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A novel and efficient rearrangement of N-tosylhydrazones bearing allyl ethers into trans-
olefin-substituted sulfonylhydrazones is proposed. The reaction involves breakage of the
C-O bond and formation of the C-N bond. The reaction can be extended to a wide range of
substrates, and the target products can be synthesized smoothly, regardless of the
presence of electron-donating and electron-withdrawing groups. The proposed strategy is
a new direction in the field of rearrangement reactions.
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INTRODUCTION

Hydrazones are a class of Schiff bases with a special molecular structure containing a substructure
(-NHN � C-). Many studies have shown that hydrazones possess a wide range of physiological
activities, including antioxidant, anti-inflammatory, antibacterial, insecticidal, antiviral, and
antitumor activities. In recent years, hydrazones have been highly valued in the fields of
medicine, pesticides, materials science, and testing reagents, and have broad development
prospects (Yang et al., 1996; Khan, 2008; Özbek et al., 2009; Özdemir et al., 2009; Belkheiri
et al., 2010; Özdemir et al., 2010; Özkay et al., 2010).

QuinShimizu’s group developed a method for the oxidation of N-sulfonyl hydrazide catalyzed by
lead tetraacetate (Scheme 1A) (Shimizu et al., 1980). Subsequently, Ashok et al. established a new
scheme for the synthesis of sulfinates (Scheme 1B) through the K2CO3-catalyzed rapid conversion of
N-sulfonyl hydrazide (Korawat and Basak, 2020). Hossain et al. reported a synthetic route to 1,3-
disubstituted allenes through the CuI-catalyzed cross-coupling of N-tosylhydrazones with terminal
alkynes (Scheme 1C) (Hossain et al., 2013). Furthermore, palladium-catalyzed allylation is a reliable
and widely used method (Trost et al., 2006; Lu and Ma, 2007; Mohr and Stoltz, 2007; Weaver et al.,
2011)and has been extensively used in total synthesis (Trost and Crawley, 2003; Enquist and Stoltz,
2008; Huters et al., 2012). Therefore, metal-catalyzed cleavage of C-O bonds of ethers remains an
intriguing topic. Herein, we report the Pd-catalyzed rearrangement of N-tosylhydrazones bearing
allyl ethers to produce trans-olefin-substituted sulfonylhydrazones (Scheme 1D).

RESULTS AND DISCUSSION

When the reaction was carried out with N-tosylhydrazones 1a in the presence of Pd(PPh3)4 in THF
and K2CO3 as the base, the desired product (E)-N-allyl-N’-(2-hydroxybenzylidene)-4-
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methylbenzene sulfonohydrazide 2a was obtained. Different
catalysts were screened for the reaction, such as Pd(OAc)2,
Pd(PPh3)Cl2, PdCl2, Pd2 (dba)3, and Pd(PPh3)4. Among these,
Pd(PPh3)4 proved to be the best catalyst, which led to 55% yield of
the final compound (Table 1, entries 2–6). When the reaction was
carried out in the absence of a catalyst, the target compound was
not obtained (Table 1, entry 7).

Next, the reaction was carried out in different solvents such as
toluene, EtOAc, dioxane, DMSO, DMF, and CH3CN to
determine the optimal solvent (Table 1, entries 8–13).
Subsequently, the effects of different additives such as CuBr,
NH4Br, and TBAC, on the product yield were investigated. The
product yield did not increase significantly in the presence of
these additives (Table 1, entries 14 and 15). K2CO3 was the most
effective in facilitating the reaction, while other bases such as
TEA, Cs2CO3, NaH, NaOH, and t-BuOK led to significantly
lower product yields. Increasing or decreasing the temperature
had no significantly improve the reaction yield. (Table 1, entries
25, 26). Therefore, the optimal reaction conditions were 1a
(0.25 mmol) as the substrate, Pd(PPh3)4 as the catalyst (5 mol
%), and K2CO3 (0.5 mmol) as the base in dioxane (0.1 M) for 10 h
at 80°C under N2 conditions.

With the optimal conditions in hand, we explored the scope of
the reaction. First, we investigated the effect of various substituted
N-sulfonylhydrazones as substrates (Scheme 2) on the reaction.
The results revealed that the reaction conditions showed good
tolerance for the functional groups on these substrates. Not only
halogen groups (3-Br, 4-Br, 5-Br, 3-Cl, 4-Cl, 5-Cl, 4-F, 5-F, 3,5-
2F, and 3,5-2Cl) and electron-donating substituents (3-CH3, 4-
CH3, and 5-CH3) but also strongly electron-withdrawing (4-NO2,

4-CF3) groups could be tolerated under the optimized conditions,
so that the reaction proceeded smoothly.

Halogen groups substituted at various positions on the
benzene ring had different effects on the reaction. For
example, halogen substitution at the 5-position of the benzene
ring gave a higher yield (2k–2l) than did substitution at the 3- and
4-positions. In particular, 5-F substitution in the benzene ring
generated the target compound in 95% isolated yield (2l).
However, the reaction yields were significantly lower when
double halogen substitution was present on the phenyl ring
(2m, 2n). Moreover, the target compound (2o) was obtained
smoothly when the substrate was charged with strong electron-
withdrawing group (4-CF3), with yields of 52%.

Subsequently, we focused our attention on the effect of
different substituted sulfonylhydrazones on the reaction yields
(Scheme 2). The results showed that this method has wide
applicability (2p–2w). Electron-withdrawing groups increased
the yield of the reaction, while electron-donating groups
decreased the yield. For example, the yields obtained with

SCHEME 1 | Reaction types with N-tosylhydrazones as substrate.

TABLE 1 | Screening of reaction conditionsa.

Entry Catalysts Additives Solvent Yield (%)b

1 Pd(PPh3)4 K2CO3 THF 55
2 Pd(OAc)2 K2CO3 THF 0
4 Pd(PPh3)Cl2 K2CO3 THF 0
5 PdCl2 K2CO3 THF 45
6 Pd2 (dba)3 K2CO3 THF 42
7 - K2CO3 THF 0
8 Pd(PPh3)4 K2CO3 EtOAc 26
9 Pd(PPh3)4 K2CO3 Dioxane 65
10 Pd(PPh3)4 K2CO3 Toluene 41
11 Pd(PPh3)4 K2CO3 DMSO 33
12 Pd(PPh3)4 K2CO3 DMF 35
13 Pd(PPh3)4 K2CO3 CH3CN 0
14 Pd(PPh3)4 CuBr Dioxane 33
15 Pd(PPh3)4 NH4Br Dioxane 35
16 Pd(PPh3)4 TBAC Dioxane 30
20 Pd(PPh3)4 TEA Dioxane trace
21 Pd(PPh3)4 Cs2CO3 Dioxane 42
22 Pd(PPh3)4 NaH Dioxane 31
23 Pd(PPh3)4 NaOH Dioxane 0
24 Pd(PPh3)4 t-BuOK Dioxane 32
25c Pd(PPh3)4 K2CO3 Dioxane 63
26d Pd(PPh3)4 K2CO3 Dioxane 40

aReaction conditions: 1a (0.25 mmol), catalyst (5 mol%), base (0.5 mmol), and solvent at
80°C for 10 h under N2.
bIsolated yield.
c100°C.
d60°C.
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halogen substitution were higher than those observed with
methyl substitution (2p and 2q vs. 2r and 2s). Encouragingly,
even with strong electron-withdrawing group substitution, the
corresponding target compounds were furnished smoothly (2t,
2u). The reaction also proceeded smoothly when the
p-toluenesulfonyl group was replaced by the benzoyl group
(2v), giving the target product in 75% yield. Unfortunately, the
reaction did not proceed smoothly when the p-toluenesulfonate
group was displaced by the methyl formate group (2w).

The reaction catalyzed by Pd(0) afforded sulfonylhydrazones,
mainly the trans-isomer. The structure of 2a was confirmed by
X-ray single-crystal diffraction analysis, and the chemicalFIGURE 1 | ORTEP diagram of compound 2a.

SCHEME 2 | Scope of the reaction ofN-sulfonylhydrazone. Reaction conditions: 1a (0.25 mmol), catalyst (5 mol%), base (0.50 mmol), and solvent at 80°C for 10 h
under N2.
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structures of other examples were obtained by analogy (Figure 1,
see Supplementary Material for details). Based on the above
results, we performed a scale-up experiment to extend the
adaptability of the reaction. When 7.0 mmol of 1a was reacted
under palladium catalysis, the corresponding product 2a was
obtained in 60% yield (Scheme 3).

Subsequently, the reaction mechanism was investigated.
Upon introducing free radical inhibitors (TEMPO or BHT)
into the system, the reaction proceeded smoothly to afford the

corresponding products (Scheme 4, Eqs. 1 and 2). This result
suggested that the reaction did not involve a free radical
mechanism. Unfortunately, the reaction did not proceed
smoothly when the allyl group was replaced by a 2-
methylallyl group (Scheme 4, Eq. 3). When 1a was
substituted by substrate 1b9, 2b9 was not obtained under
standard conditions, but the compound 3 was afforded,
indicating that the terminal double bond with substituent
was easily removed in the reaction (Scheme 4, Eq. 4). When
1a was replaced by substrate 2a9, the target compound 2a could
not be obtained under the standard conditions (Scheme 4, Eq.
5). In contrast, if N′-benzylidene-4-methylbenzenesulfonyl
hydrazide was added to the reaction system, 2a and 3a were
produced (Scheme 4, Eq. 6).

Based on these results and the literature reports, we propose a
plausible reaction mechanism (Tang et al., 2021; He et al., 2019;
Nakamura et al., 2007; Butt and Zhang, 2015; Huo et al., 2014;
Nakamura et al., 2008; Liu et al., 2018; Ma and Jiao, 2002;
Yamamoto and Radhak-rishnan, 1999; Sieber and Morken,
2006; Bates and Satcharoen, 2002; Hashmi et al., 2013;
Kolundzic ̌ et al., 2014) (Scheme 5). Initially, 1 is added to
Pd(0) via oxidation, followed by exchange with the ligand of 1
to give π-allylpalladium species B. Then, B undergoes reductive
elimination to afford intermediate C, which reacts with Pd(0) to
form intermediate D. Since there is no β-H atom, D is exchanged
with molecule 1 to produce B and simultaneously generates the
final product 2. In addition, we also propose a possible reaction

SCHEME 4 | Controlled experiments.

SCHEME 3 | A scale-up experiment.

SCHEME 5 | Proposed mechanism.
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mechanism when the reaction substrate is 1b9. Oxidative addition
of 1b9 to Pd(0), isomerization and subsequent β-H elimination
generate Pd-H species F. Reductive elimination of intermediate F
to afford product 3 and release Pd(0) for the next cycle
(Scheme 5).

CONCLUSION

In conclusion, we report the palladium-catalyzed rearrangement
ofN-tosylhydrazones bearing allyl ethers to generate trans-olefin-
substituted sulfonylhydrazones. We also investigated the
applicability of the reaction to furnish the corresponding
products, regardless of the presence of strongly electron-
donating or electron-withdrawing substituents. The reaction
involves the breakage of C-O bonds and the formation of C-N
bonds, which forms the basis for the study of rearrangement
reactions. Further investigation into the application of this
reaction is ongoing in our laboratory.
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