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Expression variation and covariation impair analog
and enable binary signaling control
Kyle M Kovary, Brooks Taylor, Michael L Zhao & Mary N Teruel*

Abstract

Due to noise in the synthesis and degradation of proteins, the
concentrations of individual vertebrate signaling proteins were
estimated to vary with a coefficient of variation (CV) of approxi-
mately 25% between cells. Such high variation is beneficial for
population-level regulation of cell functions but abolishes accurate
single-cell signal transmission. Here, we measure cell-to-cell vari-
ability of relative protein abundance using quantitative proteomics
of individual Xenopus laevis eggs and cultured human cells and
show that variation is typically much lower, in the range of 5–15%,
compatible with accurate single-cell transmission. Focusing on
bimodal ERK signaling, we show that variation and covariation in
MEK and ERK expression improves controllability of the percentage
of activated cells, demonstrating how variation and covariation in
expression enables population-level control of binary cell-fate
decisions. Together, our study argues for a control principle
whereby low expression variation enables accurate control of
analog single-cell signaling, while increased variation, covariation,
and numbers of pathway components are required to widen the
stimulus range over which external inputs regulate binary cell acti-
vation to enable precise control of the fraction of activated cells in
a population.
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Introduction

Vertebrate signaling has been shown to control both binary and

analog outputs. Here, we use the term binary if the output is

bimodal and the term analog if the output signal changes in parallel

with the input signal without bifurcations during the transmission.

Examples of binary signaling decisions include the commitment to

start the cell cycle (Cappell et al, 2016), cell differentiation (Chang

et al, 2008; Jukam & Desplan, 2010; Ahrends et al, 2014), apoptosis

(Spencer et al, 2009), action potentials (Hodgkin & Huxley, 1952)

and the explosive secretory response of mast cells when encounter-

ing an antigen (Hide et al, 1993). Effective analog signaling in

individual cells has been observed, for example, in the visual trans-

duction system where the number of absorbed photons proportion-

ally increases electric outputs in cone cells (Arshavsky et al, 2002),

in single-cell IP3 and Ca2+ regulation by GPCRs (Nash et al,

2001), as well as for CD-8 (Tkach et al, 2014) and IL-2 signaling

(Feinerman et al, 2008) in T cells. Analog signaling is also needed

to accurately regulate the timing or duration of intermediate cell

processes such as in the cell cycle where the time between the start

of S-phase to mitosis has only small variation between individual

cells (Spencer et al, 2013). Such precise regulation of durations

requires low noise in the signaling steps before mitosis (Kar et al,

2009). Together, these examples suggest that accurate analog signal-

ing is important for graded control of cell outputs in single cells as

well as for accurate internal timing.

A main motivation for our study was the high levels of protein

expression variation that have been reported in vertebrate cells with

coefficient of variations (CVs) of approximately 25% (Sigal et al,

2006; Spencer et al, 2009; Gaudet et al, 2012). Such high levels of

expression variation are beneficial for binary signaling which is

often regulated at the population level rather than single-cell level.

In population-based signaling, a goal of organisms is to use different

levels of input to regulate the percentage of cells in a population that

make a binary decision such as whether to proliferate, differentiate,

or secrete. For input stimuli to control which percentage of cells are

activated, high noise in signaling is needed between cells in the

population such that individual cells have different sensitivities to

input stimuli (Süel et al, 2007; Raj & van Oudenaarden, 2008;

Kalmar et al, 2009; Eldar & Elowitz, 2010; Ahrends et al, 2014).

However, the same high noise needed to control population-level

signaling does not have any benefit for analog signaling and just

serves to degrade signal transmission. These different demands on

noise for analog and binary signaling suggest that there is a trade-

off for noise between population-level and single-cell signaling

(Suderman et al, 2017). Specifically, the reported high levels of

expression variation and signaling noise in mammalian cells (Sigal

et al, 2006; Cheong et al, 2011; Gaudet et al, 2012; Selimkhanov

et al, 2014) raise the question of how noise in a signaling system

can be low enough for accurate analog signaling. It also remained

unclear how the different potential internal noise sources could
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generate optimal conditions for analog single-cell versus binary

population-level signaling.

Here, we measure cell-to-cell variation in the relative abundance

of pathway components to understand the limits of analog and

binary signaling accuracy. We also investigated the role of covaria-

tion of pathway components since we realized that covariation

could exacerbate the analog signaling problem and/or enable the

control of population-level binary signaling. We considered that

previous estimates of cell-to-cell variation in protein expression

might be too high due to experimental challenges in accurately

measuring small differences in protein abundance between cells and

accounting for “hidden variables” such as differences in cell size

and cell cycle state (Symmons & Raj, 2016). To determine lower

limits of protein variation, we developed single-cell quantitative

proteomics methods in single Xenopus laevis eggs and employed

quantitative normalization of cultured human cells to accurately

measure variations in protein abundance normalized by protein

mass. We found that cell-to-cell variation in relative protein

abundance is much lower than expected, with CVs of between 5

and 15%, suggesting that expression variation is less limiting than

currently believed and is compatible with accurate analog signal

transmission. Furthermore, our simulations show that these exper-

imentally observed low levels of expression variation pose a chal-

lenge for cells to accurately control population-level decisions. One

potential strategy to increase pathway output variation was

revealed by experiments which showed significant covariation

between the single-cell expression of two sequential signaling

components, MEK and ERK. Our modeling showed that such

increased covariation—which increases the overall noise in the

signaling pathway—allows populations of cells to control the

percentage of cells that activate ERK over a wider range of input

stimuli, suggesting that covariation of signaling components is one

strategy for populations of cells to more accurately control binary

cell-fate decisions. Finally, we developed a metric to describe how

systems can optimize the shared use of pathway components to

control single-cell analog and population-level binary signal trans-

mission by using different numbers of regulatory components,

levels of expression variation, and degrees of covariation.

Results

Computational simulations using reported levels of expression
variation show a dramatic loss of analog single-cell
transmission accuracy

Our study was motivated by the reported high levels of expression

variation and the detrimental impact that this source of noise may

have on analog single-cell signaling, especially since signaling path-

ways typically have multiple components which necessarily results

in even higher cumulative signaling noise. To define the general

control problem of how expression variation increases overall

signaling noise and limits signaling output accuracy, we carried out

simulations by applying a relative fold-change in input signal (R) to

a signaling pathway and stochastically varying the expression of

pathway components for each simulation. To determine how accu-

rately a multi-step signaling pathway can transmit a relative input

stimulus (R) to an analog output (A*), we modeled the signaling

pathway shown in Fig 1A. Specifically, we used a five-step model

where a relative change in input R acts through four intermediate

steps, possibly reflecting a kinase cascade with counteracting phos-

phatases, to generate corresponding changes in the output A*. The

regulation of these steps can be at the level of activity or localization

of pathway components. We considered five steps with 10 variable

regulators to be a typical signaling pathway since it has been shown

that step numbers in signaling pathways can range from very few in

visual signal transduction (Stryer, 1991) to over 10 steps in the

growth-factor control of ERK kinase and cell cycle entry (Johnson &

Lapadat, 2002). In our simulations, each of the parameters repre-

sents a regulatory protein that activates or inactivates one of the

pathway steps. We assumed that each of these components has

“expression variation,” meaning that their concentrations vary

between cells with a coefficient of variation (CV) calculated as their

standard deviation divided by their mean value in the cell popula-

tion. We simulated this expression variation by multiplying each

parameter in the model with a lognormal stochastic noise term with

a CV of either 5, 10, or 25% (Ahrends et al, 2014). As is apparent in

the top plots in Fig 1B for a CV of 5%, the signaling responses of

cells to threefold (red) and ninefold (blue) increases in the input

stimulus, R, can be readily distinguished from the signaling

responses of unstimulated cells (black traces). For a higher CV of

10%, the signaling responses to a threefold increase in R partially

overlap with the unstimulated cell responses, and only the

responses to a ninefold increase in R can be unequivocally distin-

guished from unstimulated cell responses. For a CV of 25%, even

responses to a ninefold increase in input stimulus overlap with the

responses of unstimulated cells, showing a dramatic loss in signal-

ing accuracy.

One way to overcome this dramatic loss in signaling accuracy

due to expression variation of pathway components is to increase

the input stimulus. We reasoned that we could use a fold-increase

parameter to quantify the loss in signal accuracy. We thus defined a

fold-Input Detection Limit (fIDL) as the minimal fold-stimulus

needed to generate signaling responses that can, in 95% of cases, be

distinguished from cell responses in unstimulated cells (see Materi-

als and Methods for calculation). Figure 1C shows an example of

how the fIDL is calculated by determining the minimum fold-input

stimulus that is needed to have only a 5% overlap between the

resulting signaling output distributions (A*) of unstimulated and

stimulated cells (black and green histograms, respectively). In the

case shown, an fIDL stimulus of 2.83 is needed to overcome the loss

of signaling accuracy caused by having 10% expression variation in

pathway components. We used fIDL instead of a commonly used

mutual information metric since mutual information between input

(R) and output (A*) has a strong dependency on the dynamic range

of the system output, while the fIDL is largely independent of satu-

ration (Fig EV1). As shown in the barplots in Fig 1D, increasing the

CV of pathway components from 10 to 25% increases the fIDL from

2.83 to 14, a stimulus requirement that is likely prohibitive for

analog single-cell signal transmission. Our realization that fIDLs are

very high for reported expression variation levels was a main moti-

vation for our strategy below to more accurately measure expression

variation in order to understand whether and how analog signaling

in single cells is limited by this noise source.

We also wanted to determine whether the expression of verte-

brate proteins may covary since covariance has been shown to exist
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in a yeast regulatory pathway (Stewart-Ornstein et al, 2012). We

considered that if proteins within a signaling pathway covary, the

overall noise in the output response would increase. To illustrate

the effect of covariance can have on a multi-step analog signaling

pathway, we added covariation to the model shown in Fig 1A by

making the positive regulators (e.g., kinases) covary together and
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Figure 1. Computational simulations using reported levels of expression variation show a dramatic loss of analog single-cell transmission accuracy.

A Schematic of a five-step analog signaling pathway where the asterisk (*) represents the activated form which is assumed in this model to be a small fraction of the
total.

B The timecourse plots show how relative threefold (red) and ninefold (blue) input changes in R result in analog output responses with different degrees of noise.
Random lognormal expression variation was added simultaneously to each pathway component. The accuracy of analog signal transmission is dramatically reduced
as the coefficient of variations (CVs) increase from 5% (top), 10% (middle), to 25% (bottom).

C Example of the output response distributions of unstimulated (black) and stimulated (green) cells at the fold-Input Detection Limit (fIDL). The fIDL represents the
minimal stimulus, R, needed to distinguish the output of stimulated cells from unstimulated cells with 95% accuracy, as marked by the vertical black dashed line. For
the system in (A) with a 10% CV in each pathway component, the fIDL is 2.83.

D Barplot comparing the fIDL values for the system in (A) with CVs of 5, 10, and 25%.
E Simulation of the pathway model in (A) but now comparing the situation in which the pathway components are all uncorrelated with each other (top) with the

situation in which the activating and de-activating pathway components covary with each other, respectively (bottom). The overlapping output distributions in the
right panels show that covariance of components in the same pathway would introduce a marked loss in signal transmission accuracy.
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also made the negative regulators (e.g., phosphatases) covary

together. As shown in Fig 1E, covariance causes the error propaga-

tion to increase, and the overall noise in the signaling output is

much higher compared to the case where proteins in the same path-

way vary independently of each other. Given that covariation causes

a marked increase in the overall noise of the signaling response, one

would expect that covariation between components of the same

signaling pathway should generally be avoided in order to have

accurate analog signaling.

Development of a method to accurately measure the relative
abundance of tens of proteins in a single cell

To probe the lower limits of protein expression variation, we

selected a system with a need for analog single-cell signaling that

was also suitable for parallel proteomics analysis. We chose Xeno-

pus laevis eggs for three reasons. First, previous studies showed that

the timing of the cell cycle during early embryogenesis is very

precise with an accuracy of ~5% (Tsai et al, 2014), suggesting that

the Xenopus system must have accurate analog signaling to main-

tain such timing. Second, eggs do not grow in size and have only

minimal new synthesis and degradation of mRNA, two features

which we thought would reduce protein expression variation. Third,

Xenopus laevis eggs are well suited for single-cell proteomics analy-

sis due to their large size (Ferrell, 1999), allowing us sufficient start-

ing material to very sensitively measure and compare relative

abundances of many proteins simultaneously in the same cell.

To accurately compare the relative abundance of tens of endoge-

nous proteins in parallel in single cells, we used selected reaction

monitoring mass spectrometry (SRM-MS), a low-noise quantitative

mass spectrometry method (Abell et al, 2011; Picotti & Aebersold,

2012; Ahrends et al, 2014) (Fig EV2). Cytoplasmic proteins were

extracted from eggs and subjected to trypsin digestion and phos-

phatase treatment before undergoing targeted quantification on a

triple quadrupole mass spectrometer. Heavy isotope-labeled refer-

ence peptides were spiked in proportionately to a measured total

protein concentration, and the ratio of the light (endogenous)

peptide to the heavy (synthetic) peptide was used as a readout of

relative protein abundance. Small calibration errors were further

corrected for during the analysis using the median of 22 normalized

peptide intensities as a correction factor similar to previous studies

(Abell et al, 2011; Ludwig et al, 2012; Picotti & Aebersold, 2012).

We measured relative protein abundance (abundance over total

protein mass) as a measure of protein concentration since reaction

rates and signaling processes depend on the concentration rather

than abundance of proteins (Padovan-Merhar et al, 2015).

We first validated our method using bulk cell analysis at different

timepoints during the first cell cycle, a process which can be initi-

ated by addition of calcium ionophore and takes approximately

90 min to complete (Rankin & Kirschner, 1997). We measured the

abundances of a set of 26 proteins that we selected to include

known regulators of signaling and cell cycle progression, as well as

several control proteins (Fig 2A; Table EV1). Timecourse analysis

over the first cell cycle further showed that we could observe the

expected cycling behavior of Cyclin A and Cyclin B (Fig 2B). We

next demonstrated that we could measure timecourses of relative

protein abundances in single cells by carrying out measurements at

five timepoints with five eggs each (Fig 2C; Table EV2). Except for a

few known cell cycle-regulated genes, Cyclin A, Cyclin B, Cdc6 and

Emi1, all of the measured proteins changed their abundance on

average less than a few percent during the first egg cell cycle

(Peshkin et al, 2015). The constant average level of many of these

signaling and cell cycle proteins can in part be explained by only

minimal mRNA synthesis during early Xenopus laevis cell cycles

(Krauchunas & Wolfner, 2013).

Low variation in the relative abundance of proteins explains how
cells are able to accurately control analog single-cell functions

We next focused on analyzing the extent to which protein concen-

trations vary between single cells. We first analyzed the set of 25

individual eggs from Fig 2C and determined the variation of each

protein in each of the batches of five eggs collected at each of the

five timepoints (Fig 3A, left). Markedly, all CVs were much lower

than expected with the median CV across all proteins and time-

points being only 7% (Fig 3A, histogram in right panel). To inde-

pendently verify these low variation measurements, we collected

and analyzed a larger set of 120 individual eggs: 60 eggs collected at

60 and at 80 min after activation. To test for reproducibility of the

measured variation, we divided the 60 eggs at each timepoint into

batches and carried out a variation analysis (Fig 3B; Table EV3).

Bootstrapping analysis showed similar low variation (Fig EV3). As

further validation, the variations measured in the two independent

experiments were similar to each other (Fig 3C). We also noted that

most of the proteins that have high cell-to-cell variation (marked as

red circles in Fig 3C) also change their abundance during the cell

cycle (Fig 2C), suggesting that high CVs reflect proteins whose

abundances are actively regulated. Thus, our finding of low CVs

answers the question raised in Fig 1A–D of how cells can accurately

control analog single-cell signaling outputs. Since expression varia-

tion can be as low as 5–10%, this main source of signaling noise is

compatible with accurate single-cell signaling and timing control.

Such low variation may also permit accurate timing in the Xenopus

laevis embryonic cell cycle, which has been measured to be on the

order of � 5% between eggs (Tsai et al, 2014).

It should be noted that for some proteins, the biological variation

might be even lower than we were able to measure in these experi-

ments. To test whether there is a lower limit for measuring varia-

tion, we carried out control experiments in which 30 individual eggs

were lysed and mixed together to remove biological variability

(Fig EV4A). This mixed lysate was then pipetted into 30 individual

tubes, and the sample in each tube was prepared and analyzed sepa-

rately by SRM mass spectrometry. The variation between these 30

individually prepared and analyzed aliquots of the same starting

lysate were compared to obtain a measure of technical variation. As

shown in Fig EV4B, the technical variation is comparable to the

lowest CV measurements we show in Fig 3A–C, suggesting that

further technical improvements may reveal even lower biological

variation.

Our analysis so far argues that expression variation can be much

lower than previously assumed, which would enable accurate

analog single-cell signaling as shown by how decreasing expression

variation in Fig 1B allows for less overlap between unstimulated

and stimulated cell responses. We next tested whether we would

find the same low variation in protein expression in cultured human

cells (HeLa cells) by carrying out immunocytochemistry
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experiments (Figs 3D and EV5). To accurately measure relative

protein abundances, we first gated for cells in the same G0/G1 cell

cycle state by using Hoechst DNA stain measurements (2n-peak;

Cappell et al, 2016). We further normalized the abundance of each

protein to total protein mass in each cell. The latter was measured

using an amine-reactive dye that stains all proteins in a cell (Kafri

et al, 2013). Since total protein mass is proportional to cell volume

(Grover et al, 2011), normalization by total protein mass can be

used as a measure of protein concentration, analogous to the

normalization we used in the single-egg experiments. To minimize

small illumination non-uniformities associated with imaging, we

also confined our analysis to cells in the center area of images where

the illumination and light collection is more uniform (see Materials

and Methods). For comparison with the Xenopus egg data, we

measured corrected CVs for the relative abundances for ERK, MEK,

MCM5, and MCM7 as well as the control proteins GAPDH and

ENO1. We validated the specificity of the antibodies by showing that

the immunocytochemistry staining could be knocked down by the

respective siRNAs (Fig EV6). The resulting CVs for relative protein

abundance were in the 10–15% range, lower than typically reported

mammalian protein CV values (Sigal et al, 2006; Niepel et al, 2009;

Gaudet et al, 2012).

Identification of covariance between the relative abundances of
components in the ERK pathway

We next determined whether there was covariance between proteins

by analyzing the same 120-egg proteomic dataset shown in Fig 3B.

As shown in Fig 4A, our correlation analysis uncovered several

covarying regulatory proteins. For example, there was significant
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Figure 2. Development of a method to quantitatively measure relative abundances of tens of endogenous proteins in parallel in single Xenopus eggs.

A Comparison of protein abundance of a set of cell cycle, signaling and control proteins in Xenopus eggs. Abundance measurements are based on SRM-MS
measurements of the combined cell extracts from 5 eggs collected at the same time and before initiation of the first cell cycle. Quantitation of relative protein
abundance was carried out by adding heavy isotope-labeled reference peptides to the egg extracts.

B Timecourse analysis of changes in Cyclin A and Cyclin B levels during the first Xenopus cell cycle measured in combined cell extracts from 5 eggs per timepoint.
C Five individual eggs were collected at five timepoints: 0, 20, 40, 60, and 80 min after the addition of calcium ionophore. To minimize variability due to sample

handling and instrument sources, the 25 individual eggs were prepared for mass spectrometry analysis at the same time and were then analyzed in sequential runs
on the same mass spectrometer. Barplot shows relative abundance changes of the 26 proteins shown in (A) tracked through the first egg cell cycle. Each black dot
represents the value from an individual egg.
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Figure 3. Single-cell variation in relative protein abundance is typically 5–10% in Xenopus eggs.

A Variation analysis of the relative abundance data from Fig 2C. Each point represents the coefficient of variation (CV) of the relative abundance of a protein between
five individual eggs in a batch collected at the same timepoint. Red boxes mark the mean CV of 5 batches, each batch collected either at 0, 20, 40, 60, and 80
minutes after cell-cycle activation. (Right) The histogram of the measured CVs for all 26 proteins at five timepoints shows that CVs typically range from 5 to 10% with
a mean CV of 7%.

B Variation analysis of a second independent set of 120 eggs. Sixty individual eggs were collected at 60 (blue) and at 80 (red) minutes after the addition of calcium
ionophore. The 60 eggs at each timepoint were divided into six batches of 10 eggs analyzed sequentially on the mass spectrometer to minimize technical variation.
The CV of the relative abundance of each protein between 10 individual eggs in a batch was calculated and plotted as filled blue and red ovals. The black boxes
mark the 25th to 75th percentile of the six batch-calculated CVs for each protein at either the 60- or 80-min timepoint. (Right) The histogram of the 312 CV
measurements (6 CVs of 26 proteins at 2 timepoints) shows the mean CV is 9%.

C Control scatter plot shows that the CVs of the 26 measured proteins are similar between two independent experiments: the 25-egg experiment shown in (A) and the
60-egg, 60-min experiment shown in (B). Red circles indicate proteins that have both high CV and change their abundance during the cell cycle.

D CVs for a set of human homologs in HeLa cells. Immunocytochemistry was performed on cells plated in 96-well wells (representative images are shown in Fig EV5).
Each blue dot represents the CV calculated from the ~5,000 cells in the respective well. Each barplot shows the mean CV of 3–12 wells. Error bars show standard
deviation of the wells for that condition. Data shown are representative of three independent experiments.
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co-regulation between MCM5 and MCM7 (Fig 4A and B), which is

expected since they function as part of a stable MCM Helicase

complex that can protect subunits from degradation in mammalian

cells (McShane et al, 2016). Nevertheless, we were surprised to also

find significant covariation between MEK (MAP2K1) and ERK

(MAPK1) (Fig 4A and B) because such covariance adds extra noise

to the signaling pathway and would not be beneficial for accurate

analog signal transmission. As further validation of the statistical

significant of the covariance, the P-values for MCM5/MCM7 and the

MEK/ERK covariation remained significant, even after adjustment

for multiple comparison testing by using Benjamini-Hochberg

corrections (Table EV4).

To determine whether the covariances we observed in Xenopus

laevis eggs are conserved in human cells, we carried out single-cell

immmunohistochemistry measurements. As shown in Fig 4C, we

found a strong covariance between MCM5 and MCM7. siRNA-

mediated depletion experiments confirmed that MCM5 and MCM7

likely co-stabilize each other as both levels are reduced upon

knockdown of either MCM5 or MCM7 in HeLa cells (Fig EV6).

While control experiments showed weak covariation between

MCM5 and the control protein GAPDH, we once again found a

significant covariation between MEK and ERK, similar to the

covariance we had observed in Xenopus laevis eggs (Fig 4C). This

co-regulation is likely due to shared upstream expression regula-

tion, or indirect feedbacks, as siRNA-mediated depletion of MEK

and ERK showed opposing effects on ERK and MEK expression,

respectively (Fig EV6). The unexpected covariation between MEK

and ERK in both Xenopus laevis eggs and human cells made us

consider whether it might be beneficial for a cell to have compo-

nents of the same pathway covary, possibly in the context of

binary cell activation that is often associated with MEK and ERK

signaling pathways.

Model analysis demonstrates that expression variation improves
control of how many cells in a population make a binary
cell-fate decision

As mentioned in the Introduction, previous studies showed that

noise in signaling can be beneficial by widening the range of input

stimuli that controls the percentage of cells in a population that are

activated or not (Ahrends et al, 2014; Suderman et al, 2017). We

were therefore interested to understand whether and how variation

and covariation of the expression of pathway components could be

main sources of noise for the control of binary cell activation. We

first focused on variation and carried out simulations to understand

the effect of variation of pathway components on binary signaling at

the population level. As shown in the schematic in Fig 5A, we used

the model introduced in Fig 1A but now assumed a last regulatory

step whereby a cell with a y�5 value above 10 would trigger a switch

into an active state while a cell with an output value y�5 below the

threshold of 10 would remain inactive. This last step is denoted as

B* versus B, reflecting the active and inactive binary output state,

respectively. The results discussed here are largely independent of

the value of the threshold (see Materials and Methods).

We used this binary model to determine the percentage of cells

in a population that will switch into the active state for different

fold-increases of input stimuli and different levels of expression

variation. As shown by the black circles in Fig 5B, if there is no

expression variation of pathway components, all cells will reach the

threshold and abruptly switch from the inactive to active state

within a very narrow stimulus window. As the expression variation

of pathway components increases and the cells become more

different from each other, the percentage of cells in a population

that switch from the inactive to active state can be controlled over a

wider range of input stimuli. Increasing the CV of pathway compo-

nents to 40% results in a close-to-linear relationship in the five-step

model between percent of cells activated and relative input stimulus

amplitude.

This widening of the input stimulus control window can be quanti-

fied by fitting the fractional activation data with an apparent Hill coef-

ficient (aHC) that measures how well the population-level output can

be controlled by the input. The fitted Hill coefficients for systems with

different amounts of protein expression variation are shown in the

bar plot in Fig 5C. A system with a smaller aHC can be more accu-

rately controlled over a wider range of input levels which would be

desirable in physiological settings where external hormone input stim-

uli may not be precise themselves. Another consideration to take into

account is that physiological responses to hormone stimulation can

typically be elicited over a 10-fold or greater range of relative

hormone stimulus increases (R) (Atgiè et al, 1997; Katakam et al,

2001; Kimura et al, 2007). For a five-step signaling pathway, accu-

rately transmitting a 10-fold range of input stimuli means that there

should be a nearly linear relationship between input stimulus and

percent of activated cells (Fig 5B). Such a broad and nearly linear

relationship requires that the signaling pathway has high overall vari-

ation (approximately 40%) which could originate from variation in

expression of individual pathway components or from other sources

of noise.

Understanding the role of variation in MEK and ERK expression
in regulating bimodal ERK activity

Since the MEK/ERK signaling pathway often controls binary

single-cell decisions such as whether cells divide or differentiate

(Seger & Krebs, 1995), we used MEK and ERK as examples of

variable signaling components to evaluate the role of expression

variation in population-level cell-fate decisions. We first validated

experimentally that ERK signaling output was bimodal or at least

variable for intermediate stimuli in the same population by using

EGF stimulation of human MCF10A cells. Specifically, we gener-

ated an MCF10A cell line expressing a FRET sensor of ERK activity

to measure ERK activation in live cells (Albeck et al, 2013; Aoki

et al, 2013). The FRET intensity of this sensor, EKAR-EV, was

shown previously to faithfully report pERK levels in MCF10A cells

(Yang et al, 2017). We used EGF to activate the pathway, and after

60 min, cells were fixed and stained with antibodies to measure

the abundances of MEK and ERK, so that the pathway response

could be related back to the relative level of the two proteins. The

MEK and ERK abundance values were normalized by an intracellu-

lar total protein stain following established protocols from (Kafri

et al, 2013) in order to correct for cell volume and to obtain

relative protein abundances. An EGF titration showed that there

was indeed bimodal ERK activation and that intermediate stimuli

doses could induce heterogeneous responses (Fig 6A). We quanti-

fied the ERK activity in each timecourse by calculating integrated

ERK activity as the area under the curve after EGF stimulation. As
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shown in Fig 6A, the integrated ERK activity values showed two

peaks, allowing us to define cells as active or inactive using

the indicated threshold (dotted vertical black line). From the

histograms in Fig 6A, it is apparent that the fraction of activated

cells in the cell population increases as the EGF concentration

increases. This relationship is more directly plotted in Fig 6B.

Thus, in these human MCF10A cells, there is a wide range of

input stimuli over which the fraction of the cell population that is

activated can be controlled.

We next determined whether natural variation in MEK and ERK

abundances indeed matters in determining whether individual cells

have active ERK or not since it is conceivable that the level of active

ERK is controlled by other factors such as variable numbers of

receptors or variations in phosphatase activity. If expression varia-

tion matters for controlling activated ERK levels, the single-cell

expression of MEK and ERK should on average be higher in cells

with high ERK signaling compared to cells with low ERK signaling

when analyzed in the same population of cells for the same
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Figure 4. MEK and ERK expression covary in Xenopus eggs and cultured human cells.

A Heatmap of Pearson’s correlation values between the respective proteins in Xenopus eggs. Twenty-six relative protein abundances were correlated pairwise in 120
single eggs. Only correlations with a P-value less than 0.05 are shown. P-values were adjusted for multiple comparison testing using Benjamini-Hochberg corrections
(Table EV4).

B Two examples of pairwise correlations are shown between MCM5 and MCM7 and between MEK and ERK in Xenopus eggs.
C Pairwise correlation analysis in HeLa cells, using MCM5 versus MCM7 as a positive control and MCM5 versus GAPDH as an uncorrelated control. Correlations between

MEK and ERK concentrations are shown. Each scatter plot shows values from ~15,000 cells. The bar graphs on the right show correlation coefficients for three
separate wells, containing ~5,000 cells each, for the same three correlation pairs.
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intermediate input stimulus. Indeed, when we compared relative

MEK and ERK abundances in cells with active or inactive ERK activ-

ity, we confirmed that activated cells have on average higher MEK

and ERK concentrations, and inactive cells have on average lower

MEK and ERK concentrations (Fig 6C). These results argue that

natural single-cell variation in the concentrations of MEK and ERK

does matter in determining whether or not a cell will be activated.

The five-step model in Fig 5 conceptually showed how expres-

sion variation can broaden the range over which input stimuli can

control binary cell fates. We next used an established model of the

MAPK pathway to better understand whether and how natural vari-

ation in MEK and ERK expression contributes to the controllability

of bimodal ERK signaling in a population over a broader range of

input stimuli. The model has seven protein species: Ras, MEK, ERK,

four phosphatases, and RasGTP as the input (Sturm et al, 2010),

and we added random lognormal noise with 10% CV to each simu-

lation. We tested the model over a range of RasGTP input doses as a

proxy for receptor input. When 15% random variation in both MEK

and ERK was added to the model, the output of the model, phospho-

rylated ERK (pERK), which reflects ERK activity, became variable

between cells and was bimodal for intermediate concentrations of

EGF stimuli as shown by the timecourse traces in Fig 6D. Figure 6E

better illustrates the effect of adding variation to the model. The red

and blue curves in Fig 6E show the percentage of cells with acti-

vated ERK at different doses of receptor stimulation when either 3

or 20% random variation in MEK and ERK was added. Increasing

the expression variation of MEK and ERK in each simulation results

in a more linear relationship between input stimulus and percent of

activated cells, thus allowing for improved controllability of the

percentage of activated cells in the population over a wider range of

stimuli. Such a wide range over which stimuli regulate the cell func-

tion is important given that receptor stimuli have significant noise at

the level of local ligand concentrations and receptor abundance.

Understanding the role of covariation in MEK and ERK expression
in regulating bimodal ERK activity

Given the need for low Hill coefficients and a broadening of the rela-

tionship between input stimulus and percent of activated cells in

order to optimally control population-level responses to physiologi-

cal stimuli (Fig 5B and C), we next determined whether covariation

could be another source of overall noise that could lower the Hill
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Figure 5. Using a general five-step model to understand the effect of variation on controlling the fraction of cells in the population that respond to input
stimulus.

A A binary output step was added to the model from Fig 1A. A threshold of 10 was used in each simulation to determine whether a cell was activated or not (y�5 > 10).
B Plot of how increasing the CVs in expression of the pathway components in this binary model from 0 to 40% increases the range over which changes in the input

stimuli can change the fraction of cells in the population which trigger the binary switch and become activated.
C Hill coefficients were fit to the data in (B) to quantify the steepness in the curves. The steepness is an inverse measure of how wide the input range is that controls

the output.
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Figure 6. Live-cell imaging experiments and simulations using an establishedMEK/ERK signalingmodel show that variation betweenMEK and ERK expression
widens the window over which input stimuli can control the fraction of cells that are activated in the population.

A MCF10A cells stably expressing the EKAR-EV FRET sensor were activated with varying concentrations of EGF after being serum starved for at least 48 h. Cells were
imaged every 2 min throughout the timecourse. (left) The plots at EGF doses of 0, 62.5, 125, 250, and 500 pg/ml show FRET intensity timecourses from approximately
800, 520, 1,200, 1,000, and 900 individual cells, respectively. (right) Histograms show the corresponding integrated ERK activity of individual cells. Integrated ERK
activity was calculated for each timecourse as the area under the curve after the addition of EGF. The dashed line shows the threshold used to distinguish cells with
active versus inactive ERK.

B Plot showing percentage of activated cells (cells to the right of the threshold plotted in (A)) in response to different EGF concentrations.
C Box-and-whisker plots of MEK (left) and ERK (right) concentrations in cells with high (top 15%, magenta) or low (bottom 15%, green) integrated ERK activity in

response to EGF stimulation. The high and low conditions represent 162 and 161 cells respectively, out of a total of 1,073 cells, stimulated with 3,000 pg/ml of EGF
(MEK plots), and 198 and 197 cells respectively, out of a total of 1,316 cells stimulated with 125 pg/ml of EGF (ERK plots). In the box-and-whisker plots, the bold line
in the center of the notch represents the median, the ends of the notched box represent the first and third quartiles, the length of the upper whisker shows the
largest point no more than 1.5 times the inter-quartile range (IQR or length of the box), the lower whisker represents the smallest point no more than 1.5 times the
inter-quartile range, and the notches represent 1.58 * IQR/sqrt(n), which approximates the 95% confidence interval of the median. The non-overlapping notches
between the high and low populations, as well as the low P-values, indicate that the differences between the two populations are statistically significant.

D Timecourse output from an established MEK/ERK model (Sturm et al, 2010) in response to high, medium, and low concentrations of input (RasGTP) stimulus shows
that the output for intermediate stimuli is bimodal with mainly either high pERK or low pERK cells separated by a threshold pERK intensity of approximately 17.
Random lognormal noise with 15% CV was applied to MEK and ERK and 10% CV to the input stimulus (RasGTP).

E Model simulations resulting from applying random lognormal noise with different CVs to MEK and ERK. In all cases, random lognormal noise with 10% CV was
applied to the input stimulus (RasGTP).
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coefficient and improve controllability. Such an increase in overall

noise is needed as a system with 10% expression variation may not

generate sufficient signaling noise for accurate population control of

binary signaling responses. We had shown in Fig 4C that MEK and

ERK covary with each other in human HeLa cells. We now also con-

firmed that MEK and ERK covary with each other in the human

MCF10A cells used for the FRET pERK activity measurements (cor-

relation coefficient of 0.7; Fig 7A). Measurements of covariation

between MCM5 and MCM7 and lack of covariation between MCM5

and GAPDH are shown as controls.

Next to understand the effect of covariation in a general multi-

step signaling pathway, we added covariation to the five-step model

from Fig 5. As shown in the model output in Fig 7B, when covaria-

tion is added to all components in a regulatory system that has 10%

variation of pathway components, the controllability of population-

level binary responses is significantly improved by reducing the

relationship between input stimulus and percentage of cells acti-

vated. This improvement in controllability is demonstrated by the

Hill coefficient decreasing from over five if there is no covariation to

down to 2.3 if covariation is added. Thus, our five-step model

demonstrates that a system with high covariation of signaling

components enables population-level regulation of binary outputs

over a broader range of signaling inputs.

We next tested how strong the contribution is if only a pair of

pathway components covaries by using the MAPK/ERK signaling

model from Fig 6 and assuming that only MEK and ERK covary with

each other. We compared how the fraction of activated cells in a

population changes if MEK and ERK expression noise was random

or covaried. We were cognizant that more than two pathway

components may be co-dependent in typical signaling systems. As

shown in Fig 7C (top plot), when there is covariation of a single pair

of components, there was a small but significant broadening of the

relationship between the stimulus intensity and the percentage of

cells in the active state that seems to be particularly significant if

cells have to control the activation of small fractions of cells. When

considering cell differentiation as an example of this binary signal-

ing response, a control of only 1% of the precursor population

differentiates is critical physiologically since several tissues are

believed to differentiate < 1% of precursor cells at any given time

(Spalding et al, 2008; Ahrends et al, 2014). The significance of the

contribution of covariation in this low percent range of cell activa-

tion can be seen by using a log scale for the y-axis in Fig 7C

(bottom panel) and testing for the effect of applying noise to the

input signal R. As shown in the panel, if one wants to keep 1% of

the cells in the population activated (marked by the dotted horizon-

tal line), a 10% difference in the input signal (represented by a

black arrow) would result in less error in the number of activated

cells (1.4-fold versus 2.3-fold accuracy in the percent of activated

cells) when comparing a system with or without covariation in a

single pair of pathway elements. Thus, a system with covarying

components would be significantly more accurate in this physiologi-

cally relevant regime where low percentages of activated cells need

to be maintained.

The model output in Fig 7D also confirms our experimental

results from Fig 6C that cells in the population with high ERK activ-

ity have on average higher MEK and ERK levels compared to cells

that have low ERK activity, arguing that the concentrations of MEK

and ERK are limiting in the model and thus matter in determining

whether or not a cell will be activated. Together, the plots in Fig 7C

and D show that covariation of even one pair of pathway compo-

nents—MEK and ERK in this case—significantly widens the range of

input stimuli over which cell-fate decisions can be controlled at the

population level. Covariation of more pathway components would

further widen the stimulus range and further improve controllabil-

ity. This result on the importance of expression variation and

covariation is particularly important if organisms need to control

the activation of small fractions of cells in a population such as to

enable low rates of cell differentiation (Ahrends et al, 2014) or

apoptosis (Spencer et al, 2009) in tissues.

Constraints on accurate control of analog and binary signaling by
expression variation and covariation

We used our experimentally measured low CV values for relative

protein abundances, together with our finding that covariation can

further improve the controllability of binary signaling outputs, to

explore the respective ranges of variation and covariation where

single-cell and population-level signaling can be effectively

controlled. As depicted in Fig 8A, we employed a modification of

the model from Fig 1A to directly compare analog and binary signal-

ing outcomes by assuming that the same pathway drives in one case

an analog single-cell output (A*) and, in the second case, binary cell

activation if the output y�5 reaches higher than a threshold of 10

(B*). We use fold-Input Detection Limits (fIDLs), as defined in

Fig 1C and D, to quantify accurate analog single-cell signaling and

aHC, as defined in Fig 5C, to quantify accurate controllability of

population-level binary signaling. As discussed in Fig EV1, the fIDL

parameter is a measure of analog signaling accuracy that is inver-

sely related to mutual information but is less dependent on the

dynamic range of the output, and the Hill coefficient is an inverse

measure of the input range over which the population-level output

can be controlled. The equations used to calculate the fIDL and aHC

are shown at the top of Fig 8B and C (see Materials and Methods for

derivation).

As shown in Fig 8B and C, single-cell analog or population-level

binary outputs can be optimally controlled if the fIDL or aHC,

respectively, are small and close to 1. The conflicting constraint

between the control of single-cell analog and population-level

binary signaling by expression variation can be seen clearly by

combining the two graphs in Fig 8B and C into a single competition

curve (Fig 8D). Increasing the variation in the concentration of

pathway components moves cells along this curve from optimal

conditions for analog single-cell signaling (CV of 5%, right bottom)

toward optimal conditions for controlling binary population-level

signaling (CV of 40%, left top) with the curve staying far away from

the origin at the left bottom where analog and binary signaling

would both be accurate. Thus, the same signaling system with a CV

of 5% that has optimal analog single-cell accuracy loses its ability to

accurately control binary population-level outputs. Similarly, a

system with a CV of 40% that is optimal for controlling binary

population-level outputs loses its ability to accurately control analog

single-cell signaling. Thus, cells cannot have a shared pathway that

controls accurate analog single-cell signaling outputs and also accu-

rately controls binary population-level signaling outputs.

As shown in Fig 8C and D, as well as in Fig 5B, a CV of 40% or

greater would be optimal for controlling population-level signaling
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Figure 7. Single-cell imaging experiments and model simulations show that covariation between MEK and ERK expression facilitates control of bimodal ERK
activation.

A Immunohistochemistry experiments in MCF10A cells and pairwise correlation analysis show covariance of MEK and ERK. MCM5 versus MCM7 is used as a positive
control and MCM5 versus GAPDH as an uncorrelated control. Each scatter plot shows values from ~15,000 cells. The bar graphs on the right shows correlation
coefficients for 3 separate wells of each correlation pair, containing ~5,000 cells each.

B Using the 5-step binary model from Fig 5A to now look at the effect of covariance in the pathway. The same type of plot as in Fig 5B is shown to compare the output
of the binary model if the pathway components vary randomly or covary with each other. The population response when uncorrelated CVs of 10% were applied to
the pathway components is shown in red. The blue curve shows the population response when covariation was added to the model. To obtain a maximal effect, the
CVs of 10% were applied to all positive and all negative regulators, respectively, such that the positive regulators covaried together and the negative regulators
covaried together. Covariation in the pathway broadens the range by which input stimuli can regulate the percent of activated cells, as shown by the decrease in the
apparent Hill coefficient from 5.4 to 2.3 and less steep sigmoidal response.

C Using an established MAPK model (Sturm et al, 2010) to compare the effect of covarying MEK and ERK concentrations. The red curve show the results of simulations
in which random lognormal noise with 15% CV was applied independently to the MEK and ERK concentrations. The blue curve shows the results of simulations in
which MEK and ERK concentrations were made to covary by applying the same 15% CV lognormal noise term to both MEK and ERK in each simulation. In all cases,
lognormal noise with 10% CV was applied to the input stimulus (RasGTP). The shallower slope of the blue curve show that the percent of activated cells can be
regulated over a wider range of input stimuli if there is covariance between MEK and ERK.

D Output of simulations using same MAPK model as in (C). Scatter plot shows output of simulations (cells) colored by whether they had high (magenta) or low (green)
ERK activity at the end of the timecourse. Cells shown were stimulated with input doses between 210.5 to 212, a range which results in both active and inactive cells
in the population as shown in (C).
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outputs. However, our study and previous work by others suggests

that such high CVs of protein concentrations are not common (Sigal

et al, 2006; Gaudet et al, 2012), indicating that cells must use other

mechanisms to generate the necessary high signaling noise to accu-

rately control the fraction of activated cells for population-level

binary outputs. We considered that changes in the number of path-

way components as well as the covariance of pathway components

are strategies to alter the overall signaling output noise. We used

the fIDL versus aHC co-dependency curve to determine how

changes in pathway component numbers control analog or binary
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Figure 8. Competing demands on variation and covariation in the control of analog single-cell versus binary population-level signaling outputs.

A Schematic of a signaling pathway that splits into an analog or binary output.
B–D Quantification of the competing constraints on expression variation for accurate control of single-cell analog versus population-level binary signaling outputs.

Plots showing the development of a metric that quantitatively relates expression variation, analog single-cell signaling accuracy, and binary signaling
accuracy. (B) Relationship between expression variation and fold-Input Detection Limit (fIDL), highlighting the physiological range of 5, 10, and 20% expression
variation. (C) Relationship between expression variation and apparent Hill Coefficient (aHC). 40% expression variation enables accurate control of population-level
binary outputs. (D) Integration of both relationships into a single co-dependency curve relating optimal analog single-cell and binary population-level signaling.
Terms in equations: CV: expression variation; N: Total number of pathway components; Ncov: Number of covariant pathway components; a = 3.3; b = 1.4; c = 6.3.

E Increasing or decreasing the number of regulators in a pathway increases or decreases the overall noise in the pathway, respectively, and thus can be used as a
way to more accurately control either binary population-level or analog single-cell functions, respectively.

F Covariation between pathway components such as MEK and ERK is an effective means to increases overall noise in the pathway and thereby improve the
controllability of binary population-level signaling responses while reducing single-cell analog signaling accuracy. A system with covariation can accurately control
binary population level signaling without needing 40% expression variation which is likely not common.

G The analysis of (B–F) suggests that the same pathway components can only be shared between analog and binary signaling systems if the analog pathway
branches off early after receptor stimulation. Covariance in a branch of a signaling pathway is an indication that the output is regulated by a binary output at the
population level.
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signaling (Fig 8E). While our analysis so far assumed 10 regulatory

elements, fewer or higher numbers of signaling steps are common

in signaling systems. Notably, changing the number of signaling

steps improves one signaling mode at the cost of the other. Fewer

signaling steps move the system toward improved analog single-cell

signal transmission and more signaling steps toward improved

control of population-level binary outputs. To illustrate the effect of

increasing or decreasing signaling steps with examples: since many

signaling systems are complex with likely 20 or more regulators

(Sturm et al, 2010; Gaudet et al, 2012), such complex systems must

necessarily be mediating population-level signaling responses. In

contrast, the visual signal transduction pathway in retinal cone

cells, which transduces light intensity inputs proportionally into

electrical outputs, has only a few main regulatory components

(Arshavsky et al, 2002) which benefits the control of analog single-

cell signaling responses.

Our modeling and experimental data in Figs 5 and 7 showed that

a potent strategy to increase noise, without adding expression varia-

tion to individual components, is based on positive covariation

between pathway components. Covariation can increase accurate

binary signal transmission as we show in the case of the MEK/ERK

signaling pathway. Indeed, Fig 8F shows that adding covariation

moves cells away from a state where they can accurately perform

analog single-cell signaling toward a state where they can accurately

control the percentage of activated cells at the population level.

These results suggest that covariation is a useful strategy to improve

the control of population-level binary cell functions without that the

expression variation or number of pathway components themselves

have to be increased. We also note that covariation can in some

cases increase rather than decrease, analog single-cell accuracy if

directly opposing enzymes (e.g., a kinase and a phosphatase)

covary with each other (Feinerman et al, 2008). Together, our anal-

ysis shows that cells have a versatile set of internal tools to control

whether a signaling pathway can accurately control single-cell

analog or population-level binary signaling by changing either the

expression variation of individual components, the number of path-

way components, or the covariation in expression between compo-

nents. Furthermore, if pathways share components, these model

calculations argue that analog signals have to minimize component

numbers by branching out early in a pathway, while binary popula-

tion-level signal responses would optimally be transmitted through

more pathway steps and with pathway components covarying with

each other (Fig 8G).

Discussion

Variation in signaling protein expression between individual cells
is lower than expected

Variation in mRNA and protein expression between individual cells

is believed to be a main limitation for cells to accurately transduce

receptor inputs to control analog functional outputs. In particular,

studies in model organisms and cultured mammalian cells suggest

that the main sources of noise are likely the small number of mRNA

molecules, which is common for signaling proteins, and the

frequently observed bursting behavior in gene expression which can

further increase the variation in the number of mRNA molecules

present in a cell at a given time. Together with the observed varia-

tion in the expression of fluorescently conjugated signaling proteins

and the observed variation in antibody staining of signaling

proteins, it has often been assumed that the CV of signaling proteins

between cells in the same population must be quite high, with

numbers of about 25% CV being frequently used.

Our study investigated signaling protein variation by measuring

variation of a small set of signaling proteins in Xenopus eggs and a

subset of proteins also in mammalian cells. Specifically, we

measured variation by normalizing the expression of individual

proteins by the total protein mass. Using this strategy, we found CV

values for proteins between individual Xenopus eggs of 5–10% and

between human cells in the 10–15% range, much lower than

expected. We used in both cases total protein mass of a cell for

normalization since cell volume is believed to scale closely with cell

protein mass. Variation of the concentration is in most cases an opti-

mal measure of variation, as the relevant parameter for the activity

of a signaling protein is its cytosolic concentration, or the abundance

of a particular signaling protein in a cell divided by the volume of the

cell. The low CV values of 5–15% that we measured would make it

possible for sensory, hormonal, or other analog signal transduction

systems to accurately transduce information about the amplitude of

an input to gradually control the output, as we demonstrated using a

minimal model of a typical signaling pathway with five steps. As

shown in Fig 1A–D, a five-step system with low variation in pathway

component expression can with high accuracy distinguish a threefold

increase in an input stimulus from a onefold increase, while a system

with 25% variation can only distinguish a much larger fold-increase.

Competing roles of expression variation in enabling accurate
analog single-cell signaling and controlling population-level
binary signaling

A main interest of our study was to better understand the competing

requirements of analog signaling systems, that need to accurately

control a gradual output response of a single cell, from binary

signaling systems that need to control the percentage of cells in a

population that trigger a particular cell-fate transition. In the analog

single-cell case, low noise is optimal, while in the latter binary popu-

lation-level case, high noise is optimal. In the binary case, the critical

role of increased variation in the expression of signaling proteins is

to broaden the response behavior in a population of cells so that the

fraction of cells that trigger a cell-fate switch can be controlled over a

broader range of input signals. If there is no noise, all cells would

trigger the cell-fate change at precisely the same amplitude of an

input stimulus. Given that input signals can also be noisy, one can

argue that optimal binary systems should be able to control whether

10 or 50% of cells in a population are activated over a range of input

stimuli of about 5, which would allow for approximately linear

control of the fraction of activated cells by changes in the amplitude

of typical receptor inputs. Our model calculations showed that such a

system requires much higher variation in the expression of signaling

proteins in the 40% range compared to the low variation required for

optimal signaling for analog systems.

These competing needs for high versus low variation for different

types of signaling raised the question whether cells use alternative

mechanisms to increase overall signaling noise in a system in order

to still allow cells to keep the variation of individual signaling
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proteins relatively low if these same components are also needed in

other situations for binary signaling. We show that having high

numbers of signaling components involved in a binary decision is a

powerful strategy to generate more noise as more components make

a cumulative noise contribution that increases noise. We further

showed in model calculations that covariation between signaling

proteins in the same pathway reduces analog signal transmission

accuracy but also found that covariation can both increase the over-

all noise/variation of the functional output. These considerations led

us to measure protein covariation in Xenopus eggs and human cells,

and we observed a significant covariation between MEK and ERK

expression in both systems. Model calculations of the ERK pathway,

together with measurements of ERK activity and ERK and MEK

expression levels, showed that the increased variation due to covari-

ation increases the range over which input EGF signals can control

binary ERK activity output. Of note, the contribution from a single

pair of covarying signaling proteins is relatively small, and strong

effects resulting from covariation require multiple signaling proteins

covarying with each other. Future studies with high quality antibodies

for multiple pathway components will be needed to more generally

test this covariation hypothesis in different signaling systems.

Expression variation, covariation, and number of pathway
components define accuracy of analog versus binary
signaling systems

Another goal of our study was to develop a general formalism to

better understand how variation and covariation of signaling protein

expression and also the number of pathway can be modulated to

optimize different types of signal transmission in cells. These factors

impede the accuracy of single cell signal transmission while improv-

ing the controllability of the population-level regulation of binary

cell activation. Our analysis in Fig 8 shows a clear competition argu-

ing that cells should have relatively low variation of signaling

proteins in the 10% range if they need to reuse these same pathway

components also for population-level control of binary cell fates.

This implied that other strategies are needed to increase the overall

noise of the signaling pathway for the control of binary decisions.

We identified that having large numbers of pathway components

and having covariation between pathway components are two such

strategies to increase the overall noise and to allow for population

level control of cell fates over broad ranges of input stimuli. We

developed a simple model that shows how many pathway compo-

nents are needed and how much covariation can maximally contri-

bute to the control of binary cell fates.

In conclusion, our study employed sensitive single-cell mass

spectrometry and single-cell immunofluorescence analysis to reveal

a low variation in relative protein abundances with CV values in the

5–15% range, suggesting that expression variation is not prohibi-

tively high for analog signal transmission in single cells as was often

assumed in previous studies. However, such low levels of variation

make it difficult for signaling pathways to control population-level

binary signaling outputs over broad ranges of input stimuli. We

show that covariance of signaling components and increased

numbers of pathway components can be effective mechanisms to

increase overall signaling output noise and thereby allow for

optimal control of binary cell-fate switches at the population level

even if the variation of individual signaling components is low.

Materials and Methods

Reagents and tools table

Reagent/Resource Reference or source Identifier or catalog number

Experimental models

MCF10A ATCC CRL-10317

HeLa ATCC CCL-2

Xenopus laevis NASCO

Recombinant DNA

pPBbsr2-EKAR-NLS Komatsu et al (2011)

Antibodies

Rabbit monoclonal antibody [E460] to ERK2 Abcam ab32081

MEK1/2 (L38C12) Mouse mAb Cell Signaling 4694S

Rabbit anti-MCM5 Abcam ab17967

Mouse anti-MCM7 Abcam ab2360

Rabbit anti-ENO1 (Enolase) Abcam ab155102

Anti-GAPDH antibody [6C5] mouse monoclonal Abcam ab8245

Anti-GAPDH Polyclonal Goat anti-human, mouse, rat Thermo Fisher PA19046

Alexa Fluor 647 NHS Ester Thermo Fisher A20106

Donkey anti-Goat IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 647 Invitrogen A21447

Donkey anti-Rabbit IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 488 Invitrogen A21206
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Continued

Reagent/Resource Reference or source Identifier or catalog number

Donkey anti-Mouse IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 594 Invitrogen A21203

Donkey anti-Mouse IgG (H+L) cross-adsorbed secondary antibody, Alexa Fluor 647 Invitrogen A31571

Other

siGENOME GAPD Control siRNA (Human) Dharmacon D-001140-01-05

SMARTpool: siGENOME MAPK1 siRNA (ERK2) Dharmacon M-003555-04-0005

SMARTpool: siGENOME MAP2K1 siRNA (MEK1) Dharmacon M-003571-01-0005

SMARTpool: SiGenome MCM7 siRNA Dharmacon M-003278-02-0005

SMARTpool: siGenome MCM5 siRNA (human) Dharmacon M-003276-02-0005

SMARTpool: siGENOME MAPK3 siRNA (ERK1) Dharamcon M-003592-03-0005

SMARTpool: siGENOME MAP2K2 siRNA (MEK2) Dharmacon M-003573-03-0005

FlexiTube GeneSolution pooled siRNA for GAPDH Qiagen GS2597

FlexiTube pooled siRNA for MCM5 Qiagen GS4174

FlexiTube pooled siRNA for MCM7 Qiagen GS4176

FlexiTube pooled siRNA for MAP2K1 (MEK1) Qiagen GS5604

FlexiTube pooled siRNA for MAPK1 (ERK2) Qiagen GS5594

ON-TARGETplus Non-targeting Pool Control siRNA Dharmacon D-001810-10-05

Allstars Negative Control siRNA Qiagen 1027281

JPT SpikeTides peptides JPT Peptides, Berlin, Germany

Epidermal Growth Factor (EGF) Sigma-Aldrich E9644

PureCol Type I Bovine Collagen Solution Advanced BioMatrix Cat #5005

Pierce BCA Protein Assay Kit Thermo Fisher 23225

Methods and Protocols

Xenopus laevis egg collection and activation
Xenopus egg extracts were prepared based on modifications of a

previous protocol (Tsai et al, 2014). All of the animal protocols used

in this manuscript were approved by the Stanford University Admin-

istrative Panel on Laboratory Animal Care. To induce egg laying,

female Xenopus laevis were injected with human chorionic gonado-

tropin injection the night before each experiment. To collect the

eggs, the frogs were subjected to pelvic massage, and the eggs were

collected in 1× Marc’s Modified Ringer’s (MMR) buffer (0.1 M NaCl,

2 mM KCl, 1 mM MgCl2, 2 mM CaCl2, 5 mM HEPES, pH 7.8). To

remove the jelly coat from the eggs, they were placed in a solution

of 2% cysteine in 1× MMR buffer for 4 min and gently agitated, after

which they were washed four times with 1× MMR buffer. To acti-

vate the cell cycle, eggs were placed in a solution of 0.5 lg/ml of

calcium ionophore A23187 (Sigma) and 1× MMR buffer for 3 min,

after which they were washed four times with 1× MMR buffer.

Single eggs were collected at their respective timepoints and placed

into 600 ll tubes and snap frozen in liquid nitrogen before being

stored at �80°C.

SRM sample preparation
Single eggs were lysed mechanically by pipetting the egg in 100 ll
of lysis buffer (100 mM NaCl, 25 mM Tris pH 8.2, Complete EDTA-

free protease inhibitor cocktail (Sigma). The lysate was then placed

in a 400 ll natural polyethylene microcentrifuge tube (E&K

Scientific #485050) and spun at 15,000 g in a right angle centrifuge

(Beckman Microfuge E) at 4°C for 5 min. The lipid layer was

removed by using a razor blade to cut the tube off just beneath it,

and the cytoplasmic fraction was pipetted into a 1.5-ml protein

LoBind tube (Fisher Scientific #13-698-794), being careful to leave

the yolk behind. To precipitate the proteins from the cytoplasmic

fraction, 1 ml of ice cold acetone was added to each sample and

placed at �20°C overnight.

To collect precipitated proteins, the samples were centrifuged at

18,000 g for 20 min at 4°C. Acetone was decanted, and the protein

pellets were resolubilized in 25 ll of 8 M urea. To fully solubilize

the protein pellet, the samples were placed in a shaker for 1 h at

room temperature. The samples were then diluted to 2 M urea with

50 mM ammonium bicarbonate to a 100 ll volume, after which

protein concentration was measured in duplicate with a BCA assay

by taking two 10 ll aliquots of each sample. The proteins in the

remaining 80 ll of sample volume were reduced with 10 mM TCEP

and incubated for 30 min at 37°C, then alkylated with 15 mM

iodoacetamide and incubated in the dark at room temperature.

Next, the samples were diluted to 1 M urea with 50 mM ammo-

nium bicarbonate, and heavy peptides (JPT SpikeTides) were

added based on BCA assay results. Trypsin (Promega #V5113) was

then added at a ratio of 10 ng trypsin per 1ug protein (no < 500 ng

was added to a sample). The trypsin digestion was carried out at

37°C for 12–16 h.

To stop the trypsin, formic acid (Fisher #A117-50) was added at

a ratio of 3 ll per 100 ll of sample to bring the pH down to < 3.

16 of 21 Molecular Systems Biology 14: e7997 | 2018 ª 2018 The Authors

Molecular Systems Biology Limits of noise in controlling cell signaling Kyle M Kovary et al



Peptides were cleaned up using an Oasis HLB uElution plate

(Waters), equilibrated, and washed with 0.04% trifluoroacetic acid

in water, and eluted in 80% acetonitrile with 0.2% formic acid.

All solutions used are HPLC grade. Samples were then lyophilized.

To remove any variance produced by phosphorylated peptides,

the samples were phosphatase-treated. Peptides were resolubilized

in 50 ll of 1× NEBuffer 3 (no BSA), and calf intestinal alkaline

phosphatase (NEB #M0290S) was added at a ratio 0.25 units per

lg of peptide and incubated for 1 h at 37°C. The peptides were

cleaned up again according to steps described above. Peptides

were resolubilized in 2% acetonitrile and 0.1% formic acid before

SRM analysis.

SRM data acquisition
As detailed in previous publications (Abell et al, 2011; Ahrends

et al, 2014), 2 lg of peptides was separated on an EASY-nLC

Nano-HPLC system (Proxeon, Odense, Denmark) with a

200 × 0.075 mm diameter reverse-phase C18 capillary column

(Maisch C18, 3 lm, 120 Å) and were subjected to a linear gradient

from 8 to 40% acetonitrile over 70 min at a flow rate of 300 nl/

min. Peptides were introduced into a TSQ Vantage triple quadru-

pole mass spectrometer (Thermo Fisher Scientific, Bremen,

Germany) via a Proxeon nanospray ionization source. The transi-

tions for the light (endogeneous) and heavy (SpikeTide) peptides

were measured using scheduled SRM-MS and analyzed using

Skyline version 3.5 (MacCoss Lab, University of Washington).

Relative peptide quantifications were determined by rationing the

peak area sums of the transitions of the corresponding light and

heavy peptides. Only transitions common between the heavy and

light peptides with relative areas that were consistent across all

samples were included in the quantification. Lists of transitions

used for the 25-egg measurements in Figs 2C and 3A and C and

for the 120-egg measurements in Figs 3B and 4A are given in

Tables EV2 and EV3, respectively.

SRM data statistical analysis
To minimize sample processing differences, a maximum of 30 single

eggs were prepped and analyzed at the same time by SRM mass

spectrometry. While we normalized the amount of heavy reference

peptides added to each egg extract to the measured single egg

protein concentration, this leaves still a small measurement error

between individual eggs. This is likely both a result of small errors

in the measurement of protein concentration and small volume

pipetting errors, causing small under- or overestimation of relative

protein abundances in a sample. This small calibration error was in

previous protocols corrected using a normalization factor measured

as a median of a set of anchor protein peptides (Abell et al, 2011;

Ludwig et al, 2012; Feng & Picotti, 2016). Here, we used the median

of 22 normalized peptide intensities that minimally change during

the cell cycle to derive a concentration correction factor for each egg

(this factor was typically between 0.9 and 1.1). The lack of change

in expression of these proteins during the cell cycle can be seen in

Fig 1D. The correction we used makes the assumption that the 22

peptides are not overall co-regulated in the same direction, an

assumption that is supported by both our SRM-MS and immunohis-

tochemistry experiments (Fig 4). Specifically, we measured for a set

of analyzed single eggs (e.g., 25 eggs in Fig 2A) the medians of the

relative abundances for each of the 22 peptides across all eggs. To

obtain a correction factor for each egg, we first normalized each

peptide by the median of that particular peptide across all samples

of interest (e.g., for the 25-egg analysis show in Fig 1D, each peptide

value was first divided by the median of that peptide across all 25

samples). Then, we calculated the median of the 22 normalized

peptide values for each egg. The resulting correction factor value

was typically in the range of 0.9 to 1.1, and we divided all 26 rela-

tive protein abundances from that egg by this factor. The variation

and covariation values shown in this paper use these corrected rela-

tive abundances.

Cell culture
MCF10A cells (ATCC, CRL-10317) were cultured in a growth media

consisting of DMEM/F12 (Invitrogen) supplemented with 5% horse

serum, 20 ng/ml EGF, 10 lg/ml insulin, 0.5 ng/ml hydrocortisone,

100 ng/ml cholera toxin, 50 U/ml penicillin, and 50 lg/ml strepto-

mycin. HeLa cells were cultured in DMEM (Invitrogen) plus 10%

fetal bovine serum (FBS) and penicillin–streptomycin–glutamine

(PSG).

EKAR-EV-NLS stable cell line
pPBbsr2-EKAR-EV-NLS was described previously (Komatsu et al,

2011). To generate stable cell lines, the construct was co-transfected

with the piggybac transposase vector into human MCF10A cells

using polyethylenimine. Cells with stable integration of the vector

were selected for using 10 lg/ml blasticidin (Invivogen).

Immunofluorescence
Cells were fixed by adding paraformaldehyde to the cell media for

15 min (final concentration of paraformaldehyde in media was

4%). Cells were then washed three times in PBS before they were

permeabilized by adding 0.2% triton X-100 for 20 min at 4°C before

being washed again with PBS. To remove cell size effects, cells were

then stained with Alexa 647 NHS Ester as a marker of total protein

mass and surrogate for cell volume/thickness following protocols

described in (Kafri et al, 2013). The Alexa 647 NHS Ester was added

at a concentration of 0.04 lg/ml in PBS for 1 h. After washing again

in PBS, a blocking buffer consisting of 10% FBS, 1% BSA, 0.1%

triton X-100, and 0.01% NaN3 in PBS was added, and the cells were

incubated for 1 h at room temperature. Then, primary antibodies

were added overnight at 4°C, followed by incubation with

secondary antibodies for 1 h at room temperature. To obtain partic-

ular protein concentrations for each cell, the mean total cell intensi-

ties of the respective antibodies were ratioed over the mean total

cell intensity of the Alexa 647 NHS Ester.

siRNA transfection
siRNAs were used at a final concentration of 20 nM and are listed in

the Reagents and tools table. MCF10A and Hela cells were reverse-

transfected with siRNA using Lipofectamine RNAiMax according to

the manufacturer’s instructions. The cells were fixed 48 h after

reverse transfection with siRNA.

Image acquisition
For both fixed and live-cell imaging, cells were plated in 96-well,

optically clear, polystyrene plates (Costar #3904). Approximately

10,000 HeLa cells or 5,000 MCF10A cells were plated per well. For

MCF10A cells, the wells were first coated with collagen (Advanced
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BioMatrix Cat #5005, PureCol Type I Bovine Collagen Solution) by

placing 50 ll of collagen dissolved at a ratio of 1:100 in PBS in each

well, incubating for 2–3 h at room temperature, and then rinsing

three times with PBS. MCF10A cells were then plated into the wells

in MCF10A growth media. For assays to determine EGF responses,

the media were aspirated from the cells 24 h after plating and

replaced with serum starvation media for 60 h (DMEM/F12, 0.3%

BSA, 0.5 ng/ml hydrocortisone, 100 ng/ml cholera toxin, PSG). For

imaging, the cells were placed into an extracellular buffer consisting

of 5 mM KCl, 125 mM NaCl, 20 mM Hepes, 1.5 mM MgCl2, 1.5 mM

CaCl2, and 10 mM glucose. Time-lapse imaging was performed initi-

ally in 75 ll of extracellular buffer per well to which an additional

75 ll of extracellular buffer containing 2× EGF doses was added to

stimulate the cells. Cells were imaged in a humidified 37°C chamber

at 5% CO2. Images were taken every 2 min in the CFP and YFP

channels using a fully automated widefield fluorescence microscope

system (Intelligent Imaging Innovations, 3i), built around a Nikon

Ti-E stand, equipped with Nikon 20×/0.75 N.A. objective, an epiflu-

orescence light source (Xcite Exacte), and an sCMOS cameras (Ham-

mamatsu Flash 4), enclosed by an environmental chamber

(Haison), and controlled by SlideBook software (3i). Five non-over-

lapping images were taken per well.

Image processing and analysis

Segmentation and tracking

Cell segmentation and tracking were performed using the “MACK-

track” package for MATLAB available at http://github.com/brook

staylorjr/MACKtrack, and described in (Selimkhanov et al, 2014).

In place of the first-step cellular identification using differential

interference microscopy, the first pass whole-cell segmentation was

performed here by thresholding the total protein stain image.

Signal measurement

Four-channel fluorescence images were taken with a 10× objective

on a MicroXL microscope, and image analysis was performed using

MATLAB analysis. Background subtraction was used in the Hoechst

(to stain DNA and mask the nucleus), the two immunofluorescence,

and the protein mass fluorescence channels. Signal intensities were

corrected for non-uniformity but were still restricted to a central

R = 350 pixel region of 2 × 2 binned images (1,080 × 1,080 pixels)

of the image to minimize potential spatial non-uniformities in illu-

mination and light collection toward the corners. The Hoechst stain

was used to establish a nuclear mask and to select cells in the 2N

G0/G1 state based on the integrated DNA stain. The Hoechst inten-

sity levels used to define cells in the 2N state were selected by

inspection of the Hoechst histograms. The live-cell FRET measure-

ments of nuclear ERK activity were performed on a Nikon Ti2

controlled by 3i software (Intelligent Imaging, Denver, CO). The

mean nuclear intensities of the FRET and CFP channels were ratioed

for each cell to obtain the normalized FRET value at each timepoint.

At the end of the timecourses, the cells were fixed and stained with

either an ERK or MEK antibody, as well an Alexa 647 NHS Ester as

an estimate of cell volume. To obtain ERK and MEK concentrations

for each cell, the mean total cell intensities of the ERK and MEK

antibodies were ratioed over the mean total cell intensity of the

Alexa 647 NHS Ester. The final ERK and MEK concentrations for

each cell were then matched to the corresponding FRET timecourse

for that particular cell.

Modeling

Figure 1A and B

The goal of these figure panels is to illustrate how different

amounts of noise (cell-to-cell variation) would affect the output of

a multi-step linear signaling system. We used MATLAB simula-

tions to apply expression variation in the concentrations of path-

way components in a five-step linear signaling pathway with a

single input and output, representing a typical vertebrate signaling

pathway. The model is not saturated and uses a single fold-input R

to increase pathway activation linearly above the basal activity

level. The last regulated signaling step y5 is shown as the analog

output A*. We simulated protein expression variation of each of

the 10 signaling pathway components using lognormal Monte

Carlo noise simulations (each of the 10 system parameters was

multiplied by randomly variable factors centered on 1). We

followed the system over time using the ODE45 function until it

reached equilibrium at t = 15.

Linear model:

dy�1
dt

¼ �1 � R � y1 � �2 � y�1 (1)

dy�2
dt

¼ �3 � y�1 � y2 � �4 � y�2 (2)

dy�3
dt

¼ �5 � y�2 � y3 � �6 � y�3 (3)

dy�4
dt

¼ �7 � y�3 � y4 � �8 � y�4 (4)

dA�

dt
¼ �9 � y�4 � A� �10 � A� (5)

R is the Receptor Input into the cell that activates y1.

A* corresponds to y�5 and denotes the final output signal (i.e.,

final Signaling Response of the cell). Each signaling step acts line-

arly on the next intermediate step.

The model is not saturated. For each step, we assume that the

active y* states are generated from a relatively larger constant pool

of precursor cells. In other words, yi, as well as A, denotes a pool of

inactive precursors that is not significantly diminished during signal

transmission (yi is approx. equal to yi, total and A is approx. equal

to Atotal) and is set equal to 1.

To introduce uncorrelated lognormal noise into the system:

�i ¼ eðrandn�CVÞ (6)

For i = 1–10, randn is a lognormally distributed random number

and CV is the percent noise in the system, typically from 5 to 25%.

We are introducing noise into the system as lognormal since we are

assuming that the noise sources are multiplicative not additive in

the system (i.e., work to change the enzyme rates) which is a

reasonable assumption in biology.

For |x| << 1, ex � 1 + x, which keeps the CV of the real distri-

bution approximately the same as the CV of the lognormal distribu-

tion.

The ten lognormal stochastic values of a factorial parameter e(1-

10) are calculated for each of typically 5,000 runs to generate the

plots, e(i:10)=(exp(randn(10,1), Var) in MATLAB. Var is the percent

18 of 21 Molecular Systems Biology 14: e7997 | 2018 ª 2018 The Authors

Molecular Systems Biology Limits of noise in controlling cell signaling Kyle M Kovary et al

http://github.com/brookstaylorjr/MACKtrack
http://github.com/brookstaylorjr/MACKtrack


variation parameter that changes in different panels in the plots.

Calculating a coefficient of variation (CV) of the resulting random

parameter distribution returns the value Var.

Figure 1C and D

This figure illustrates how the fold-Input Detection Limit (fIDL) is

calculated for a particular noise level (CV) and Receptor Input. We

assume there are N independent pathway components which

increases the overall noise in the output by noise propagation to:

CVtotal ¼ CV �
ffiffiffiffi

N
p

(7)

The calculation of fIDL was done analytically using the inverse

normal distribution function in MATLAB to determine the fraction

of cells in a population that are in the desired tail region of the

output probability distribution. The resulting value is half of the

required signal output amplitude since both the unstimulated and

stimulated distributions are symmetrical when they are plotted as a

log scaled distribution. The factor 2 in the equation reflects that

basal and stimulated output distributions are assumed to have the

same noise (see Fig 1C, black and green distributions). When

assuming 95% accuracy for distinguishing stimulated and unstimu-

lated cells from the output signal, and assuming N independent

components in the system, the resulting fold-Input Detection Limit

is calculated as:

fIDL ¼ expð2�norminvð0:95Þ�CV� ffiffiffi

N
p Þ ¼ expða�CV�

ffiffiffi

N
p Þ; a � 3:3 (8)

Figure 1E

We also compared uncorrelated variation versus correlated varia-

tion (covariation) between signaling components in the pathway. In

Fig 1E, we made the assumption that the five positive elements and

the five negative elements in the model (possibly reflecting protein

kinases versus protein phosphatases) each have a correlated varia-

tion. We compare this to the case were all variations are indepen-

dent of each other as we also do in all other figure panels. This

correlated variation leads to an increase of the overall variation of

the signaling response of a cell.

The model is the same as shown in Fig 1A and B and

Equations (1–5), except that lognormal noise is added into the

system as follows:

�1 ¼ �3 ¼ �5 ¼ �7 ¼ �9 (9)

�2 ¼ �4 ¼ �6 ¼ �8 ¼ �10 (10)

Figure 5A–D

The goal of these figures is to show how variation and covariation

of proteins in a pathway contribute to the control of binary, popula-

tion-based signaling responses. We simulated binary pathways in

Fig 5 by using the model from in Fig 1 and adding an assumption

that cells trigger a binary switch when the output y�5 exceeds a

threshold level of 10, and cells do not trigger the switch when the

final output remains below this threshold level. The threshold of 10

was chosen arbitrarily (the results presented are largely independent

of the value of this threshold). We used increasing fold-stimuli

strength R and analyzed in the simulations the increasing fraction

of cells that triggers the switch. Figure 5B plots the percent of

“activated cells” (i.e., the fraction of cells out of all simulations

that resulted in an output level > 10) versus the strength of input

stimulus R. The solid lines show best fit using a Hill equation. The

resulting best fit Hill coefficients are shown in the bar plot in

Fig 5C.

Similar to the calculation of a fIDL in Fig 1C and D, we noticed

in our simulations that one can describe these Hill plots by an

“apparent Hill coefficient” (aHC) that is over a broad range of

thresholds largely independent of the threshold value used as long

as the threshold is larger than the total noise of the system:

aHC ¼ b

CV � ffiffiffiffi

N
p ; b � 1:4 (11)

Figure 6A–C

The goal of this figure is to show how covariation of MEK/ERK

abundance improves the sharpness of the binary population-level

outcome. For numerical simulations, we used the ODE model of the

ERK signaling network from (Sturm et al, 2010) with negative feed-

back intact. The model incorporates dynamics from RasGTP through

Raf and MEK down to ERK phosphorylation. We used the input

concentration of RasGTP as a proxy for extracellular EGF. The

output was defined as doubly phosphorylated ERK (pERK), which

serves as a proxy for ERK activity, as ERK activity is a monotoni-

cally increasing function with respect to pERK.

Figure 8

The goal of this figure is to illustrate the conflicting effects that

expression variation, covariation, and number of pathway compo-

nents have on controlling analog single-cell and binary population-

level signaling responses. The equations for fIDL and aHC were

presented earlier (Equations 8 and 11). We are now also combining

these two curves by multiplying the logarithm of fIDL with aHC to

show their co-dependency. The shown combined error is derived

from an error propagation analysis for correlated and uncorrelated

variation of pathway components:

log2ðfIDLÞ � aHC � 6:3 (12)

Figure EV1

Figure EV1 compares fIDL values to the log2 mutual information

content of the same system (bits), adding different levels of satura-

tion to the last term of the equation (as an example, we used instead

of y(4) the term 10*y(4)/(y(4)+9) for the system that imposes a

saturation of a factor of 10 to the output signal). For the mutual

information calculations, 10,000 simulations were made with R

values spread out using a random number generator in log2 units.

Output A* (log2 units) were simulated, and the mutual information

was derived from R and A* by using log2 in the MI equation and by

using binning of 0.05 for R and A*.

Data and software availability
Data and MATLAB analysis scripts used in this paper are available

at https://github.com/Teruellab/Kovary_MSB_2018.

Expanded View for this article is available online.
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