
to high correlations with the other lifespan metrics. We performed
hierarchical clustering using Ward’s minimum variance method to
form trait clusters. The strongest correlations on either diet alone (DR
or AL) or used in the same data set (DR & AL), were between

metabolites in the same pathway or between similar phenotypes
(Supplementary Fig. 2A–C).

This trend continued for correlations in dietary response (DR-AL),
though the top three correlations were between similar phenotypes
rather than between metabolites. Unsurprisingly, the same pairs were

A

Body Weight Dietary ResponseD

R
D( esnopse

R yratei
D

-
)LA

Strain

Max LS Dietary ResponseE

D
ie

ta
ry

 R
es

po
ns

e 
(D

R
-A

L)

Strain

Late-life Initial Mortality (α) Dietary ResponseB

R
D( esnopse

R yratei
D

-
)LA

Strain

Late-life Rate of Aging (β) Dietary ResponseC

D
ie

ta
ry

 R
es

po
ns

e 
(D

R
-A

L)

Strain

Fig. 1 | Diet influences lifespan and healthspan in a genotype-specific manner.
DGRP shows strong strain-specific responses to diet (A) Graphical workflow for
modeling data from Drosophila and filtering traits using Mendelian randomization
of human data.BDGRP strain traits on a high yeast (AL, red) or low yeast (DR, blue)

diet were used to determine strain-specific dietary response (DR-AL). B–E Bar
graphs of DGRP strain dietary response in B late-life initial mortality α, C late-life
rate of aging β, D body weight (mg), and E max lifespan.
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strongly correlated in all comparisons. The lack of strong correlations
between any of the predictor traits and the response traits points to a
need for a different method for identifying factors that could predict
and/or “build” these response traits.

Random forest modeling identified metabolite and phenotype
traits used to build multiple lifespan response traits
To determine the predictor traits that contribute to determining the
lifespanandhealthspan response traits,we built randomforestmodels
for each response using all predictor traits as inputs. Predictors were
used to build 10,000 initial models per response trait, with a final
model beingmadebasedon the initial 10,000. Predictors used tobuild
the final models were given an importance score based on the pro-
portion of initial trees/estimators for which they were included.
Modelswere created for eachdiet alone, DR&AL together, and theDR-
AL response, and the important predictor traits were plotted for each
response trait (Fig. 3, Supplementary Data 3). Models for lifespan
metrics in any dietary condition tended to be built with climbing-
related traits, except the DR-AL response lifespan models, which were
also built by metabolite traits (Fig. 3A–F, predictor traits for the day
95% were dead dietary response model are not shown and can be
found on the DR-AL sheet of Supplementary Data 3). Specifically,
threonine was used in at least 1% of the trees used for all 7 lifespan

responsemodels, peaking at 3% and 4% of the trees in themax lifespan
and day 95% of flies deadmodels, respectively. Arginine was used in all
lifespan models except for max lifespan, being in 4% of the late-life α
trees, 5% of the late-life β, 4% of the day 95% of flies dead, and 3%of the
variance in thedayof deathmodel trees.Cholinewas in 1%of late-lifeβ,
variance, and max lifespan model trees. Orotate was in 2% and 5% of
late-life α and late-life β trees, respectively. Metabolites quinolinate,
methylhistidine, and glyceraldehydewere also used to build at least 1%
of trees for one or multiple lifespan models. The more traditional
physical response traits (glucose levels, triglyceride levels, and body
weight), were built predominantly by metabolites and protein levels
(Fig. 3G–I). Particularly, themodels for glucose levels that included the
AL diet had malondialdehyde as the most important trait.

Many of these traits have previously been associated with the
model trait found here. The metabolites kynurenine, quinolinate,
myristic acid, and threonine were each used to build at least one life-
span random forest model and have been previously implicated in
lifespan.

We visualized the models and their important traits using a
combined Kamada-Kawai and forceatlas force-based network organi-
zation, which grouped traits in similar clusters based on the push of
common factors15,16. These networks were further augmented by the
addition of top candidate genes from previously published GWAS

Fig. 2 | DGRP trait dietary responses correlate with similar traits, but few
metabolites correlate with phenotypes. Heatmap of metabolite and phenotype
dietary response correlations. Traits are clustered via hierarchical clustering using
the Ward method, with five clusters highlighted on the diagonal. Names of similar

traits within the same datatype that were correlated are highlighted as popouts.
Pearson correlation values are shown as a gradient from 1 (dark blue) to −1
(dark red).
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candidate genes of each trait, based on p-value2,4,11. As expected, the
lifespan response traits were grouped and had a few common pre-
dictors and genes, specifically late-life α and late-life β, and mean and
median lifespans had significant overlap with each other (Fig. 4, Sup-
plementary Fig. 4A, and Supplementary Data 3). For example, myristic

acid, glycerol phosphate, and the gene pbl, were included in the ran-
dom forest models for mean and median lifespan or were GWAS
candidates, respectively. Similarly, climbing-related response traits
clustered, meaning they were used in the same random forest models,
though thereweremorecommonGWAScandidates, particularly in the

G Body Weight (mg) H TG (μg)/Weight (mg) I Glucose (μg)/Weight (mg)

Mean LSA Median LSB Max LSC

VarianceFDay 21 to 95% Dead - βEDay 21 to 95% Dead - αD

Fig. 3 | Random Forest models utilize common traits to build models for life-
span. Predictor traits with model importance of 0.02 or higher used to build
Random Forest models of DGRP trait dietary response of (A) mean lifespan,
Bmedian lifespan, C maximum lifespan, D initial mortality (α), and E rate of aging
(β) for mortality from day 21 to the day 95% were dead, F variance in day of death,

G body weight (mg), H triglyceride levels (μg) normalized by weight (mg), and
I glucose levels (μg) normalized by weight (mg). Predictor traits for the day 95%
were dead dietary response model are not shown and can be found on the DR-AL
sheet of Supplementary Data 3.
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ALgroup (Supplementary Figs. 3Aand4B). Visualizing the connections
between these three datasets in this manner gives a better sense of
how lifespan and healthspan response traits are built and the genetics
that underlie them (Supplementary Figs. 3 and 4).

Estimates of causal effects ofmetabolites onhealth and lifespan-
related traits
We next used the networks developed above to identify multiple
responsemodels,with traits identified tobe relevant to humans viaMR
and selected for validation inDrosophila. We explored the utility of the
identified metabolite associations from the random forest model
approach by applying them in two-sample MR using the IVW method
as the primary analysis. We identified 8 common metabolites in Dro-
sophila that were also detected in available GWAS for serum metabo-
lites in humans and influence multiple lifespan- and health-span-
related traits (Fig. 5A).

Orotate, one of two metabolites implicated in both healthspan,
and lifespan random forest models was also significantly associated
with parental longevity (combined parental age at death) using the
standard IVWanalyses (βIVW = −0.02; 95%CI,−0.03 to−0.002; P =0.03;
Fig. 5A). Though we were unable to carry out sensitivity analyses and
test for pleiotropic effects of orotate on longevity due to an insuffi-
cient number of SNPs, the Cochran’s Q statistics showed no evidence
of heterogeneity (Q = 2.93, P =0.09). The second metabolite, choline
though not significantly associated with parental longevity, was sig-
nificantly associated with a decrease in BMI (βIVW = −0.06; 95% CI,
−0.08 to −0.03; P = 2.17 × 10−08) which may explain the effect on

longevity observed in the random forest model and survival assays in
Drosophila. Similar findings were observed using the weighted-median
estimator (βweighted median = −0.04; 95% CI, −0.06 to −0.007;
P = 1.19 × 10−02). Cochran’s Q statistics showed no evidence of hetero-
geneity in the IVW analyses (P =0.12). The MR-PRESSO global test
(P = 0.12) but not the intercept of the MR-Egger method (P =0.03)
confirmed the absence of pleiotropy in the IVW estimate. Full MR
results can be found in Supplementary Data 4.

Orotate’s lifespan-shortening effect is diet-independent, but the
mechanism is strain- and sex-specific
To validate the metabolites that were used to both build Random
Forest models of lifespan and healthspan response and were found to
be relevant for humans via MR, we supplemented our AL or DR diets
with candidate metabolites (Fig. 5A). Validated metabolites were
selected based on the number of lifespan models they were incorpo-
rated in, the average odds-ratio from MR, and the novelty of the life-
span association (Supplementary Data 5). Orotate supplementation
significantly shortened lifespan at 10mM in both strains and sexes
(w1118 females (Fig. 5B), Canton S females (Fig. 5C), w1118 males
(Fig. 5D), and Canton Smales (Supplementary Figs. 5 and 6). Using Cox
proportional hazards analysis, we dissected the effect sizes for diet (AL
was reference), strain (w1118 was reference), and orotate supple-
mentation (0mM was reference) on mortality in the fly separated by
sex (Fig. 5E (females) and F (males), analysis with both sexes in Sup-
plementary Fig. 7A). Being on theDRdiet independently decreased the
hazard ratio in a sex-specificmanner (HR =0.27, P < 1 × 10−27 in females,

Fig. 4 | Predictor traits used to build RF lifespan models grouped similar life-
span and healthspan response traits in a network diagramof dietary response.
A network diagram of lifespan and healthspan response traits (teal nodes) con-
nected to their top 3 predictor traits with model importance of 0.02 or higher (red

nodes) by gray edges whose widths represent their importance. Nodes repel each
other, forcing response traits built with similar predictor traits to be pushed
together (cluster).
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HR=0.51, P ~ 8.13 × 10−19 in males). An AL diet supplemented with
10mM orotate had a larger increase in the hazard ratio of males
(HR = 1.80, P < 1 × 10−27) compared to females (HR = 1.35, P < 1 × 10−27).
While thefly strain (genotype/geno)was not independently significant,
there were significant sex-specific interaction effects with diet and
orotate separately, or with orotate and diet in females. The strongest
effect size was the interaction between sex and diet (HR = 5.20,
P < 1 × 10−27).

Considering the sex- and strain-specific effects of orotate on
lifespan and given orotate’s previously shown role in fatty acid

oxidation and lipidmetabolism,weused a starvation assay to ascertain
whether orotate supplementation was killing the flies by impacting
their fat utilization17,18. Unlike the survival assays previouslymentioned,
orotate supplementation of the DR diet prior to starvation conditions
did not affect survival compared to the DR control group for Canton S
females (Fig. 5G, ALvsDR P = 2.83 × 10−9, ALvsDR+10mM P = 1.79 × 10−7,
DRvsDR+10mM P = 0.48), but prevented the benefit of the DR diet for
w1118 females (Fig. 5H, ALvsDR P = 2.09 × 10−4, ALvsDR+10mM
P =0.49, DRvsDR+10mM P = 2.09 × 10−5). The males of each strain
showed similar trends, thoughCanton Smales showedno effect of diet

D H

E

A B

C D

F

G
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on survival under starvation conditions (Supplementary Fig 6, Sup-
plementary Data 6). These data show a strain- and sex-specific
response to orotate supplementation and suggest separate mechan-
isms causing the lifespan decreases.

Shared metabolites between Random Forest lifespan models
andMRexhibit sex and strain-specific lifespan-extending effects
in Drosophila melanogaster
Four serummetabolites (urate, inosine, histidine, and threonine) were
detected in the Drosophila lifespan-only random forest models
(Fig. 6A). In the MR analysis, none of these metabolites were sig-
nificantly associated with parental longevity (all P <0.05). However,
three of the four overlapping metabolites had significant effects (all
P >0.05) on BMI, which can account for the effects on lifespan: histi-
dine βIVW = −0.06; 95% CI, −0.13 to −0.001; inosine βWald ratio = 0.03;
95% CI, 0.02–0.05; and threonine βWald ratio = −0.05; 95% CI,
−0.06–0.05; Fig. 6A. We were unable to carry out sensitivity analyses
and test for pleiotropic effects of all metabolites on BMI due to an
insufficient number of SNPs, however the Cochran’s Q statistics
showed no evidence of heterogeneity (all P >0.05)

Amongst the remaining metabolites (quinolinate, glucose, uri-
dine, and kynurenine) also detected in the healthspan random forest
model, only glucose and kynurenine were significantly associated with
healthspan-related traits in the MR analyses (all P >0.05). Genetically
predicted glucose was significantly associated with both higher BMI
(βIVW =0.05; 95% CI, 0.009–0.09; P = 1.70 × 10−02) and lower frailty
index (βIVW = −0.08; 95% CI, −0.03 to −0.04; P = 1.21E−04). The
Cochran’s Q statistics,MR-PRESSO global test, and the intercept of the
MR-Egger method showed no evidence of heterogeneity or pleiotropy
in the IVW analyses (all P >0.05). Kynurenine was also significantly
associated with increased BMI (βwald ratio = −0.02; 95% CI, −0.03 to
−0.001; P = 4.04 × 10−08) and decreased frailty index (βwald ratio = 0.04;
95% CI, 0.007–0.06; P = 1.59 × 10−02). Although Cochran’s Q statistics,
MR-PRESSO global test, and the intercept of the MR-Egger method
showed no evidence of heterogeneity or pleiotropy in the
glucose–frailty index estimates (all P >0.05), there was potential het-
erogeneity (Q = 25.07, P = 1.50 × 10−05) and horizontal pleiotropy (glo-
bal test p value = 7.00 × 10−03) detected in the associations with BMI.

To validate the metabolites that were used to build Random
Forest models of lifespan response and found to be relevant for
humans viaMR, we supplemented our AL diet with 3 concentrations of
candidate metabolites (Fig. 6A). Validated metabolites were selected
as described above. The impact of candidate metabolites choline,
threonine, histidine, or orotate, on the survival of males and females
from two fly strains, w1118 and Canton S, was tracked and used to
validate their role in lifespan determination. Eachmetabolite showed a
strain-, sex-, and dose-specific effect on lifespan (Fig. 6B, Supplemen-
tary Fig. 5). Choline and threonine extended or shortened lifespan in a
strain-, sex-, and dose-specific manner (Fold changes compared to
0mM controls and Cox proportional hazards p values summarized in
Fig. 6B, Supplementary Fig. 5). Supplementation of a DR diet with

threonine, choline, or histidine showed similar strain- and sex-specific
lifespan effects compared to AL, with 10mM threonine supplementa-
tion extending femaleCanton S lifespanon both AL andDRdiets (0.24-
and 0.08-fold changes in mean lifespan, respectively. Figure 6C, Sup-
plementary Fig. 6). Using Cox proportional hazards analysis, we dis-
sected the effect sizes for diet (AL was reference), strain (w1118 was
reference), and threonine supplementation (0mM was reference) on
mortality in thefly separatedby sex (Fig. 6D, analysiswith both sexes in
Supplementary Fig. 7B). Being on theDRdiet independentlydecreased
the hazard ratio in a sex-specific manner (HR =0.10, P < 1 × 10−27 in
females, HR =0.42, P < 1 × 10−27 in males). An AL diet supplemented
with 10mM threonine had a larger decrease in the hazard ratio of
females (HR =0.87, P < 1 × 10−27) compared to males (HR=0.94,
P < 1 × 10−27). There were interaction effects of threonine with diet or
with diet and genotype only in female flies. Together, these results
validate our modeling approach and identify specific metabolites that
are relevant for lifespan and are predicted to have translatable effects
in humans. The variable response to metabolites also highlights the
need for personalized approaches to lifespan and healthspan
interventions.

Discussion
Genetic variability has been shown to greatly influence a strain’s
response to various conditions, including changes to diet2,4,11. Given
that DR is one of the most robust ways to impact lifespan and other
healthspan traits across species, understanding the underlying genetic
variation and its role in diet-specific responses would help identify the
mechanisms by which it functions1. While studies have investigated
similar connections4,19–22, none have employed a comparable systems
biology approach that incorporates data from such a diverse range of
model organism genotypes. Additionally, our utilization of MR with
human data to uncover pertinent outcomes, along with our distinct
modeling and visualization strategy for candidate selection and vali-
dation, sets our approach apart. Here, we have demonstrated the
variability in outcome responses on one of two diets and the differing
responses of eachgenotype.We have demonstrated that trait levels do
play a role in different lifespan and healthspan outcomes, despite the
lack of correlation across datasets between metabolites and pheno-
types. This lack of correlation could indicate non-linear and/or indirect
relationships between traits that would not be found in standard cor-
relation analysis. We used a machine learning approach to identify
non-linear relationships between our response and predictor traits.
Our approach produced a value for each trait based on the proportion
of trees/estimators that the trait was included in. This allowed us to
confirm the importance of traits previously linked with their response
variable, despite the lack of correlation across datasets. By using an
unbiased, data-driven approach, wewere able to identify relationships
that would not be found in standard correlation analysis.

Some examples of traits used to build our response models
include the metabolite malondialdehyde, which has previously been
linked to glucose and triglyceride levels23–25.We found it was important

Fig. 5 | Orotate’s significant decrease in fly lifespan is independent of diet, but
the mechanism is strain- and sex-specific. A Effect estimates (betas per s.d.
increase in the exposure) fromMendelian randomization (MR) analysis performed
under the inverse variance-weighted (IVW) model are shown for BMI, frailty, par-
ental age at death, and Type 2 diabetes phenotypes in humans for metabolites
found to be important in both healthspan and lifespan Random Forest models.
Betas and P values are shown in Supplementary Data 4. Supplementation of 10-
mM orotate significantly shortens lifespan in w1118 females (B AL FC ~ −0.36,
p ~ 4.58 × 10−17, DR FC to −0.85, p ~ 5.66 × 10−32), Canton S females (C AL FC ~ −0.33,
p ~ 2.59 × 10−17, DR FC ~ −0.80, p ~3.02 × 10−25), and w1118 males (D AL FC ~ −0.58,
p ~ 8.90 × 10−30, DR FC ~ −0.799, p ~ 3.64 × 10−30) Drosophila melanogaster strains on
both AL and DR diets. E, F Forest plots of hazard ratios from Cox proportional
hazards analysis significant results testing diet (AL as reference), orotate levels

(0mM as reference), genotype (w1118 as reference), and their interaction terms in
flies separated by sex (Females–E,Males–F). Hazard ratios (HR) and 95%confidence
intervals (CI) are shown for each predictor variable. All P values are two-sided and
have not been corrected for multiple testing. G AL diet, but not DR diet supple-
mented with 10-mM orotate, significantly shortened survival under starvation
conditions compared toDRdiet in Canton S femaleD.melanogaster (p ~ 2.83 × 10−9,
and 0.48, respectively). H AL diet alone and DR diet supplemented with 10-mM
orotate, significantly shortened survival under starvation conditions compared to
DR diet in Canton S female D. melanogaster (p ~ 2.09 × 10−4, and 2.00 × 10−5,
respectively), but are not significantly different from each other (p ~ 0.49). Life-
spans began with 200 flies per group, with orotate supplementation lifespans
repeated twice, and starvation lifespan once. AL diet is shown with black lines, DR
with blue.
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formodeling glucose levels onAL andDR, separately, aswell as theDR-
AL response in glucose and triglyceride levels. Another metabolite
previously associatedwith triglyceride levels, glyceraldehyde, was also
found to be an important feature in our DR-specific model. Addition-
ally, this metabolite was important for our initial mortality and rate of
aging dietary response models, aligning with studies showing glycer-
aldehyde and the enzyme GAPDH as associated with lifespan26,27. The
metabolite methylhistidine, renowned for its correlation with the

extension of lifespan induced by the drug RU486’s transgene activa-
tion in flies, as well as its link to mortality and frailty, displayed sig-
nificance in our initial mortality model under DR conditions28.
Moreover, it emerged as notably significant in the dietary response
influencing maximum lifespan. A downstream metabolite in the well-
known kynurenine/NAD+ pathway, quinolinate, which has previously
been associated with aging, was an important feature in lifespan
models from both diets, separately, and the dietary response29,30.

DC

A

B
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Metabolites threonine, arginine, and choline were also included in our
lifespan and healthspan models and had previously been reported to
influence lifespan31–39. Threonine was used to build 8 of the 9 lifespan
models and has been shown to increase lifespan in C. elegans37,40–42.
Long-term supplementationwith threoninewas also found to improve
lipidmetabolism and inhibit fatmass inmice in the prevention of diet-
induced obesity43. While threonine supplementation or preventing its
catabolism can extend lifespan, threonine may also affect lifespan by
modulating BMI on high-fat diets. We found diet-, strain-, and sex-
specific effects of threonine supplementation on lifespan in Droso-
phila. Population studies on associations of threonine with type 2
diabetes mellitus (T2DM) are also mixed, ranging from positive to no
association44–46. Associations of overweight and obesitywith higher all-
cause mortality are broadly similar in different populations47. Threo-
nine is also currently in Phase 4 Trials for T2DM as part of an amino
acid infusion to better understand glucagon and insulin release in
comparison to glucose alone in obese individuals with and without
T2DM (ClinicalTrials.gov ID NCT05264727). Kynurenine and quinoli-
nate have both been positively associated with age in humans, with
quinolinate also being strongly associated with frailty and mortality48.
Additionally, myristic acid is associated with maximum lifespan
potential in mice49. The use of traits already shown to play a role in
lifespan validates our modeling and suggests the importance of the
other candidates it identified. Surprisingly, while climbing and lifespan
traits were previously shown to not be correlated, we found climbing
traits to be important in our models of lifespan2.

We validated our approach to identifying underlying traits impli-
cated in lifespan and healthspan by using traits that have already been
shown to play a role in lifespan.While analyses of dietary influences on
lifespan can be challenging due to genetic associations characterized
by heterogeneity or pleiotropy identified using MR, we also used
Drosophila to screen the functional consequences of different meta-
bolites on health and lifespan traits. This approach holds the potential
to overcome previous shortcomings of both fields and identify
potential therapeutic pathways and metabolomic targets for diet
response, lifespan, and healthspan. Indeed, we found several traits,
including orotic acid, previously unconnected to lifespan or health-
span traits that make promising candidates as potential regulators or
biomarkers. Administration of orotic acid is a well-known inducer of
fatty liver conditions in rats50–52. Although the mechanisms underlying
orotic acid-induced fatty liver are not entirely conclusive, various
studies have proposed several potential pathways, including impaired
fatty acidoxidation, upregulated lipogenesis, and adecrease inhepatic
lipid transport17,18. In mammalian model organisms, orotic acid-
induced fatty liver is species-specific, and thus far, only rats have
exhibited susceptibility to its effects53. Our results also showed a
genotype-specific response to orotic acid supplementation indicative
of impaired fatty acid oxidation during starvation in D. melanogaster.
Our approach using 174 strains and thousands of humans predicts this
variable response and suggests that the identified metabolites are
likely to be more conserved for most individuals. Nevertheless, the
precise molecular mechanism by which orotic acid leads to fat

accumulation remains unclear, particularly in the rat liver. It is worth
noting that the primary dietary source of orotic acid for the average
adult ismilk anddairy products (approximately 0.005%of total solids),
a concentration insufficient to elicit hepatic changes in rats54. However,
considering the levels of orotic acid present in numerous dietary and
health supplementswidely available, aswell as recentfindings showing
increased orotate levels to be detrimental to bone health, there is a
need for caution regarding potential health implications for humans55.

The few GWAS candidates that are shared between the traits used
to build our models could be used to influence multiple health out-
comes. The diet-specific nature of our models points to differing
mechanisms by which the fly responds to diet. The validation of
overlapping candidates from both our human and Drosophila data
shows that the candidates are relevant for both species. Threonine,
choline, and histidine, in particular, are known to increase with age in
humans of both sexes in plasma but not in blood56. While our data
shows the diet-specific impact of metabolites, the mechanisms
through which these metabolites work in humans may be different.
Studies conducted using summary statistics for MR analysis preclude
further stratification by sex or age. Furthermore, studies conducted in
populations of predominantly European ancestry also limit the gen-
eralizability of findings to other populations. Despite these limitations,
the broader implications of our work would potentially be more gen-
eralizable to other populations and highlight the need to study
individual-specific responses in lifespan.

Considering we saw different responses to metabolite supple-
mentation between both sexes of twoDrosophila strains, it is expected
that therewill be similar variation in the response of individual humans
to specific metabolites. The lifespan-extending effects of threonine
and choline in flies show the need for more studies to assess whether
they will have conserved effects in humans. Ways to optimize the
potential effects of traits identified by our approach would be to
combine treatments that target specific metabolites based on the
genotype of an individual. In total, our work demonstrates the
importance and value of incorporating multiple data sets to under-
stand how nature “built” systems that influence lifespan and health-
span traits. Our approach also identifies several new potential
mechanisms for how DR influences lifespan and healthspan across
multiple genotypes. We demonstrate that combining human and
Drosophila genetics is an effective approach to further our under-
standing of the underlying processes regulating longevity and may
ultimately contribute to anti-aging strategies in humans.

Methods
Fly lines, husbandry, and diet composition
All fly lines were maintained on a standard fly yeast extract medium
containing 1.55% yeast, 5% sucrose, 0.46% agar, 8.5% cornmeal, and 1%
acid mix (a 1:1 mix of 10% propionic acid and 83.6% orthophosphoric
acid) prepared in distilled water. To prepare the media, cornmeal
(85 g), sucrose (50g), active dry yeast (16 g, “Saf-instant”), and agar
(4.6 g) were mixed in a liter of water and brought to a boil under
constant stirring. Once cooled down to 60 °C 10ml of acid mix

Fig. 6 | Supplementation of Mendelian randomization and RF overlapping
metabolite threonine significantly extends fly lifespan and impacts starvation
survival in a genotype-, dose-, and sex-specificmanner. A Effect estimates (betas
per s.d. increase in the exposure) from Mendelian randomization (MR) analysis
performed under the inverse variance-weighted (IVW) model are shown for BMI,
frailty, parental age at death, and Type 2 diabetes phenotypes in humans for
metabolites found important in either lifespan or healthspan Random Forest
models. Betas and P values are shown in SupplementaryData 4.BHeatmapofmean
lifespan fold change values in mean lifespan for males and females of two Droso-
phila strains on anAL diet supplementedwith one of three concentrations of either
orotate, threonine, choline, or histidine, compared to the water-only vehicle con-
trol (0mM). Cox proportional hazards analysis p values were summarized (ns–not

significant, *≤0.05, **≤0.005, ***≤0.0005), with exact values found in Supplemen-
taryData 6.C Supplementationof 10-mMthreonine significantly extends lifespan in
Canton S males on both diets (AL FC ~ 0.24, p ~ 9.98 × 10−10, DR FC ~ 0.08,
p ~ 3.38 × 10−13). D Forest plots of hazard ratios from Cox proportional hazards
analysis significant results testing diet (AL as reference), threonine levels (0mM as
reference), genotype (w1118 as reference), and their interaction terms in flies
separated by sex. Hazard ratios (HR) and 95% confidence intervals (CI) are shown
for each predictor variable. All P values are two-sided and have not been corrected
for multiple testing. Lifespans began with 200 flies per group, with orotate and
choline supplementation were repeated twice, threonine and histidine once. AL
diet is shown with black lines, DR with blue.
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was added to the media. The media were then poured into vials
(~10ml/ vial) or bottles (50ml/bottle) and allowed to cool down before
storing at 4 °C for later usage. These vials or bottles were then seeded
with some live yeast just before the flies were transferred and used for
maintenance of lab stocks, collection of virgins, or setting up crosses.

For each cross, 12–15 virgin females of either w1118 or Canton S
strains were mated with 3–5 males of the same genotype in bottles
containing an intermediate diet with 1.55% yeast as a protein source.
Flies were mated for 5 days, then were removed. 9 days later, non-
virgin female and male progeny were separately sorted into an AL
(standard diet with 5% yeast) or AL diet containing one of three can-
didatemetabolite concentrations. Concentrations for eachmetabolite
were chosen based on a thorough literature review. 4 to 8 vials of 25
mated flies per vial were collected for each diet, maintained at 25 °C
and 65% relative humidity, and were on a 12-hour light/dark cycle.

Lifespan analysis
Flies were developed on standard fly 1.5% yeast extract medium
and were transferred to the necessary diet within 72 h after
eclosion. For survivorship analysis, vials with 25 mated flies were
transferred to fresh food every other day, and fly survival was
scored by counting the number of dead flies. Each lifespan was
repeated at least once to generate independent biological
replicates2,4,57–59. We used Cox proportional hazards analysis
implemented in the Python package ‘lifelines’ to analyze the sig-
nificance of the metabolite concentration on survival outcomes
compared to vehicle controls (0mM). We report the probability
that B1 = 0, from fitting the formula phenotype = B1*variable1.
Fold changes in mean lifespan compared to 0mM were calculated
using the following formula, (test concentration–0mM)/0mM.

Starvation assay
For starvation assays, flies (On AL media until the specified day) were
transferred to vials containing 1% agar, anddeathswere recordedevery
4–6 h, three times a day.

Genome-wide association mapping
We used DGRP release 2 genotypes, and FlyBase R5 coordinates for
genemodels. As inNelson et al.2,11, weusedonly homozygous positions
and a minor allele frequency of R 25% to ensure that the minor allele
was represented by many observations at a given polymorphic locus.
The collected phenotype and genotype datawere used as input into an
association test via ordinary least-squares regression using the Stats-
Models module in Python60. The linear model was phenotype = β1 ×
genotype + β2 × diet + β3 × genotype × diet + intercept. Nominal p
values denoted as “genotype” in Fig. 1A report the probability that
β1 ≠0, and those denoted as “interaction” report the probability
that β3 ≠0.

Principal component analysis
All DGRP metabolite and phenotype data for strains were first scaled
using the StandardScaler function of the sklearn package. Then miss-
ing values were imputed based on themean of all other strains for that
trait. PCA was performed on all strains using the PCA() and fit_trans-
form() functions in the sklearndecompositionpackage toobservehow
well the combined metabolome and phenome can separate samples
by diet.

Pearson correlation analysis
Pearson correlations between all metabolites and phenotypes were
performed on all strains for each diet combination using the cor()
function in the stats package in R programming. Heatmaps were cre-
ated for each correlation matrix with the corrplot function, using the
ward.D2 hierarchical clustering method to group predictor traits.

Random Forest Modeling
DGRP metabolite and phenotype data from each diet combination
were split into a response variable set composed of seven lifespan
traits [mean lifespan, median lifespan, max LS, day 95% of flies dead,
initial mortality (α), rate of aging (β), and variance in day of death] and
3 healthspan traits [glucose (μg)/weight (mg), triglycerides
(μg)/weight (mg), and body weight (mg)], and a predictor set con-
taining the remaining traits. Missing values were imputed based on the
meanof all other strains for that trait using the SimpleImputer function
in the sklearn.impute package61. Predictor and response traits were
then split into training (75% of data) and test (25% of data) sets using
the train_test_split function in the sklearn.model_selection package61.
Random Forest models were generated using the RandomForestRe-
gressor function in the sklearn.ensemble package using 10,000
estimators61. Mean absolute percentage error and R2 values were
determined using the mean_squared_error and r2_score functions in
the sklearn.metrics package61. Feature importances were extracted
from the final model.

Network diagrams
Network diagrams were created for all diet combinations using the
networkx package in Python to visualize and identify common traits or
GWAS candidate genes among the Random Forest models for each
diet combination62. Network layouts were determined by first applying
the spring_layout with a k parameter value of 5/

ffiffiffiffiffiffiffiffiffiffiffi

node
p

#, then applying
the kamada_kawai_layout with a scale value of 5.

Mendelian randomization
We selected genetic variants i.e., SNPs strongly associated with dif-
ferent circulating metabolites from three different GWAS available (N
up to 115,078). SNPs significantly associated with bloodmetabolites at
the genome-wide significance level (P < 5 × 10–8) were selected and
used. We used these genetic variants as IVs to examine the effects of
genetically proxied metabolites involved in parental longevity–age at
death, frailty index, and body mass index (BMI) in a two-sample sum-
mary data MR framework.

Exposures
Blood metabolite-associated SNPs and their genetic effects were
obtained from a large-scale whole-genome sequencing study of 644
bloodmetabolites63. Briefly, whole-genome sequencing of 1960 adults
of European descent was used to measure the association between
genetic variations and blood metabolite levels. The serum samples
were gathered over a period of 18 years and three clinical visits and
analyzed on a non-targeted metabolomics platform. A linear mixed
model was used to conduct association tests. Detailed reports for the
methodology, design, sample collection, quality control, and statistical
analyses of how the metabolomics analysis was performed are pro-
vided in the original study63.

Wherever possible, we also used GWAS with a larger sample size
albeit fewer metabolites overlapping with our random forest model.
Additional summary statistics for glucose, histidine, and total cholines
were also obtained from Nightingale Health Metabolic Biomarkers
Phase 1 release GWAS of 115,078 participants in the UK Biobank
(UKBB). SNPs underwent imputation using the HapMap-2 reference
panel, and subsequent GWAS analysis was conducted using a linear
regression model, with adjustments made for age, sex, and batch
effects. Following quality control, a total of over 12.3million SNPswere
retained for subsequent analysis. The summary level data can be
retrieved on the MRC-IEU database under the accession ID met-d64.

Data for kynurenine and uridine were also obtained from a sepa-
rate GWAS of non-targeted metabolomics. The study included 7824
participants from two European population cohorts: 1768 individuals
from the KORA F4 study in Germany and 6056 from the UK Twin
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Study65. Metabolic profiling was conducted on fasting serum samples
using high-performance liquid chromatography and gas chromato-
graphy separation combined with tandemmass spectrometry, leading
to the identification of 486 human serum metabolites. The final
genome-wide association analyses involved ~2.1 million SNPs. The
summary level data can be retrieved on the MRC-IEU database under
the accession ID met-a64.

Outcomes
As the primary outcome of the present analysis, we obtained genetic
association estimates for the variants selected as metabolite status
instruments with combined parental age at death, from the UK Bio-
bank participants of Europeandescent. Parental lifespan is widely used
as an outcome in genetic association studies as offspring inherit one-
half of their genetic code from their parents, resulting in genotypic and
phenotypic correlations66. Secondary outcomes related to health and
lifespan included frailty index, BMI, T2D, and T2D adjusted for BMI.
Briefly, summary statistics for the Frailty Index were collected from a
GWAS carried out among participants in the UK Biobank67. The Frailty
Index was constructed based on 49 items ranging from physical to
mental well-being and calculated as a proportion of the sum of all
deficits. Genetic predictors of BMI were obtained from the largest sex-
specific meta-analysis of GWAS in the UK Biobank GWAS and the
GIANT consortium68. Data summarizing SNPs linked to T2DM adjusted
for BMI were extracted from a GWAS meta-analysis encompassing
48,286 individuals with T2DM and 250,671 control individuals. T2DM
diagnosis relied on self-reported medical history and International
Classification of Diseases (ICD) codes within electronically linked
medical health records69. Data summarizing the correlation between
genetic variants and physician-diagnosed T2DMwere collected from a
recent GWAS meta-analysis involving 62,892 T2DM patients and
596,424 control individuals70. More details of the GWAS on each of the
outcomes can be found in their respective studies. The summary level
data for parental longevity, frailty index, BMI, T2DM, and T2DM
adjusted for BMI can be retrieved from the MRC-IEU database under
the accession ID ebi-a-GCST006702, ebi-a-GCST90020053, ieu-b-40,
ebi-a-GCST006867, and ebi-a-GCST007518 respectively.

Statistical analysis
We employed a two-sampleMR approach. To choose valid instrumental
SNPs, and ensure statistical independence across SNPs instrumenting
for metabolite, we pruned the SNPs to eliminate those in linkage dis-
equilibrium (LD) (r2 < 0.001, window size = 10,000kb) or absent from
the LD reference panel (1000Genomes European reference panel) using
the clump function within the TwosampleMR package. We harmonized
the SNP-exposure and SNP-outcome association data using the harmo-
nize data function of the TwoSampleMR R package71. Data harmoniza-
tion was carried out to ensure that the IVs had the same corresponding
alleles on both exposures and outcomes for their effects. Finally, we
calculated the F statistic for each SNP to evaluate its strength. Only SNPs
with an F statistic > 10, strong enough to avoid weak instrument bias,
were included in the analysis72. We then estimated the effect of geneti-
cally predicted metabolites on health and lifespan outcomes using the
inverse variance-weighted (IVW) method or Wald ratio in case only a
single SNP was present at P< 5× 10–8 as our primary analysis. The MR
results are given as effect estimates (β) and corresponding 95% CIs per
unit increase in genetically predicted metabolites.

Sensitivity analyses
For our sensitivity analyses, we employed the weighted-median esti-
mator, MR-Egger regression analysis, simple mode method, and
weighted mode method to verify the key assumptions of our MR
study73. The weighted-median method can provide a reliable effect
estimate if at least 50% of the genetic variants used are valid instru-
ments. MR-Egger regression, reliant on the InSIDE (instrument strength

independent of direct effects) assumption, offers a valid effect estimate
even in caseswhere all SNPs are potentially invalid instruments. TheMR-
Egger intercept quantifies the overall unbalanced horizontal pleiotropy
effect across these genetic variants. We applied Cochran’s Q statistic to
assess heterogeneity in the genetic variants for the IVW method74. MR-
PRESSO analysis was utilized to detect horizontal pleiotropy and iden-
tify any outlier SNPs75. Additionally, we employed the radial-MRmethod
to identify heterogeneity and potential outliers76.

This study is reported as per the Strengthening the Reporting of
Observational Studies in Epidemiology guideline, specific for MR
(Supplementary Information)77. No specific ethical review approval or
informed consent was required as all data included in our study were
available in public GWAS datasets, and these original GWAS had pre-
viously been approved by the appropriate ethical and institutional
review boards.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The data used and generated in this study have been deposited in the
Mendeley Data repository, (https://doi.org/10.17632/67f2sxfwxn).
Data used from previously published datasets can be found at the
following links: Nelson, 2016 DGRP data: https://doi.org/10.1186/
s12864-016-3137-9. Jin, 2020 DGRP data: https://doi.org/10.1371/
journal.pgen.1008835. Wilson, 2020 DGRP data: https://doi.org/10.
1016/j.cub.2020.05.020. Kynurenine and uridine MR Datasets: https://
doi.org/10.1038/ng.2982. Nightingale Health Metabolic Biomarkers
Phase 1 (MRC-IEU) MR Datasets:https://gwas.mrcieu.ac.uk/ under the
accession IDs met-d and met-a. Blood metabolite and genetic effect
MR Dataset: https://doi.org/10.1038/ng.3809. The summary level data
for parental longevity, frailty index, BMI, T2DM, and T2DM adjusted
for BMI can be retrieved from the MRC-IEU database under the
accession ID ebi-a-GCST006702, ebi-a-GCST90020053, ieu-b-40, ebi-
a-GCST006867, and ebi-a-GCST007518. Human Longevity Data:
https://doi.org/10.18632/aging.101334. Frailty Index Data: https://doi.
org/10.1111/acel.13459. Height/Body Mass Index Data: https://doi.org/
10.1093/hmg/ddy271. Type 2 diabetes69Data: https://doi.org/10.1038/
s41588-018-0084-1. Type 2 diabetes70 Data: https://doi.org/10.1038/
s41467-018-04951-w. Human Phenome Data: https://doi.org/10.7554/
eLife.34408. The data generated in this study are provided in the
Supplementary Data files and available in the linked database. All sta-
tistical analyses were implemented using either R software (version
4.1.2) with the R package TwosampleMR (version 0.5.6), Radial-MR
(version 1.1), andMR-PRESSO (version 1.0) or Python (version 3.9) with
the packages listed in the methods. Summary GWAS data for MR
analyses is publicly available and was obtained from the MRC-IEU
OpenGWAS database or their respective studies. Additional specific
details about the data, including, where applicable, links for down-
loading them, are available in the relevant publications referenced in
this study.

Code availability
The custom code generated in this study has been deposited in the
Mendeley Data repository (https://doi.org/10.17632/67f2sxfwxn).
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