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Background

Colorectal cancer (CRC) is one of the most common cancers 
worldwide. It is now the third most common cancer and the 
fourth leading cause of cancer-related mortality in the world, 
accounting for approximately 1.2 million new cases per year 
and approximately 600 000 deaths per year worldwide [1]. 
Although genetic predisposition is closely associated with 
some certain types of colorectal cancer, epidemiologic stud-
ies indicated that the Western lifestyle (such as in the USA) is 
the most important risk factor for this disease [2,3]. High rates 
of colorectal cancer are also related to age, sex, family histo-
ry, excessive alcohol consumption, diets with high animal fat, 
and diets low in fruit and vegetable fiber [4].

Millions of microbiota exists in the gastrointestinal tract, and 
can be divided into 4 main categories: Firmicutes, Bacteroides, 
Actinobacteria, and Proteobacteria [5,6]. The complex gut mi-
crobiota plays an indispensable role in human health, as they 
interact with the immune system, maintain epithelial homeo-
stasis, metabolize indigestible polysaccharides, and exclude 
potential pathogens from the human gut [7].

Colorectal cancer (CRC) screening greatly reduces CRC-related 
mortality and contributes to longer and healthier life [8]. The 
predictive biomarkers in CRC have received much attention in 
recent research [9–11]. However, fecal immunochemical tests 
cut-off levels still need to be optimized [12].

Recent studies have also elucidated specific traits in the gut 
microbiome associated with colorectal cancer and suggested 
that the microbiome may be useful in screening for colorec-
tal cancer. Gut microbiota, combined with other noninvasive 
techniques, promises to provide highly effective tools for ear-
ly colorectal cancer diagnosis and prevention [13].

The gut microbiota has been proved to be involved in the ini-
tiation and progression of colorectal cancer. Wang et al. [14] 
demonstrated that a structural difference observed in the fe-
cal microbiota community of CRC patients was related with 
the non-cancerous population, and some microbiota be-
longing to the genera of Enterococcus, Escherichia/Shigella, 
Klebsiella, Streptococcus, and Peptostreptococcus were rich-
er in CRC patients, while some microbiota belonging to the 
genus Roseburia and other butyrate-producing bacteria were 
less abundant in these patients. Some other studies found 
the genus Fusobacterium to be more predominant in colorec-
tal adenoma and carcinoma tissues [15–17]. In addition, cer-
tain metagenomic contents and bacterial metabolites can also 
affect the development of CRC. For example, KEGG ortholo-
gy (KO) modules for phosphotransferase systems, transport-
ers for a number of different sugars, were overrepresented 
in healthy controls compared with adenoma samples or in 

adenoma compared with carcinoma samples, and modules 
for transporting the amino acids histidine, arginine, and lysine 
were enriched in carcinoma patients compared with adenoma 
patients in one study [18]. Due to the complicated ecosystem 
formed by intestinal microbiota, more investigation of colorec-
tal cancer and intestinal microbiota is needed.

In this study, we used raw high-throughput 16S ribosomal RNA 
(rRNA) gene sequences data on the mucosal microbiome of 
160 patients. We applied some advanced statistical tools, in-
cluding linear discriminant analysis effect size (LEfSe) [19], to 
compare the microbiota community structure, assess differenc-
es in intestinal bacterial types between the groups, and iden-
tify metagenomic biomarkers for disparate stages of colorec-
tal cancer formation.

Material and Methods

Data collection

The data collection of 16S ribosomal RNA (rRNA) gene sequenc-
es in this research came from a published paper in “The Journal 
of Nature Communication” dated October 2015 and download-
ed from NCBI SRA database (BioProject ID: PRJNA280026) [20]. 
We recruited a total of 160 individuals: 61 cases with non-tu-
mor colon were regarded as the normal group, 47 cases with 
histology-substantiated colorectal adenomas were regarded as 
the adenoma group, and 52 cases with invasive adenocarci-
nomas were regarded as the cancer group. Biopsy of the mu-
cosa was performed for each subject. There were no signif-
icant differences in clinical parameters among the 3 groups 
except for age (60.13±5.99, 67.32±8.80, and 67.85±13.18 for 
normal, adenoma, and cancer groups, respectively) (p<0.001).

Microbial sequence processing and analysis

USEARCH was used to process the sequences data and gen-
erate OTUs. Briefly, after quality control steps for all the se-
quences, UPARSE [21] was applied to cluster sequences into 
OTUs with 95% similarity and select representative sequenc-
es for all the OTUs. After removing chimeras from these rep-
resentative sequences using UCHIME [22], we classified them 
using Ribosomal Database Project (RDP) classifiers [23] against 
the Greengene database V201305 [24]. An 80% threshold val-
ue was used to assign to a taxonomic group if a represen-
tative sequence was longer than 250 bp; otherwise, we set 
the threshold value to 50%. Then, we removed the OTUs if 
they were classified as archaea or fungi. Finally, the annotat-
ed OTUs were assigned to phylotypes according to their con-
sensus taxonomy.
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Statistical analysis

a-diversity analysis (including the indexes of Chao1, Shannon, 
and Simpson) was performed using R language. Unweighted 
UniFrac and weighted UniFrac distance metrics analysis [25] 
was carried out using QIIME [26] and illustrated by principle 
coordinate analysis (PCoA). Permutational multivariate analy-
sis of variance (PERMANOVA) [27] was preformed to access the 
dissimilarities between groups using the unweighted UniFrac 
and weighted UniFrac distance metrics. We did it with the 
vegan package in R (the function of ADONIS) [28]. The heat-
map of genus information was constructed using the pheat-
map package in R.

We also introduced linear discriminant analysis effect size 
(LEfSe) [19], which is a very useful method to find significant 
metagenome markers, to identify bacterial biomarkers for all 
3 groups on the open website (http://huttenhower.sph.har-
vard.edu/galaxy). We set an a-value <0.05, and the threshold 
used to consider a discriminative feature for the logarithmic 
LDA score was set at >2.

Wilcoxon and Kruskal-Wallis rank tests were conducted in 
R, and the p values were adjusted using Benjamin-Hochberg 
method. A Benjamin-Hochberg q value <0.1 was considered 
to be significant.

Results

Summary of the study

A total of 1 012 335 16S rRNA sequences were obtained from 
the 160 samples, with an average of 6327 reads per sample 
in the whole cohort. The average number of reads per sample 
in the normal, adenoma, and cancer groups was 5547, 6968, 
and 6662, respectively.

We generated OTUs at 95% similarity level and the number of 
OTUs was 605, with 445 OTUs in the normal group, 417 OTUs 
in the adenoma group, and 482 OTUs in the cancer group.

Richness and diversity analysis

The Chao1 Richness Index, Shannon Index, and Simpson 
Diversity Index were used to describe the a diversity features 
of our bacterial community results. We found that the Chao1 
Richness Index of the mucosal microbiota was significant-
ly different in the 3 groups (Chao1 Richness Index for nor-
mal, adenoma, and cancer group were 66.4±32.6, 61.9±29.3, 
and 87.8±37.5, respectively, p=0.0006, Figure 1A), while the 
Shannon Index and Simpson Index in the 3 groups were not 
significantly different: the Shannon Index for normal, adenoma, 
and cancer groups were 2.36±0.84, 2.28±0.82, and 2.59±0.70, 
respectively, p=0.22 (Figure 1B), and the Simpson Index for nor-
mal, adenoma, and cancer groups were 0.22±0.21, 0.25±0.212, 
and 0.17±0.13, respectively, p=0.20 (Figure 1C) (Table 1).

Principal coordinate analysis (PCoA) based on the unweight-
ed UniFrac distance metrics demonstrated that there was a 
separation in the mucosal bacteria communities between the 
3 groups, which was confirmed by permutational multivariate 
analysis of variance (PERMANOVA) (ADONIS, normal-adeno-
ma: R2=0.015, p=0.05; normal-cancer: R2=0.051, p=0.01; ad-
enoma-cancer: R2=0.059, p=0.01) (Figure 2A). Similar results 
were observed in PCoA on the basis of weighted UniFrac dis-
tance metrics (Figure 2B).

Taxa analysis at the phylum and genus levels

The abundance of different phyla and genera were assessed 
by taxonomic assignment of all sequences [14]. Among all 
bacteria at the phylum level, the predominant phyla were 
Bacteroidetes, Firmicutes, Fusobacteria, and Proteobacteria 
(Figure 3A). Further comparison of the relative abundances 
of different phyla showed that there was no significant dif-
ference for any phylum between the normal and adenoma 
groups. However, Firmicutes and Fusobacteria were enriched 
in the cancer group compared with the normal and adeno-
ma groups (Firmicutes: 41.87% vs. 33.86% in cancer and nor-
mal groups, respectively, q=0.07; 41.87% vs. 32.44% in cancer 
and adenoma groups, respectively, q=0.05. Fusobacteria: 17% 
vs. 9.57% in cancer and normal groups, respectively, q=0.008; 

Figure 1. �Analysis of Chao1 Richness Index, Shannon Index, and Simpson Diversity Index in different groups. (A) Boxplots of Chao1 
Richness Index. (B) Boxplots of Shannon Diversity Index. (C) Boxplots of Simpson Diversity Index.
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17% vs. 5.22% in cancer and adenoma groups, respectively, 
q<0.001). Proteobacteria was relatively scarce in the cancer 
group compared with the normal and adenoma groups (13.34% 
vs. 31.19% vs. 39.92% in cancer, normal and adenoma groups, 
respectively, q<0.001 for both comparisons).

There was a total of 148 genera at the genus levels, and the 
dominant genera were: Bacteroides (16.60%, 16.61% and 
17.31% in normal, adenoma and cancer group, respectively); 
Escherichia (18.80%, 22.33% and 6.79% in 3 groups, respec-
tively); Fusobacterium (9.39%, 3.12% and 14.52% in 3 groups, 
respectively); and Streptococcus (6.76%, 5.06% and 8.69% in 
3 groups, respectively) (Figure 3B) (Table 1).

Statistically, the relative abundances of Campylobacter, Dialister, 
Fusobacterium, Leptotrichia, Mogibacterium, Parvimonas, and 
Peptostreptococcus were significantly higher in cancer patients 
than in normal controls and adenoma patients. Higher levels 
of Acidomonas, Escherichia, Pseudomonas, and Sphingomonas 
were observed in the normal or adenoma groups compared with 
the cancer group. Blautia and Faecalibacterium were overrep-
resented in normal controls compared with the cancer group, 
whereas Lactobacillus was enriched in cancer patients com-
pared with the normal group. Prevotella, a genus belonging to 
the phylum Bacteroidetes, was more abundant in the cancer 
group than in the adenoma group. Consistent with the out-
comes of phylum levels, no significant difference in the genus 
levels was found between the normal and adenoma groups.

Normal group n=61 Adenoma group n=47 Cancer group n=52

Chao1 Richness Index 	 66.4±32.6 	 61.9±29.3 	 87.8±37.5

Shannon Index 	 2.36±0.84 	 2.28±0.82 	 2.59±0.70

Simpson Index 	 0.22±0.21 	 0.25±0.212 	 0.17±0.13

Firmicutes 33.86% 32.44% 41.87% 

Fusobacteria 9.57% 5.22% 17% 

Proteobacteria 31.19% 39.92% 13.34%

Bacteroides 16.60% 16.61% 17.31%

Escherichia 18.80% 22.33% 6.79%

Fusobacterium 9.39% 3.12% 14.52%

Streptococcus 6.76% 5.06% 8.69%

Table 1. Richness and diversity analysis and bacteria at the phylum level in this study.
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Figure 2. �Variation in mucosal microbiota in normal, adenoma, and cancer patients demonstrated by PCoA plots. (A) The distinction of 
microbiota composition in unweighted analysis confirmed by PERMANOVA test. (B) The distinction of microbiota composition 
in weighted analysis confirmed by PERMANOVA test.
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Figure 3. �Taxa analysis at the phylum and genus levels. (A) Proportions of main bacterial phyla in the 3 groups. (B) Relative 
abundances of some major genera across all samples. Each row represents 1 genus and each column represents 1 sample. 
The first row shows the groups of every sample (red). The clustering tree of samples was generated using euclidean distance 
with complete method. The color intensity of each genus is proportional to its relative abundance in each sample.
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Identification of key taxa (biomarkers) responsible for 
structural diversion of the mucosa-associated microbiota

We used the linear discriminative analysis (LDA) effect size 
(LEfSe) biomarker discovery tool to assess which microbiota 
were driving divergence between different groups, using the 
parameters described above. Biomarker discovery was per-
formed at all taxonomic levels. At the genus level, Acidomonas 
(LDA=3.8, p<0.01), Butyricicoccus (LDA=2.9, p=0.04), Micrococcus 
(LDA=3.1, p=0.04), and Sphingomonas (LDA=3.6, p<0.01) were 
the biomarkers for the normal group. Bacillus (LDA=3.5, p=0.05), 
Eikenella (LDA=2.5, p<0.01), Enhydrobacter (LDA=2.8, p<0.01), 
Escherichia (LDA=4.9, p<0.01), Klebsiella (LDA=3.7, p=0.04), 
Paenibacillus (LDA=3.3, p=0.01), Pseudomonas (LDA=3.9, 
p<0.01), Staphylococcus (LDA=4.1, p<0.01), and Trabulsiella 
(LDA=4.1, p=0.03) were the biomarkers for the adenoma group. 
In the cancer group, we observed 20 biomarkers. Eleven gen-
era belonged to the phylum Firmicutes: Bulleidia (LDA=3.7, 
p=0.01); Catonella (LDA=2.8, p=0.02); Clostridium (LDA=3.5, 
p=0.05); Dialister (LDA=3.1, p<0.01); Granulicatella (LDA=4.0, 
p=0.04); Lactobacillus (LDA=3.3, p<0.01); Mogibacterium 
(LDA=3.2, p=0.01); Oscillospira (LDA=3.4, p=0.01); Parvimonas 
(LDA=4.4, p<0.01); Peptostreptococcus (LDA=4.0, p<0.01); and 
Streptococcus (LDA=4.3, p=0.03). Four genera belonged the phy-
lum Bacteroidetes: Odoribacter (LDA=2.9, p=0.01); Paraprevotella 
(LDA=4.0, p<0.01); Porphyromonas (LDA=3.6, p=0.02); and 
Prevotella (LDA=4.1, p<0.01). Two belonged to Fusobacteria: 

Fusobacterium (LDA=4.7, p<0.01) and Leptotrichia (LDA=4.1, 
p<0.01). Two belonged to Proteobacteria: Campylobacter 
(LDA=4.1, p<0.01) and Desulfovibrio (LDA=3.1, p=0.02). One 
belonged to Spirochaetes: Treponema (LDA=3.4, p<0.01). Most 
of these microbiota had an LDA score higher than 3.0 (Figure 4).

Discussion

Although the etiology of CRC is multifactorial and complex, 
there is increasing evidence that gut microbiota and their me-
tabolism are closely linked to CRC development [29]. In our 
study, we revealed differing mucosa-associated microbiota 
structure with the development of CRC, which has been ad-
dressed by several other publications [20,30,31]. Similar mi-
crobial shift has also been reported in IBDs such as Crohn’s 
disease (CD) [17] and ulcerative colitis (UC) [32], as well as in 
diarrhea [33] and IBS [34].

Fusobacterium, a genus belonging to the phylum Fusobacteria, 
has been reported to be able to potentiate CRC. Kostic et al. [35] 
reported that a specific strain of Fusobacterium, F. nucleatum, 
increased tumor burden and selectively expanded myeloid-de-
rived immune cells like CD11b+ myeloid cells and myeloid-de-
rived suppressor cells (MDSCs) in ApcMin/+ mice. They also ob-
served a strong correlation between F. nucleatum abundance 
and expression of proinflammatory markers such as COX-2, 

Figure 4. �Linear discriminative analysis (LDA) 
effect size (LEfSe) analysis for 
taxonomic biomarkers on genus level 
in the 3 groups. Each color represents 
1 group.
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IL-8, IL-6, IL-1b, and TNF-a in the mouse experiments and hu-
man colon samples. Kostic et al. suggested that Fusobacteria 
create a proinflammatory microenvironment that is favorable 
for colorectal carcinogenesis through recruitment of tumor-in-
filtrating immune cells. Rubinstein et al. [36] showed the adhe-
sin FadA, a virulence factor found in F. nucleatum [37], mediates 
the growth of CRC cells via activation of b-catenin signaling by 
binding to E-cadherin. Furthermore, the antitumor activity of 
immune cell can be inhibited by Fap2 protein of F. nucleatum via 
TIGIT (T cell immunoreceptor with Ig and ITIM domains), which 
in turn promotes CRC development [38]. In the present study, 
we observed a greater abundance of Fusobacterium in cancer 
tissues than in normal tissues (14.52% vs. 9.39%, respectively, 
q=0.02) and adenoma tissues (14.52% vs. 3.12%, respective-
ly, q=0.00). Thus, the increased abundance of Fusobacterium 
could be linked with high risk of CRC. Some CRC-associated 
biomarkers, such as Parvimonas, Peptostreptococcus, and the 
species Porphyromonas endodontalis (LDA=3.3, p=0.002), were 
also identified in our study. These microbes can corporate with 
other bacteria of oral origin such as Fusobacterium to form a 
strong symbiotic network. Further studies on their potential 
oncogenic functions will reveal whether there are drivers or 
passengers in colorectal tumorigenesis [20].

Another CRC-related pathogen identified in our study is 
Bacteroides fragilis (LDA=4.6, p<0.01). Enterotoxigenic B. fra-
gilis, a commensal in the human colon, triggers colitis and in-
duces colonic tumors via a selective T helper type 17 (TH17) 
response [39]. Non-toxigenic B. fragilis can suppressing inflam-
matory response in animal experimental colitis models induced 
by Helicobacter hepaticus infection through a single microbi-
al molecule (polysaccharide A, PSA) [40]. Thus, more detailed 
studies at the gene or strain level are required for a compre-
hensive understanding of gut microbes in the pathogenesis 
of CRC. Moreover, Prevotella, of the phylum Bacteroidetes, was 
enriched in the cancer group (3.57% of the total) compared 
with the normal (1.45% of the total) and adenoma groups 
(0.47% of the total). Although Prevotella is more common in 
non-Westerners, who prefer a plant-rich diet [41], and an in-
creased level of Prevotella accompanied by some special di-
etary intervention creates a propitious condition for glucose 
metabolism [42], it is also relevant in some inflammatory con-
ditions like arthritis [43]. Protein-rich diets tend to be rich in 
arginine and tryptophan. Arginine and tryptophan are linked 
by an entwined pathway in immunometabolism and their joint 
modulation could be an important target for effective immu-
notherapy in several diseases [44]. Further research is need-
ed on the potential role of Prevotella in CRC.

One feature of the compositional imbalance in the gut micro-
biota of CRC patients is a depletion of some SCFA (short chain 
fatty acids)-producing microbes. SCFAs, including acetate, pro-
pionate, and butyrate, are absorbed rapidly by colonic epithelial 

cells [45]. Acetate enters the blood and is used primarily for li-
pogenesis by peripheral tissues, and propionate is mainly used 
by hepatocytes for the function of gluconeogenesis, while bu-
tyrate is a major energy source for colon cells [46–48]. These 
small molecules can help maintain normal function of colon-
ic epithelial cells, exert an anti-inflammatory role, and inhibit 
tumor cell growth [49,50]. Notably, Faecalibacterium prausnit-
zii has shown a potential effect as a probiotic in the treatment 
of Crohn’s disease [51]. In our study, we detected a higher lev-
el of F. Prausnitzii (8.88% vs. 4.54%, respectively, q=0.03) and 
Blautia (5.96% vs. 2.78%, respectively, q=0.02) in the normal 
group than in the cancer group. Our data suggest a protective 
role of SCFA-producing bacteria in CRC.

Escherichia coli is one of the most abundant commensals in the 
human gut. It is reported that E. coli is associated with IBD [52]. 
In addition, certain E. coli strains that harbor the polyketide syn-
thetase (pks) island are able to induce DNA damage, which in 
turn increases the mutation rate of infected cells and leads to 
tumor progression [53]. In our study, we detected a lower lev-
el of E. coli in cancer patients (6.76%) than in health controls 
(18.80%) and adenoma patients (22.33%). E. coli was a candi-
date adenoma-associated biomarker. These phenomena can 
partly be explained by the bacterial driver-passenger model for 
CRC, in which some drivers like E. coli colonize on the colon-
ic mucosa of individuals susceptible to developing CRC, which 
changes the microenvironment in favor of adenoma-carcino-
ma processes, and then are outcompeted by passengers who 
are likely to flourish in the altered microenvironment [54].

Our study has certain limitations. We were unable to unrav-
el the causal relationship between gut microbiota and CRC. 
Because we only collected data after diagnosis of colorec-
tal tumor, the differences in bacterial composition could be 
a consequence of CRC. For example, there is always a lower 
pH in the tumor environment [55], and Walker et al. discov-
ered that a tiny change in pH will cause massive fluctuations 
in gut microbes, including the genus Fusobacterium [56]. The 
genetic phenotype proved to be associated with the disease 
was not investigated in our study. Therefore, a better way to 
illustrate the roles of gut microbiota in CRC is through gut mi-
crobiota transplantation from healthy donors [57]. Due to in-
terpersonal variations in gut microbiota, some mixed factors 
could not be balanced. The cancer patients in our study tend-
ed to be older than in the other 2 groups, and age has a fun-
damental influence on gut microbiota (e.g., older people tend 
to have a higher proportion of Bacteroides spp. and distinct 
abundance patterns of Clostridium groups) [58]. Diet, lifestyle, 
and genetics can also affect gut microbiome structure. Further 
studies controlling these factors are needed for a more com-
prehensive demonstration of the possible influence of intes-
tinal microflora on CRC.
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Conclusions

In conclusion, our study showed differences in gut microbial 
composition by comparing normal individuals with patients 
in 2 stages of CRC-adenoma and adenocarcinoma. We also 
identified some bacteria such as Butyricicoccus, E. coli, and 
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