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A variety of mechanistic and statistical methods to forecast seasonal influenza

have been proposed and are in use; however, the effects of various data issues

and design choices (statistical versus mechanistic methods, for example) on the

accuracy of these approaches have not been thoroughly assessed. Here,

we compare the accuracy of three forecasting approaches—a mechanistic

method, a weighted average of two statistical methods and a super-ensemble

of eight statistical and mechanistic models—in predicting seven outbreak

characteristics of seasonal influenza during the 2016–2017 season at the

national and 10 regional levels in the USA. For each of these approaches, we

report the effects of real time under- and over-reporting in surveillance sys-

tems, use of non-surveillance proxies of influenza activity and manual

override of model predictions on forecast quality. Our results suggest that a

meta-ensemble of statistical and mechanistic methods has better overall accu-

racy than the individual methods. Supplementing surveillance data with

proxy estimates generally improves the quality of forecasts and transient

reporting errors degrade the performance of all three approaches considerably.

The improvement in quality from ad hoc and post-forecast changes suggests

that domain experts continue to possess information that is not being

sufficiently captured by current forecasting approaches.
1. Introduction
In the USA, an estimated 9–35 million influenza infections occur annually, with

140 000–710 000 resulting hospitalizations and 12 000–56 000 deaths [1,2].

Public health agencies such as the Centers for Disease Control and Prevention

(CDC) have built surveillance systems to collect and disseminate influenza out-

break information in near real time [3,4]. While these systems provide essential

situational awareness of influenza activity, tools that accurately and reliably

predict outbreak characteristics, such as peak timing and magnitude, can aid

decision makers in implementing control and mitigation strategies.

Several groups have proposed a variety of mechanistic and statistical methods

to forecast seasonal and pandemic influenza [5,6]. Broadly, statistical methods

model outbreaks as time series and do not directly account for disease trans-

mission dynamics [7–12], whereas mechanistic methods model disease states

either at the population level [13–16] or at the more computationally expensive

individual level [17–19]. More recently, there has been evidence that collective

human judgement has considerable predictive power, and that for some of the

outcomes, it can match or exceed most statistical and mechanistic methods [20,21].

Additionally, to supplement surveillance data with more up-to-date infor-

mation, methods to nowcast (i.e. provide estimates of incidence during more

recent weeks for which surveillance data are not yet available) and forecast influ-

enza using online search trends [22–24], twitter feeds [25–29], access logs of
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influenza-related webpages at Wikipedia [30,31] and CDC [32],

online news and informal reports [33,34], electronic health

records [35] and combinations of these data sources [32,36]

have also been proposed. Given this abundance of nowcasting

and forecasting methods, approaches for combining or weight-

ing these different methods have been explored. In particular,

given that the advantage of statistical models over mechanistic

models during a season tends to be inversely related to the

deviation of the season’s influenza activity from a typical

season, an ensemble that combines a variety of diverse forecast

methods including both statistical and mechanistic models

could reduce forecast uncertainty and outperform either type

of method. Findings from numerical weather prediction

strongly suggest that ensembles of disparate models would

at least match the best performing ensemble member [37,38].

Similarly, recent studies on the application of ensemble

approaches to infectious disease forecasting have reported

promising improvements [39–41].

Beginning with the 2013–2014 season, CDC’s Influenza

Division has been coordinating with influenza modelling

groups to assemble real-time weekly influenza forecasts at

the US National and Health and Human Services (HHS) regional

levels [42]. This collaborative, the Epidemic Prediction Initiative’s

FluSight [43], has identified forecasting targets that would be

useful to decision makers, defined templates for sharing forecasts

across teams and established robust evaluation metrics.

Here, we describe three methods—a mechanistic model-

inference method, a weighted average of two statistical

methods and a super-ensemble of eight statistical and mechan-

istic models—that we used during the 2016–2017 influenza

season to generate point and probabilistic forecasts in real

time for the FluSight competition. We compare and report on

the relative accuracy of the three methods in predicting seven

targets of interest, as evaluated using two measures—a logar-

ithmic scoring of the probabilistic forecasts and the mean

absolute error of the point forecasts.

In addition to comparing the three forecast methods above,

we quantify the effects of nowcasts, post-processing and data

reporting issues on forecast accuracy. First, we measure the

improvement in forecast accuracy resulting from the use of

nowcasts as supplements to near real-time ILI surveillance

data. Second, we report the effect of post-processing and of

ad hoc modifications based on expert judgement, on the fore-

cast quality. Lastly, as the surveillance data are revised over

multiple weeks in response to updated reports from participat-

ing clinics, forecasts made in real time are based on transient

estimates of ILI. We report the impact of these initial under-

or over-estimates of ILI on the accuracy of forecasts produced

with each method.
2. Material and methods
2.1. Overview
For each of the 10 HHS regions and the US national level during

each week of the influenza season, we generated forecasts using

three different approaches, namely: (i) DYN: a model-inference

ensemble forecast using a compartmental model coupled with

state space estimation and dynamic error growth correction;

(ii) STAT: a weighted average of two statistical forecasting methods

based on weighted combinations of historical outbreak trajectories;

(iii) SE: a super-ensemble of six model-inference forecasting

variants and the two statistical forecasting methods in (ii).
Additionally, as there is generally a week’s lag between the

end of a week and the public release of the week’s ILI through

CDC’s FluView interface, we estimated ILI activity for the

lagged week using search query data from Google Extended

Health Trends (GET) API and other online sources such as Twit-

ter and Wikipedia access logs [32,44,45]. We refer to the ILI

estimate for this additional week as a nowcast. The forecasts

are generated using the time series produced by appending the

latest nowcast to the CDC-released ILI estimates.
2.2. Nowcasts
To generate weekly nowcasts, we built random forest regression

models [46–48] at the national and the HHS regional levels,

using weighted ILI [3] reported by the CDC as the response vari-

able and queries whose search patterns are well correlated with

ILI as explanatory variables [45]. These correlates were identified

from multiple sources including Google Correlate [49], related

prior work [50] and an online knowledge base [51].

For each of the correlates identified, we retrieved through the

GET API the probability that it was queried during a user’s ses-

sion on Google search engine. The API allows for specification of

geographical (country, state, etc.) and temporal (daily, weekly,

etc.) granularities and the period of interest. The probabilities

are calculated based on a random sample of 10–15% of all

searches and are updated daily.

As we are interested in nowcasts at the HHS regional level and

GET does not provide separate query fractions at the regional level,

we calculated the search frequency for an HHS region as a popu-

lation-weighted mean of search frequencies from states in the

region. We used a ‘weekly’ periodicity to be consistent with

the weekly CDC ILI. A logit transformation was applied to the

query fractions, as prior work has shown that with logit transform-

ation, the relation between raw query fractions and ILI becomes

approximately linear and model performance improves [23].
2.3. DYN: model-inference forecasts
The DYN forecast system comprises a mechanistic disease model

and a data assimilation method. The mechanistic disease model,

describing the propagation of ILI through a population, assumes

a susceptible–exposed–infectious–recovered–susceptible (SEIRS)

structure per the following equations:

dS
dt
¼ N � S� E� I

L
� bðtÞIS

N
� a,

dE
dt
¼ bðtÞIS

N
� E

Z
þ a

and
dI
dt
¼ E

Z
� I

D
,

where S is the number of susceptible people in the population, t
is time, N is the size of the population, E is the number of

exposed individuals, I is the number of infectious individuals,

ðN � S� E� IÞ gives the number of recovered individuals, b(t)
is the contact rate at time t, L is the average duration of immunity,

Z is the mean latent period, D is the mean infectious period anda is

the rate of travel-related import of infection into the model domain.

The contact rate is calculated as bðtÞ ¼ R0ðtÞ=D, where R0(t)
is the basic reproductive number and is modulated by specific

humidity, a measure of absolute humidity. Specifically, R0(t) is

calculated as follows:

R0ðtÞ ¼ R0min þ ðR0max � R0minÞe�aqðtÞ,

where R0min and R0max are the minimum and the maximum daily

basic reproductive numbers, respectively, and q(t) is the time-

varying specific humidity. The value of a was estimated from the

laboratory regression of influenza virus survival upon absolute

humidity [52,53]. As in our previous works [13,15,54], instead of
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observed specific humidity, we used daily specific humidity aver-

aged over 24 years (1979–2002) as this is smoother and yields

better forecasts [55]. These local climatological specific humidity

data were compiled for 115 cities from the National Land Data

Assimilation System (NLDAS) project-2 dataset [56,57]. The clima-

tological specific humidity for an HHS region was an average of

the city-level climatological specific humidity of cities in the

region. (Specific humidity data are included in the electronic

supplementary material.)

Initial parameter values for all simulations were chosen ran-

domly from the following uniform ranges: R0max� U[1.3, 3.2];

R0min � U[0.8, 1.2]; Z � U[1, 5] days; D � U[2, 12] days; L �
U[200, 500] days. For all locations, the population size, N, was

set to 100 000 and the importation rate, a, to 0.1 infections per

day (1 infection every 10 days).

2.3.1. Ensemble adjustment Kalman filter with error correction
During simulation and prior to generating a forecast, the par-

ameters and variables in the above SEIRS model were iteratively

optimized using real-time observations and the ensemble adjust-

ment Kalman filter (EAKF) [58]. The EAKF is a deterministic

data assimilation algorithm that is coupled with an ensemble of

model simulations. Here, an ensemble of 300 trajectories is ran-

domly initialized, as described above, and integrated per the

SEIRS model equations. Upon encountering an observation,

the integration is halted; the EAKF uses the first two moments

of the ensemble estimate of the observed state variable, the prior,

to adjust that ensemble towards the observation, thereby generat-

ing a posterior, whose mean and variance are calculated using

Bayes’ rule. The variance of the distribution is preserved during

this update. The posterior is then integrated forward in time to

the next observation and the updating process is repeated. In

addition, at each update, we also apply an error correction algor-

ithm to counteract the growth of error due to nonlinearity of the

disease transmission model [59].

2.4. STAT: statistical methods
STAT uses a combination of two statistical forecast methods,

Bayesian weighted outbreaks (BWO) and k-nearest neighbors

(KNN), described below.

2.4.1. Bayesian weighted outbreaks
BWO is a statistical method that uses Bayesian model averaging

(BMA) [60–62] to predict the trajectory of ILI during a given

season as a weighted average of outbreak trajectories from past

seasons. Variations of this method have been used in weather

forecasting [38] and in retrospective forecasts of outbreaks of influ-

enza [7,11,40] and dengue [39]. Each previous outbreak, or

candidate trajectory, is represented by a normal distribution with

mean equal to the observed ILI during the training period

(weeks t 2 5 through t) and standard deviation s. We used maxi-

mum-likelihood estimation to obtain the candidate trajectory

weights wk and standard deviation s that best represent the

observed ILI during the same training period for the outbreak in

progress. These weights were applied to the historical trajectories

to predict ILI for weeks t þ 1 through the end of the influenza

season [39]. US National and 10 HHS regional ILI observed

during influenza seasons 1997/1998 through 2015–2016 were

used as the pool of candidate trajectories for the 2016–2017 influ-

enza season. To account for uncertainty in observed ILI, the BWO

process was repeated 100 times, each iteration drawing training

data from a Poisson distribution centred on the ILI observations.

2.4.2. K-nearest neighbors
Similar to BWO, KNN is an analogue forecast method [11] based

on historical outbreak trajectories. The KNN first selects n
candidate trajectories (i.e. nearest neighbors, n ¼ 3 here) based

on the distance between the historical trajectories and the most

recent observations (i.e. weeks t – k to t; k ¼ 4 here). The distance,

as in [11], was evaluated based on the sum of squared difference

between the observed and historical ILI. Here, the weights for

these nearest neighbors at week t were computed by minimizing

the distance between the weighted-average historical trajectory and

the observations. ILI predicted for the following h weeks (h ¼ 3

here) was then computed as the weighted average (using the

optimized weights) of the nearest neighbors in the subsequent h
weeks. This process was repeated, which iteratively extended the

forecast h weeks at a time, until ILI for the entire season was pre-

dicted. We only used local historical ILI from each location for

the optimization and did not match the outbreak time window

as in the BWO.

See the electronic supplementary material for the target

specific weighting scheme used to combine KNN and BWO.
2.5. SE: super-ensemble
Super-ensemble methods allow information from distinct forecast

methods to be combined in a statistically rigorous manner to pro-

duce a single overall forecast. Super-ensemble forecasts have been

shown to be more accurate on average than forecasts produced

using a single model or methodology [39–41]. Here, we used the

BMA method to produce a weighted-average super-ensemble fore-

cast from eight individual models—six dynamical forecast systems

and the two statistical forecasts used in STAT. The dynamical sys-

tems used include DYN, as well as five other combinations of

dynamical models and filters: SEIRS and SIRS structured mechan-

istic models, coupled with each of the following data assimilation

methods: rank histogram filter (RHF), ensemble Kalman filter

(EnKF) and the EAKF used in DYN (see electronic supplementary

material, methods).

Model weights were calculated using BMA and are based on the

performance of the forecasts produced using these eight methods

during previous seasons. The training period used here spans the

2004–2005 through 2015–2016 influenza seasons, excluding

the pandemic years of 2008–2009 and 2009–2010. Weights were

computed separately for each target and each week. For example,

the weights assigned to each of the point estimates of season

peak intensity during Morbidity and Mortality Weekly Report

(MMWR) week 50 of 2016–2017 were determined by forecasts of

season peak intensity at MMWR week 50 during the 2004–2005

through 2015–2016 influenza seasons of each of the eight forecast

methods. Training forecasts for the statistical models used a leave-

one-out approach, where each season’s forecasts were produced

using outbreak trajectories for the remaining seasons.
2.6. Evaluation
2.6.1. Targets
For US national and each of the 10 HHS regions, forecasts were

generated using the three approaches during a large part of the

2016–2017 influenza season—November 2016 to mid-May 2017

(specifically, from MMWR [63] week 44 of 2016 to MMWR

week 18 of 2017). To compare the quality of the forecasts, the

following targets were used:

— Season onset, defined as the first of three consecutive MMWR

weeks for which the observed ILI is greater than the region-

specific baseline.1 The baselines are published by CDC prior

to the start of every season based on influenza activity

during the three most recent influenza seasons.

— Season peak intensity, the maximum weekly ILI observed

during the season.

— Season peak week, the MMWR week during which the maxi-

mum weekly ILI was observed. ILI is traditionally rounded to
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one decimal point and hence season peak week is not necess-

arily unique.

— One- to four-week-ahead forecasts, the estimates of ILI one

through four weeks beyond the week of forecast initiation.

For example, when forecasts are generated using ILI available

through MMWR week 50, the one-week-ahead forecast is the

ILI estimate for MMWR week 51 and the two-week-ahead

forecast is the ILI estimate for MMWR week 52. Here, one-

week-ahead forecasts are given by the probabilistic nowcast

directly, whereas two- to four-week-ahead forecasts employ

the same mechanistic and statistical forecast methods used

for seasonal targets.

2.6.2. Probabilistic forecasts
The probabilistic forecast for target g at region r using ILI available

through week w is a set of probabilities for the possible outcomes

of the target and is denoted by the tuple (region, target and week),

henceforth (r, g and w). For season peak week, the possible

outcomes are MMWR week 40 through MMWR week 20. For

season onset, the possible outcomes are the same as for season

peak week plus an additional case to capture the scenario where

no onset is forecasted to occur (i.e. ILI does not exceed baseline

for more than two consecutive weeks). For the intensity targets,

the possible outcomes are intensity intervals of size 0.1% from

0% to 13%, i.e. [0, 0.1), [0.1, 0.2), . . . , [12.9, 13), and [13, 100]. Elec-

tronic supplementary material, figure S1, shows probabilistic

forecasts at the national level for all targets. See electronic sup-

plementary material for description on how probabilistic

forecasts are calculated in each of the three approaches.

The score of a forecast (r, g, w) is calculated as follows:

Sðr, g, wÞ ¼ ln(Si [Or
g
piÞ, where Or

g is the set of acceptable out-

comes for target g at region r and pi is the probability assigned

by the forecast to outcome i. For season onset and season peak

week, the acceptable outcomes are the exact observed week and

the two weeks immediately adjacent to it (i.e. +1 week). For

season peak intensity and one- to four-week-ahead forecasts, the

acceptable outcomes are the observed intensity interval and the

10 interval bins immediately adjacent to it (i.e. +0.5%).2 For

example, if for HHS region 7, the season onset occurred during

MMWR week 51, OHHS7
onset ¼ {50, 51, 52} and if the peak ILI was

6.4%, THHS7
peak intensity ¼ {[5:9, 6:0), . . . , [6:4, 6:5), . . . , [6:9, 7:0)}.

Sðr, g, w � vÞ ¼ Sw�vSðr, g, wÞ is the cumulative score for

target g at region r for all weeks up to and including week v,

and Sðr, g, �Þ ¼ Sw Sðr, g, wÞ is the cumulative score across all

weeks of the season during which forecasts were generated.

Sðr, �, w � vÞ, Sð�, g, w � vÞ, Sðr, �, �Þ and Sð�, g, �Þ can be

defined analogously.

2.6.3. Point forecasts
The point forecast for target g at region r using ILI available

through week w is the forecasted value calculated from the mean

trajectory of the ensemble. For season onset and peak week, the

point forecast is the predicted week of outcome, and for the inten-

sity targets, it is the forecasted intensity rounded to one significant

digit. The error in point forecast, Eðr, g, wÞ, is the absolute error for

season onset and season peak week, and the absolute proportional

error (error as a proportion of the true outcome) for the remaining

targets. Eðr, g, w � vÞ ¼ meanðEðr, g, wÞÞ, 8 w � v is the average

error for target g at region r for all weeks up to and including week

v, and Eðr, g, �Þ is the average error across all weeks of the season.

2.6.4. Forecast variants
We produced real-time forecasts during the 2016–2017 season and

used the scores and errors of these real-time forecasts to evaluate

the relative performance of the three methods. In addition to the

real-time forecasts, we retrospectively generated the following
variant forecasts and calculated their corresponding scores and

errors for comparison.

— Real-time: Real-time forecasts refer to the forecasts produced in

real time during the 2016–2017 season as submitted weekly

to the CDC influenza forecasting challenge. For these forecasts,

small ad hoc changes were made to the three methods through-

out the season, sometimes to fix identified software bugs, but

more often to improve forecast accuracy based on expert assess-

ment of the ongoing outbreak. For example, given the large

outbreaks that occurred in some of the regions, the dynamical

models depleted their susceptible populations, which had to be

increased to allow for a continued increase in incidence.

Similarly, after observing that the distribution of probabilistic

forecasts was unrealistically wide, the empirically derived

variance of STAT and SE probabilistic forecasts was reduced,

based on the evaluation of retrospective forecasts from

previous seasons (see the electronic supplementary material).

In addition to these ad hoc changes, we also made adjust-

ments to the Real-time probabilistic forecasts generated from

the three approaches, i.e. post-processed the forecasts. This

included two adjustments: (i) reduction of the probability

assigned by the methods to improbable outcomes (for example,

the bins for peak intensity that are lower than the maximal

intensity already observed) and (ii) addition of small probabil-

ities to each bin based on historical outbreaks, so as to

eliminate the possibility of a 0 probability to the true outcome.

— Baseline: The Baseline variant of the retrospective forecasts

refers to forecasts generated without the ad hoc changes

described above; that is, the forecasts for all weeks of the

season were generated with the version of the methods cur-

rent at the end of the season. The resulting scores were

compared to the real-time forecasts (Real-time) to understand

the effect of these changes.

— Baseline without nowcast: These forecasts are identical to Baseline,
except that nowcast information was excluded and real-time

CDC ILI alone was used to generate the forecasts. Comparison

of scores of this variant with Baseline indicates the effect of

including nowcast information on forecast accuracy and error.

— Stable: CDC ILI estimates for a given week are generally

updated for multiple weeks following initial release as some

providers submit delayed data (electronic supplementary

material, figure S2). The magnitude of these updates varies

by region and the period of the season. We considered ILI

reported at the end of MMWR week 22 to be final, stable ILI.

Retrospective nowcasts and forecasts were generated for

MMWR weeks 48 through 18 using this stable ILI. Comparison

of scores of this variant with Baseline enables the measurement

of the effect of revisions to ILI on forecast accuracy and error.

— Baseline with post-processing: To assess the effect of the post-

processing applied to Real-time forecasts (as described

above), we also applied the same post-forecast adjustments

to the Baseline forecasts to create Baseline with post-processing
forecasts, and accuracy scores were compared to Baseline to

understand the impact of post-processing. No post-proces-

sing was applied to the point forecasts.

An archive of forecasts from the above variants and the

calculated evaluation measures are provided as electronic sup-

plementary material.
3. Results
3.1. Real-time forecasts
The cumulative log scores for the Real-time probabilistic fore-

casts through the end of MMWR week 18 are summarized

in table 1 and figure 1. Onset occurs relatively early in the
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Figure 1. Scores for forecasts at each week of the season, by target. Target ‘one-week-ahead’ was excluded as it would be identical for the three methods.

Table 1. Cumulative log scores and mean errors of the real-time forecast variant for week 48 through week 18 forecasts at the national and 10 HHS regions
during the 2016 – 2017 season. One-week-ahead is not displayed as all three methods used nowcasts, and the scores/errors were thus identical. For each target,
the best score and lowest error are in italics.

target

probabilistic forecasts—log scores point forecasts—mean errors

DYN STAT SE DYN STAT SE

season onset 2134 2115 2129 0.884 0.523 0.516

season peak week 2226 2226 2231 1.581 1.604 1.513

season peak intensity 2348 2311 2311 0.165 0.135 0.129

two-week-ahead 2252 2288 2266 0.204 0.195 0.193

three-week-ahead 2311 2322 2318 0.251 0.228 0.228

four-week-ahead 2344 2340 2329 0.290 0.249 0.254
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season and forecasts of this target in later weeks, after

the onset has occurred, are generally correct; consequently,

cumulative score for onset was highest among the

targets (table 1). All three methods performed better

at predicting season peak week than in predicting

peak intensity. DYN had better scores for two- and three-

week-ahead forecasts than STAT and SE, but consistently

underperformed in predicting peak intensity during pre-

peak weeks. For the near-term forecasts, for all three
methods, lower scores were seen during the weeks of high

incidence, i.e. three to four weeks before or after the peak.

For the point forecasts, superior performance of SE was

more evident. A paired Wilcoxon signed-rank test on point

forecast errors (table 2) showed that, for a majority of the tar-

gets, DYN had statistically significant larger errors relative to

both STAT and SE, but the differences between STAT and SE

were not significant (except for peak intensity, for which

STAT did significantly better).
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Table 2. Statistical significance of difference in errors from each forecasting
method as determined by a paired Wilcoxon signed-rank test. The values in
the parentheses show the p-value resulting from testing for alternative
hypothesis ‘lesser’ and ‘greater’, respectively. For example, in onset, error with
DYN is significantly greater (0.01) than error with STAT and error with SE
(less than 0.01); and there is no difference in errors of STAT and SE (0.14).
For seasonal targets, only weeks prior to the occurrence of the event are used,
as forecasts made after the event are almost always correct. See electronic
supplementary material, table S1, for significant tests by variant. Statistically
significant differences are italicized.

DYN, STAT DYN, SE STAT, SE

season onset (0.99, 0.01) (1, 0) (0.86, 0.14)

season peak week (0.65, 0.35) (0.76, 0.24) (0.77, 0.23)

season peak

intensity

(1, 0) (1, 0) (1, 0)

two-week-ahead (0.84, 0.16) (0.99, 0.01) (0.8, 0.2)

three-week-ahead (0.99, 0.01) (0.99, 0.01) (0.83, 0.17)

four-week-ahead (1, 0) (1, 0) (0.45, 0.55)
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Figure 2 shows that there is a considerable range of cumu-

lative scores across locations, particularly with the intensity

targets. For all three methods, the intensity forecasts for

HHS region 6 were among the lowest scoring forecasts poss-

ibly due to the large, sustained outbreak observed in this

region. Forecasts in regions with smaller outbreaks scored
better, but this is quite possibly an artefact of the scoring

scheme (as elaborated in the next section).

3.2. Effect of real-time adjustment: comparing Baseline
and Real-time forecasts

We next compare the results of the variant forecasts in table 3

(cumulative probability score) and table 4 (mean point forecast

errors). The weekly cumulative log score for each forecast var-

iant, target and forecast method is shown in figure 3. These

results show that for all three forecast methods, intra-seasonal

real-time adjustments of the Real-time forecasts improved

the probabilistic forecast scores for the peak week and peak

intensity targets, but degraded the near-term forecast scores

and, for STAT and SE, the season onset scores. The effect of

the adjustments on the mean point forecast errors was less

consistent, varying by model and target (table 4). In contrast

to the probabilistic forecasts, the DYN point forecasts had

small but significant error reductions for near-term targets in

the Real-time forecasts.

3.3. Effect of nowcasts: comparing Baseline and
Baseline without nowcasts

For DYN, the use of nowcast had considerable (8%) benefit

overall, especially for the near-term forecasts (table 3 and

figure 3). The nowcast also substantially (35%) improved

the one-week-ahead forecast for STAT; however, the overall

benefit of the nowcast was less pronounced for STAT and



Table 3. Cumulative probabilistic forecast scores for all variants. The value in parentheses is the percentage difference relative to the Baseline score. Positive
numbers in parentheses indicate improved performance and vice versa.

method target Baseline Real-time
Baseline without
nowcast

Baseline with
post-processing Stable ILI

DYN season onset 2135 2134(1) 2145(27) 2136(21) 2125(7)

season peak week 2278 2226(19) 2276(1) 2258(7) 2250(10)

season peak intensity 2403 2348(14) 2413(23) 2367(9) 2375(7)

one-week-ahead 2163 2161(1) 2205(225) 2172(25) 2127(22)

two-week-ahead 2241 2252(24) 2269(212) 2240(0) 2219(9)

three-week-ahead 2296 2311(25) 2330(211) 2298(21) 2278(6)

four-week-ahead 2333 2344(23) 2362(29) 2335(0) 2320(4)

overall 21849 21776(4) 21999(28) 21805(2) 21693(8)

STAT season onset 295 2115(221) 294(1) 2102(27) 285(11)

season peak week 2244 2226(7) 2240(2) 2229(6) 2209(14)

season peak intensity 2350 2311(11) 2343(2) 2301(14) 2347(1)

one-week-ahead 2163 2163(0) 2220(235) 2165(21) 2127(22)

two-week-ahead 2273 2288(25) 2275(21) 2266(2) 2288(26)

three-week-ahead 2298 2322(28) 2308(23) 2293(2) 2309(24)

four-week-ahead 2331 2340(23) 2326(1) 2325(2) 2327(1)

overall 21754 21765(21) 21806(23) 21680(4) 21692(3)

SE season onset 2118 2129(29) 2116(2) 2125(25) 2103(13)

season peak week 2259 2231(11) 2262(21) 2264(22) 2257(1)

season peak intensity 2339 2311(8) 2324(5) 2299(12) 2336(1)

one-week-ahead 2163 2161(2) 2160(2) 2165(21) 2127(22)

two-week-ahead 2233 2266(214) 2235(21) 2229(2) 2222(5)

three-week-ahead 2280 2318(214) 2293(25) 2275(2) 2275(2)

four-week-ahead 2301 2329(29) 2305(21) 2300(0) 2300(0)

overall 21694 21744(23) 21695(0) 21657(2) 21619(4)
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SE. Specifically, for the SE method, the use of nowcasts

only had a marginal impact on scores and even the

one-week-ahead forecasts were found to be comparable

with and without nowcasts.

Consistent with the improvement observed for log scores,

the DYN point forecasts had significantly lower errors for

Baseline than Baseline without nowcast, especially for the one-

to four-week-ahead forecasts (table 4). Fewer significant

differences were observed for STAT. For SE, the onset fore-

casts for Baseline without nowcast were better than Baseline,

and the one-week-ahead forecast was as good as the nowcast

(as was also seen for the probabilistic forecasts). However, the

two- to four-week-ahead SE forecasts were significantly

improved with the use of nowcast.

To further compare the performance of the Baseline
without nowcast variant with the Baseline method over the

course of the 2016–2017 season, we present, in figure 4, a

scatterplot comparing Baseline scores (x-axis) to the variant

scores (y-axis) for one-week-ahead forecast. Points above

the diagonal line indicate an improvement by the variant

method, while dots below indicate a degradation. For Base-
line, the nowcast is used directly as the one-week-ahead

forecast for all three forecast methods. Therefore, the top

row (Baseline without nowcast versus Baseline) compares the

accuracy of the nowcast one-week-ahead estimates to that
generated by the three forecast methods. This comparison

shows that while use of nowcast information improved the

DYN forecasts substantially during the very early weeks of

the season and during some of the later weeks, such benefits

were not seen for SE and STAT.

3.4. Effect of post-processing: comparing Baseline
and Baseline with post-processing

Post-processing generally improved cumulative probabilistic

forecast scores for all three forecast methods (table 3 and

figure 3) and for all targets with the exception of the season

onset predictions. The decrease in onset score may have

been due to premature elimination of bins based on onset

as observed in the moment, which changed in the final

revised ILI. The greatest improvements from post-processing

were observed for season peak intensity (DYN: 9%; STAT:

14%; SE: 12%).

3.5. Effect of transience in CDC ILI estimates: comparing
Stable to other forecast variants

Forecast accuracy improved for nearly all targets and forecast

methods with the use of stable ILI (table 3 and figures 3

and 4). For the nowcasts, these effects were most pronounced



Table 4. Mean point forecast errors for all variants. The value in parentheses is the percentage difference from the Baseline error and an italic value indicates
that the difference was found to be significant ( p , 0.05) with a paired Wilcoxon signed-rank test. As no post-processing was applied to the point forecasts,
errors with Baseline with post-processing are identical to those with Baseline and hence omitted.

method target Baseline Real-time Baseline without nowcast Stable ILI

DYN season onset 0.784 0.884(213) 0.839(27) 0.709(10)

season peak week 1.536 1.581(23) 1.575(23) 1.5(2)

season peak intensity 0.169 0.165(3) 0.201(219) 0.17(21)

one-week-ahead 0.15 0.147(2) 0.185(224) 0.117(22)

two-week-ahead 0.209 0.204(2) 0.269(229) 0.178(15)

three-week-ahead 0.268 0.251(6) 0.363(235) 0.257(4)

four-week-ahead 0.327 0.290(11) 0.457(240) 0.325(1)

STAT season onset 0.558 0.523(6) 0.503(10) 0.386(31)

season peak week 1.604 1.604(0) 1.679(25) 1.627(21)

season peak intensity 0.136 0.135(1) 0.134(2) 0.132(3)

one-week-ahead 0.149 0.147(2) 0.148(1) 0.117(22)

two-week-ahead 0.172 0.195(213) 0.182(26) 0.175(21)

three-week-ahead 0.207 0.228(210) 0.220(26) 0.21(22)

four-week-ahead 0.231 0.249(28) 0.238(23) 0.228(1)

SE season onset 0.546 0.516(5) 0.494(10) 0.445(18)

season peak week 1.442 1.513(25) 1.523(26) 1.412(2)

season peak intensity 0.126 0.129(23) 0.123(2) 0.122(3)

one-week-ahead 0.149 0.147(2) 0.148(0) 0.117(22)

two-week-ahead 0.165 0.193(217) 0.195(218) 0.161(2)

three-week-ahead 0.210 0.228(28) 0.257(222) 0.217(23)

four-week-ahead 0.243 0.254(25) 0.284(217) 0.252(23)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

15:20180174

8

during the early and late season when observed ILI levels were

lower. The effects of stable ILI on point prediction error were

less pronounced (table 4). A statistically significant reduction

of nowcast (one-week-ahead forecast) error resulted from the

use of stable ILI. For DYN, the unstabilized ILI led to significant

increases in error for the two- to three-week-ahead forecasts

only. The SE and STAT point forecasts were less sensitive

and few other significant differences were found between Base-
line and Stable ILI; the exception was season onset for STAT

where the point estimate error decreased with stabilized ILI.
4. Discussion
Our analysis of the 2016–2017 forecasts from the DYN, STAT

and SE approaches found that SE produced the most accurate

point forecasts across targets and variants (table 4). The scores

of the probabilistic forecasts, on the other hand, did not con-

clusively identify any one approach as optimal. Although

SE had the highest overall score for all variant sets of forecasts,

this was not consistent for all targets and locations. STAT

was found to be more accurate in predicting seasonal targets

(e.g. seasonal onset), while DYN was found to be better in

near-term forecasts.

This discrepancy in SE’s advantage over DYN and STAT is

likely explained by the fact that the weights applied to individ-

ual component models in SE are optimized according to point

rather than probabilistic forecast estimates. These results may
also indicate a sub-optimal calibration of the SE probability

distribution. In particular, for the Real-time forecasts, we fre-

quently found the distribution to be unrealistically wide.

Furthermore, the SE approach used here assumed a Gaussian

probability distribution, whereas STAT and DYN approaches

allowed for nonparametric distributions.

These results suggest that, while the multi-model super-

ensemble is expected to outperform individual models, there

continues to be value in using individual statistical and

mechanistic models, and the development and calibration of

probabilistic super-ensemble forecasts remains an area of

ongoing research.

We see a clear advantage from use of nowcasts, with the

size of the effect varying by target and method. This advan-

tage is most pronounced for the one-week-ahead forecast, for

which the nowcast provides a more accurate assessment of

near-term influenza than that provided by the mechanistic

and statistical models. The nowcast additionally improves

forecasts of the other targets, as it provides an additional

ILI observation beyond what is provided by surveillance

data, which is used for training and optimizing the mechan-

istic and statistical models.

In the idealized experiment assessing the performance of

forecast with stable ILI, we found a significant impact of report-

ing delays on forecast quality. Electronic supplementary

material, table S3, demonstrates that this impact of stable ILI

is not limited to indirect effect from the improved nowcasts.

Given the rather formidable task of gathering data from several
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thousand physicians, disparate data systems and the need for

robust quality checks, reporting lags and revisions in ILINet

are expected and understandable. However, our results

suggest that a significant improvement in forecast quality

could be expected, irrespective of the forecast method, with a

reduction in the magnitude of these revisions.

The methods presented here do not incorporate some

known characteristics of seasonal influenza outbreaks. For

example, these forecasts were generated using ILI which is

quite broadly defined and captures illnesses other than influ-

enza. In the past, we have proposed the use of ILIþ, a

product of ILI and the percentage of virological specimens posi-

tive for influenza, as a cleaner signal of influenza. We have also

shown that combining separate type-specific (A/H3N2, B etc.)

ILIþ forecasts is better than forecasting ILIþ, but we have yet

to investigate how this circulating type information can be

used to improve ILI forecasts. Similarly, while it is known

that transmission dynamics are different for children, adults

and older adults, and age-stratified ILI information is available

through ILINet, we have not attempted to model these

sub-populations separately.

The bin sizes and scoring rules presented in this paper are

similar to those proposed by FluSight to compare forecasts

across participating teams. However, some limitations exist.

For example, the fixed interval sizes and the acceptance margins

of the intensity targets benefit smaller outbreaks. During

the 2016–2017 season, in HHS region 1 and HHS region 8

where the intensities did not exceed 3%, an acceptable margin
of +0.5% makes less of a demand on forecast precision than

in regions where the peak intensity was 8–10%. A different scor-

ing scheme where the acceptable margins vary in proportion

to outbreak size would weigh outbreaks more equitably and

needs to be explored. Similarly, the current scheme weighs fore-

casts made at each week equally and does not sufficiently

account for the higher operational value of the forecasts made

during high activity weeks or weeks preceding the peak.

An extension of FluSight real-time forecast to include state-

level forecasts has recently been proposed and being

implemented for the 2017–2018 season. We believe that these

more finely resolved forecasts would be more useful to

decision makers than regional forecasts. Mechanistic models,

which explicitly consider transmission dynamics in a given

population, may be better able to capture infection pathways

at the sub-regional scales than at the regional scales. As a con-

sequence, state-level forecasts generated with dynamic models

may prove more accurate than regional forecasts, provided that

ILI observational estimates are similarly representative of true

local infection rates. However, there is no such expectation for

the statistical models. It will thus be important to determine

whether the differences in accuracy among statistical and

mechanistic models at the regional level are reproduced at

the state level.

A related extension is an application of these approaches

to generate national forecasts for countries where real-time

influenza outbreak data are publically available. During the

2017–2018 season, using the model-inference framework
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described here, we generated and published real-time fore-

casts of about 35 countries that report ILI data to the World

Health Organization [64]. Preliminary results from this

season and a retrospective analysis of the forecast quality

from up to seven seasons indicate that the model-inference

framework can work with data streams other than ILINet

used in the USA. In addition, we recently reported an

improvement in forecast quality through a networked meta-

population forecast system that combined surveillance data

and human mobility data to model the spatial movement of

influenza in the USA [65]. This system was used operation-

ally in the 2017–2018 FluSight challenge and it would be

interesting to further evaluate its utility at supranational

scales. Overall, our results suggest that:

— The BMA super-ensemble has better overall accuracy but

does not conclusively outperform the individual models,

and exploration of modifications and/or alternatives is

required.

— Transient errors in surveillance data considerably degrade

the accuracy of the forecasts.

— Reliable non-surveillance proxies of influenza incidence,

when available and appropriately used, could improve

forecasts and partially address reporting delays.
— The methods need to be more robust and less dependent

on ad hoc or post hoc manual changes.
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This is consistent with the 2016–2017 FluSight guidelines.
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