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Abstract: Endometrial cancer (EC) is the most common form of gynecological cancer. Type 2 diabetes
mellitus is associated with an increased risk of EC. Currently, no proteomic studies have investigated
the role of diabetes in endometrial cancers from clinical samples. The present study aims to elucidate
the molecular link between diabetes and EC using a proteomic approach. Endometrial tissue sam-
ples were obtained from age-matched patients (EC Diabetic and EC Non-Diabetic) during surgery.
Untargeted proteomic analysis of the endometrial tissues was carried out using a two-dimensional
difference in gel electrophoresis (2D-DIGE) coupled with matrix-assisted laser desorption/ionization
time-of-flight mass spectrometry (MALDI TOF). A total of 53 proteins were identified, with a signifi-
cant difference in abundance (analysis of variance (ANOVA) test, p ≤ 0.05; fold-change ≥ 1.5) between
the two groups, among which 30 were upregulated and 23 downregulated in the EC Diabetic group
compared to EC Non-Diabetic. The significantly upregulated proteins included peroxiredoxin-1,
vinculin, endoplasmin, annexin A5, calreticulin, and serotransferrin. The significantly downregulated
proteins were myosin regulatory light polypeptide 9, Retinol dehydrogenase 12, protein WWC3, in-
traflagellar transport protein 88 homolog, superoxide dismutase [Cu-Zn], and retinal dehydrogenase
1. The network pathway was related to connective tissue disorder, developmental disorder, and hered-
itary disorder, with the identified proteins centered around dysregulation of ERK1/2 and F Actin
signaling pathways. Cancer-associated protein alterations such as upregulation of peroxiredoxin-1,
annexin 5, and iNOS, and downregulation of RDH12, retinaldehyde dehydrogenase 1, SOD1, and
MYL 9, were found in the EC tissues of the diabetic group. Differential expression of proteins linked
to cancer metastasis, such as the upregulation of vinculin and endoplasmin and downregulation
of WWC3 and IFT88, was seen in the patients with diabetes. Calreticulin and alpha-enolase, which
might have a role in the interplay between diabetes and EC, need further investigation.
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1. Introduction

Endometrial cancer (EC) is the most common form of gynecological cancer. It is the
sixth most common cancer among women globally [1]. Incidence and mortality rates
change widely with regions. It is highest in North America and Northern Europe and
lowest in Southeast Asia and Africa [2]. EC comprises 90% of all uterine cancers, and the
mean age of women diagnosed with EC is 60, with mostly post-menopausal women being
affected [2]. Traditionally, ECs are classified into two types based on their clinical charac-
teristics and estrogen dependency. The estrogen-dependent type I endometrial cancer is
associated with endometrial hyperplasia, obesity, and metabolic abnormalities. It comprises
80–90% of all ECs. Type I ECs are usually low-grade with a favorable prognosis. The type
II EC is estrogen-independent and is associated with atrophic endometrium [3]. The tradi-
tional classification does not account for high histological and genetic heterogeneity. The
unopposed circulating estrogen is one of the major risk factors of EC in post-menopausal
women. The decrease in progesterone production at menopause shifts the balance towards
estrogen. When the circulating estrogen is not counterbalanced sufficiently by progesterone,
it causes thickening of the endometrium and increases the risk for endometrial hyperplasia
and cancer [4]. The use of hormone replacement therapy without counterbalancing proges-
terone increased the incidence of endometrial cancers, whereas the addition of progesterone
to estrogen mitigated the risk [5]. Studies have identified several other risk factors, such as
obesity, diabetes, reproductive factors, medications, diet, and exercise.

Diabetes mellitus is one of the most devastating chronic diseases of modern times,
affecting people worldwide. It is associated with an increased risk of certain cancers, includ-
ing EC [6], where epidemiological data suggest a correlation between diabetes prevalence
and the increased incidences of endometrial cancers [7]. A meta-analysis found that women
with diabetes have a 72% increased risk of endometrial cancer. Hyperglycemia appears to
be associated with a higher risk of endometrial cancer, independent of obesity [8]. High
circulating glucose levels may function as the source of precursors of cell proliferation. The
EC cells have reportedly increased expression of different glucose transporters [9]. Studies
on EC cell lines have shown increased glycolysis and glucose-derived lipogenesis [9]. An-
tidiabetic drug metformin was found to reverse endometrial hyperplasia, downregulate
tumor markers, and improve the survival rate among patients with EC [10].

Chronic hyperglycemia in patients with diabetes provides a conducive environment
for proliferative activity. Many in vitro studies and animal experiments have shown the
relation between a high-glucose environment and tumor progression [8]. However, the
specific etiologic link between type 2 diabetes and endometrial cancer is not entirely
understood. Proteomic analysis of endometrial tissues from diabetic rats showed that dia-
betes promoted endometrial hyperplasia. N-acetylgalactosaminyltransferase 2 (GALNT2)
was downregulated in diabetic rats with endometrial hyperplasia. In addition, GALNT2
was lower in the endometrial tissue and blood samples in women with endometrial
hyperplasia [11]. To the best of our knowledge, no proteomic studies have investigated the
role of diabetes in endometrial cancers from clinical samples. The present study aimed to
elucidate the molecular link between diabetes and EC using a proteomic approach. We
performed an untargeted proteomic analysis of endometrial cancer tissues obtained from
patients with and without diabetes.

2. Materials and Methods
2.1. Study Design and Patient Selection

Patients attending the outpatient clinics of the Obstetrics and Gynecology-Oncology
Department, King Khalid University Hospital, College of Medicine, King Saud University
in the age group of 40–75 “years” (age-matched) were recruited for the study. This study
included 14 participants (7 EC Diabetic and 7 EC Non-Diabetic). The primary assessment
was carried out at clinic appointments. Those patients willing to participate in the study
were recruited, and informed consent was taken. The sample size was determined by
carrying out a power analysis using the Progenesis SameSpots non-linear dynamics sta-
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tistical software to determine the minimum number of required biological replicates. The
surgeon excised 100 mg of tissue from all 14 patients’ endometrium (7 EC Diabetic and 7 EC
Non-Diabetic). Frozen tissue section samples were sent to the pathology department for
histopathology examination (Supplementary Table S1). The anthropometric measurements’
biochemical and basic data were also collected. Fresh tissue samples were snap-frozen in
liquid nitrogen and kept at −80 ◦C until they were analyzed.

2.2. Tissue Protein Extraction

Tissue samples were thawed and washed 3 times with PBS to remove any blood and
other contaminant traces before homogenization. Proteins were extracted from EC tissue
samples using a T25 digital ULTRA TURRAX homogenizer (IKA, Königswinter, Germany)
directly in lysis buffer (0.5 mL, pH 8.8, 30 mM Tris-HCl, 7 M urea, 2 M thiourea, 2% CHAPS,
and a 1× protease inhibitor mix) on ice. The suspension was shaken for 30 min at 4 ◦C
and then sonicated (Microsonicator, Qsonica Sonicators, Newtown, CT, USA; 30% pulse,
two intervals of 1 min each, separated by a 1 min gap). Fifty mM dithiothreitol (DTT) was
then added and the protein extracts centrifuged (20,000× g, 40 min, 4 ◦C). The contaminants
were removed and the supernatants were cleaned by precipitation using a 2D clean-up kit
according to the manufacturer’s protocol (GE Healthcare, Uppsala, Sweden) [12].

2.3. Protein Labeling with Cyanine Dyes, 2D-DIGE, and Image Scanning

The protein pellets were solubilized in labeling buffer (7 M urea, 2 M thiourea, 30 mM
Tris-HCl, 4% CHAPS, pH 8.5). Insoluble material was pelleted by centrifugation (12,000× g,
room temperature, 5 min); protein concentrations were determined in triplicate using the
2D-Quantkit (GE Healthcare, Illinois, USA). The proteins were labeled with CyDye™ DIGE
Fluor minimal dyes (400 pmol/50 µg) (GE Healthcare, Uppsala, Sweden) according to the
manufacturer’s recommendations, as previously described by our group [12]. In brief, for
each sample, 50 µg of protein was incubated (30 min, on ice, in the dark) with 400 pmol
of Cy-3 or Cy-5, freshly dissolved in anhydrous dimethyl formamide (DMF). The reaction
was quenched by the addition of lysine (1.0 µL, 10 mM, 10 min, on ice, in the dark). A
mixture of an equal amount of all samples was pooled, labeled with Cy2, and used as
an internal standard, which was normalized and matched across gels to avoid gel-to-gel
variation. A dye-switching strategy was applied during labeling to avoid dye-specific bias
(Supplementary Table S2). First-dimension analytical gel electrophoresis was performed,
followed by second-dimension sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) on 12.5% fixed concentration gels, as previously described [12]. The gels were
scanned with Sapphire Biomolecular Imager (Azure Biosystems, Dublin, OH, USA) and
digitalized via the image analysis software Sapphire Capture system (Azure Biosystems,
Dublin, OH, USA). Preparative gels were prepared using total protein (1 mg) obtained
from a pool of equal protein amounts of the 14 samples. As described previously, gels were
stained with Colloidal Coomassie Blue [12].

2.4. Statistical Analysis

The data for the laboratory values are reported as the mean standard deviation. The
statistical significance of the difference between the two groups was determined using an
unpaired Student’s t-test, with p < 0.05 considered significant. The 2D-DIGE gel pictures
were uploaded into the Progenesis SameSpots program (Nonlinear Dynamics, Newcastle
upon Tyne, UK) and examined using an automated spot recognition approach for statistical
analyses for gel image processing. Although the automated analysis was used to discover
all of the spots across all 14 gels, each spot was manually revised and edited for correction
if necessary. Log normalized volume was used to quantify differential expression. A cutoff
ratio of ANOVA test, p ≤ 0.05, and fold difference ≥1.5 was considered significant.
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2.5. Protein Digestion and MALDI Analysis

As previously described, the Coomassie Blue-stained gel spots were washed and
digested [12]. In the end, 0.8 µL from a mixture of tryptic peptides derived from each protein
was spotted onto a MALDI target (384 MTP Anchorchip) (800 µm Anchorchip; Bruker
Daltonics, Bremen, Germany). The spectra were collected with an UltraflexTerm time-of-
flight (TOF) mass spectrometer outfitted with a LIFT-MS/MS device (Bruker Daltonics,
Bremen, Germany) at reflector and detector voltages of 21 kV and 17 kV, respectively, as
described previously [12]. The PMFs were calibrated against a standard peptide calibration
standard II (Bruker Daltonics, Bremen, Germany). The PMFs were assessed using Flex
Analysis software (version 2.4, Bruker Daltonics, Bremen, Germany). The MS data were
interpreted using BioTools v3.2 (Bruker Daltonics, Bremen, Germany). The peptide masses
were searched against the Mascot search algorithm (v2.0.04, updated on 9 May 2021; Matrix
Science Ltd, London, UK). The identified proteins were screened for Mascot scores higher
than 56 and p < 0.05.

2.6. Bioinformatics Analysis

The protein interaction networks and functions of tissue proteins differentially ex-
pressed in patients with diabetic EC and non-diabetic EC were analyzed using Ingenuity
Pathway Analysis (IPA) version 9.0 (Ingenuity Systems, Redwood City, CA, USA). This
software aids in determining the functions and pathways most strongly associated with the
MS-generated protein list by overlaying the experimental expression data onto networks
constructed from published interactions. The identified proteins were additionally classi-
fied into different categories according to their function and location using the PANTHER
classification system (http://www.pantherdb.org, accessed on 23 January 2022) according
to their molecular function, biological process, and location.

3. Results
3.1. Clinical and Biochemical Data

The demographic and biochemical characteristics of the study patients are presented
in Table 1. The mean ages of the study participants in the diabetic and non-diabetic groups
were 63.7 ± 10.1 and 58.4 ± 11.4 years, respectively. The body weight and BMI in the
diabetic group were significantly higher than in the non-diabetic group. Many of the
patients in the diabetic group had severe obesity. HbA1c and blood glucose levels were
significantly higher in the diabetic group. All other parameters were similar between
the groups.

3.2. Proteomic Analysis and Identification of Differentially Expressed Proteins

We used 2D-DIGE and MALDI-TOF MS to analyze the differential protein expression
among 14 endometrial cancer patients (7 EC Diabetic and 7 EC Non-Diabetic, 14 samples
from 7 gels). The typical fluorescent protein profiles of a 2D-DIGE of the EC Diabetic
samples labeled with Cy3 is shown in Figure 1A, and Figure 1B shows EC Non-Diabetic
samples labeled with Cy5; Figure 1C shows a pooled internal control labeled with Cy2, and
merged 2D-DIGE gels of samples labeled with Cy3/Cy5 are shown in Figure 1D.

Figure 2 shows a total of 480 spots matched across all the gels, among which 93 were
statistically significantly different (ANOVA, p ≤ 0.05; fold-change ≥1.5) between the EC
Diabetic and EC Non-Diabetic samples.

The spot patterns were reproducible across the 14 gel images, making the alignment
and further analysis possible. An internal standard with Cy2 labeling was used to nor-
malize the complete set of gels and for quantitative differential analysis of the protein
levels. Significant changes in protein abundance levels were based on an ANOVA test (i.e.,
p ≤ 0.05 and fold-change ≥1.5). Progenesis statistical software analysis detected 93 protein
spots showing a significant increase or decrease in expression between the two states.
All differentially abundant protein spots were selected for excision and identification by
MALDI-TOF MS.

http://www.pantherdb.org
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Peptide mass fingerprints (PMFs) successfully identified 53 out of the 93 protein spots
excised from the preparative gel. MALDI-TOF mass spectrometry identified 46 spots as
unique protein sequences matched to entries in the SWISS-PROT database by Mascot
with high confidence scores (Table 2, Supplementary Table S3). The sequence coverage
of the proteins identified by PMF ranged from 9% to 73%. In a few cases, variants of the
same protein were found at several locations on the gel (Table 2, Figure 2). Among the
53 proteins identified, 30 protein spots were upregulated, and 23 were downregulated in
EC Diabetic compared to EC Non-Diabetic patients. The significantly upregulated proteins
included peroxiredoxin-1 (2.87 fold, p = 0.018), vinculin (2.86 fold, p = 0.032), endoplasmin
(2.86 fold, p = 0.01), annexin A5 (2.81 fold, p = 0.007), calreticulin (2.24 fold, p = 0.016), and
serotransferrin (2.14 fold, p = 0.13). The significantly downregulated proteins included
myosin regulatory light polypeptide 9 (−2.47 fold, p = 0.006), Retinol dehydrogenase
12 (−2.1 fold, p = 0.02), protein WWC3 (−2.1 fold, p = 0.03), intraflagellar transport protein
88 homolog (−2.05 fold, p = 0.009), superoxide dismutase [Cu-Zn] (−1.92 fold, p = 0.02), and
retinal dehydrogenase 1 (−1.91 fold, p = 0.04); the full list is provided in Table 2. Among the
identified proteins, endoplasmin, serotransferrin, vinculin, filamin-A, alpha-actinin-1, heat
shock cognate 71 kDa protein and actin, alpha cardiac muscle 1 were found in more than
one spot on the gels, which could be associated with their post-translational modifications,
cleavage by enzymes, or the presence of different protein species (Table 2).
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Diabetic samples labeled with Cy5 (B), pooled internal control labeled with Cy2 (C), and merged
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Table 1. Clinical and biochemical characteristics of the study population.

Parameters EC Diabetic (n = 7) Mean ± SD EC Non-Diabetic (n = 7) Mean ± SD p-Value

Age (years) 63.7 ± 10.1 58.4 ± 11.4 0.375

Height (cm) 151.8 ± 1.3 151.6 ± 1.5 1.0000

Weight (kg) 96.8 ± 10.3 67.1 ±12.9 0.0005 *

BMI (kg/m2) 42.0 ± 4.9 29.1 ± 5.3 0.0005 *

HbA1C (%) 7.0 ± 0.2 6.0 ± 0.3 <0.0001 *

Total cholesterol (mmol/L) 4.2 ± 1.0 3.7 ± 1.6 0.496

LDL (mmol/L) 2.5 ± 1.0 2.1 ± 1.5 0.496

HDL (mmol/L) 1.1± 0.5 1.2 ± 0.2 0.632

TG (mmol/L) 1.4 ± 0.7 0.7 ± 0.6 0.110

Urea (mmol/L) 4.8 ± 2.0 4.3 ± 1.5 0.606

Creatinine (µmol/L) 56.0 ± 9.3 52.6 ± 9.5 0.511

Glucose (mmol/l) 10.5 ± 5.5 5.4 ± 0.5 0.031

BMI: Body mass index; HbA1C: Hemoglobin A1c; HDL: High-density lipoprotein; LDL: Low-density lipoprotein;
TG: Triglyceride; * statistically significant.
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Figure 2. A representative 2D DIGE gel with the numbered spots indicating proteins with differential
abundance (defined as fold-change ≥1.5, p ≤ 0.05) between EC Diabetic and EC Non-Diabetic samples
successfully identified with matrix-assisted laser desorption/ionization-time of flight (MALDI TOF)
mass spectrometry (MS). MW, protein molecular weight; pI, isoelectric point.
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Table 2. Proteins identified with changes in abundance between EC Diabetic (ECD) and EC Non-
Diabetic (ECND) tissue samples. Values for the average ratio between the two states are shown with
their corresponding levels of fold-changes and one-way ANOVA (p < 0.05) using 2D-DIGE. Analysis
type: MALDI-TOF; database: SwissProt; taxonomy: Homo sapiens.

Sl
No.

Spot
No. a

Accession
No. Protein Name MASCOT ID p-Value b

(ANOVA)
Ratio

ECD/ECND c Exp d

1 633 Q96LW4
DNA-directed

primase/polymerase
protein

PRIPO_HUMAN 8.29 × 10−4 −1.5 DOWN

2 274 P14625 Endoplasmin ENPL_HUMAN 0.002 2.44 UP

3 2462 P24844 Myosin regulatory light
polypeptide 9 MYL9_HUMAN 0.01 −2.47 DOWN

4 1627 P04406
Glyceraldehyde-3-

phosphate
dehydrogenase

G3P_HUMAN 0.01 1.78 UP

5 1691 P08758 Annexin A5 ANXA5_HUMAN 0.01 2.81 UP

6 3130 Q13099 Intraflagellar transport
protein 88 homolog IFT88_HUMAN 0.01 −2.05 DOWN

7 109 P14625 Endoplasmin ENPL_HUMAN 0.01 2.86 UP

8 2608 P60174 Triosephosphate
isomerase TPIS_HUMAN 0.01 −1.77 DOWN

9 282 P02787 Serotransferrin TRFE_HUMAN 0.01 2.14 UP

10 986 P27797 Calreticulin CALR_HUMAN 0.02 2.24 UP

11 131 P13639 Elongation factor 2 EF2_HUMAN 0.02 1.78 UP

12 2167 Q06830 Peroxiredoxin-1 PRDX1_HUMAN 0.02 2.87 UP

13 46 O15020 Spectrin beta chain,
non-erythrocytic 2 SPTN2_HUMAN 0.02 −1.6 DOWN

14 2537 P02766 Transthyretin TTHY_HUMAN 0.02 −1.5 DOWN

15 1322 P06733 Alpha-enolase ENOA_HUMAN 0.02 −1.9 DOWN

16 2694 P00441 Superoxide dismutase
[Cu-Zn] SODC_HUMAN 0.02 −1.92 DOWN

17 518 P18206 Vinculin VINC_HUMAN 0.02 1.79 UP

18 172 P21333 Filamin-A FLNA_HUMAN 0.02 1.67 UP

19 548 P12814 Alpha-actinin-1 ACTN1_HUMAN 0.02 −1.5 DOWN

20 2485 P23528 Cofilin-1 COF1_HUMAN 0.03 −1.6 DOWN

21 2823 P05413 Fatty acid-binding
protein, heart FABPH_HUMAN 0.03 1.77 UP

22 110 P21333 Filamin-A FLNA_HUMAN 0.03 1.79 UP

23 234 P12110 Collagen alpha-2(VI)
chain CO6A2_HUMAN 0.03 1.79 UP

24 224 P18206 Vinculin VINC_HUMAN 0.03 2.86 UP

25 2687 Q96NR8 Retinol dehydrogenase
12 RDH12_HUMAN 0.02 −2.1 DOWN

26 346 Q9HAE3

EF-hand
calcium-binding

domain-containing
protein 1

EFCB1_HUMAN 0.03 −1.8 DOWN

27 2319 Q9ULE0 Protein WWC3 WWC3_HUMAN 0.04 −2.1 DOWN

28 341 P11142 Heat shock cognate 71
kDa protein HSP7C_HUMAN 0.04 1.9 UP

29 307 P12814 Alpha-actinin-1 ACTN1_HUMAN 0.04 1.7 UP

30 1860 P62736 Actin, aortic smooth
muscle ACTA_HUMAN 0.09 1.5 UP
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Table 2. Cont.

Sl
No.

Spot
No. a

Accession
No. Protein Name MASCOT ID p-Value b

(ANOVA)
Ratio

ECD/ECND c Exp d

31 603 Q92737 Ras-like protein family
member 10A RSLAA_HUMAN 0.04 2.1 UP

32 1569 Q96S15 GATOR complex
protein WDR24 WDR24_HUMAN 0.04 1.7 UP

33 2827 Q9NQ76 Matrix extracellular
phosphoglycoprotein MEPE_HUMAN 0.05 −1.6 DOWN

34 2846 Q5VWT5 FYN-binding protein 2 FYB2_HUMAN 0.05 −1.56 DOWN

35 1114 P00352 Retinal
dehydrogenase 1 AL1A1_HUMAN 0.05 −1.91 DOWN

36 2559 Q01995 Transgelin TAGL_HUMAN 0.05 −1.5 DOWN

37 2928 P06702 Protein S100-A9 S10A9_HUMAN 0.05 −1.5 DOWN

38 1842 P35232 Prohibitin PHB_HUMAN 0.05 −1.91 DOWN

39 1050 P08670 Vimentin VIME_HUMAN 0.05 1.5 UP

40 2399 P35228 Nitric oxide synthase,
inducible NOS2_HUMAN 0.01 2.02 UP

41 865 P02545 Prelamin-A/C LMNA_HUMAN 0.01 −1.82 DOWN

42 702 P02787 Serotransferrin TRFE_HUMAN 0.01 1.94 UP

43 2847 Q9BWT1
Cell division

cycle-associated
protein 7

CDCA7_HUMAN 0.01 −1.5 DOWN

44 1344 P05787 Keratin, type II
cytoskeletal 8 K2C8_HUMAN 0.01 −1.5 DOWN

45 1341 P68032 Actin, alpha cardiac
muscle 1 ACTC_HUMAN 0.01 1.96 UP

46 571 Q9C0H9 SRC kinase signaling
inhibitor 1 SRCN1_HUMAN 0.01 −1.5 DOWN

47 1696 P68032 Actin, alpha cardiac
muscle 1 ACTC_HUMAN 0.01 1.5 UP

48 2478 P63267 Actin, gamma-enteric
smooth muscle ACTH_HUMAN 0.01 1.56 UP

49 1633 P62937 Peptidyl-prolyl
cis-trans isomerase A PPIA_HUMAN 0.01 −1.61 DOWN

50 2442 O95789 Zinc finger MYM-type
protein 6 ZMYM6_HUMAN 0.01 1.55 UP

51 239 Q8IYX0 Zinc finger protein 679 ZN679_HUMAN 0.01 1.59 UP

52 1588 P17661 Desmin DESM_HUMAN 0.01 2.17 UP

53 649 P11142 Heat shock cognate
71 kDa protein HSP7C_HUMAN 0.01 1.55 UP

a Protein accession number for SWISSPROT Database. b p-Value (ANOVA). c Ratio between the groups. d Protein
expression between the groups.

3.3. Principal Component Analysis

Principal component analysis (PCA) on all 53 spot features revealed that the two
groups clustered distinctly from one another with a 61.48% cutoff score (Figure 3). The
clustering pattern showed that protein intensity changes for selected spots between EC
Diabetic and EC Non-Diabetic states were significantly different.
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3.4. Network Pathway Analysis and Functional Classification of Proteins

All 53 differentially regulated proteins were subjected to bioinformatic analysis using
Ingenuity Pathway Analysis (IPA). The study discovered that 25 proteins interacted directly
or indirectly through protein networks (Figure 4).
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 Figure 4. The most enriched interaction network of the differentially expressed proteins in EC
Diabetic compared to EC Non-Diabetic states. Red nodes indicate upregulated expression; green
nodes indicate downregulated expression. The central nodes of the pathway related to signaling of
the ERK1/2 and F Actin were found to be deregulated between the two states. Uncolored nodes
are proposed by IPA and indicate potential targets that were functionally coordinated with the
differentially expressed proteins. Solid lines indicate direct molecular interactions, and dashed lines
represent indirect interactions.
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The program computes a score based on the best fit obtained from the input data set
of proteins and the biological functions database to generate a protein–protein interaction
network. The resulting network is enriched for proteins with particular and extensive
connections, with interacting proteins represented as nodes and biological links represented
as a line. Based on the data, five interaction networks were identified for proteins exhibit-
ing differential expression profiles. The proposed highest-scoring interaction network
pathway (score = 28) (Figure 4, Supplementary Figure S1) was related to connective tissue
disorder, developmental disorder, and hereditary disorder, with the identified proteins
centered around the dysregulation of ERK1/2 and F Actin signaling pathways between
the two states. Only the top identified pathway is shown in Figure 4. The canonical
pathways enriched in the current dataset are shown in Supplementary Figure S1. The
five most interesting enriched canonical pathways included ILK signaling (5.1% overlap,
p = 4.32 × 10−12), Actin cytoskeleton signaling (3.3% overlap, p = 2.24 × 10−8), Sertoli
cell–Sertoli cell junction signaling (3.4% overlap, p = 1.40 × 10−7), remodeling of epithelial
adherence junction (7.4% overlap, p = 2.14 × 10−7), and dilated cardiomyopathy signaling
pathway (4.1% overlap, p = 3.87 × 10−7). The PANTHER (protein analysis through evo-
lutionary relationships) method was used to classify discovered proteins into molecular
activities (Figure 5A), biological processes (Figure 5B), and cellular components (Figure 5C).
The functional category showed that most of the differentially expressed proteins identified
were enzymes with binding proteins (50%), followed by catalytic activity (42%) (Figure 5A).
With regard to biological processes, the majority of the identified proteins were involved in
cellular processes and development (35%), followed by cellular and metabolic processes
(21%) (Figure 5B). The majority of the identified proteins were located in the cellular,
anatomical entity (50%), followed by the intracellular region (43%) (Figure 5C).
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4. Discussion

The proteomic analysis identified several proteins that are differentially expressed
in the endometrial cancer tissues in the presence of diabetes. The bioinformatics analysis
indicated dysregulation of the ERK1/2 and F Actin pathways. The ERK1/2 pathway
regulates cell proliferation, differentiation, and apoptosis. It is one of the most commonly
dysregulated pathways in cancers. Actin polymerization is essential for cancer cell motility
and invasion [13]. Dysregulation of the F Actin pathway could indicate the metastatic state
of endometrial cancer cells.

4.1. Proteins Associated with Cancer

Peroxiredoxin-1, an antioxidant enzyme protecting cells from oxidative stress, was
found overexpressed in the EC tissues of the diabetic group in this study. It is suggested
to have a proliferative effect and is possibly involved in cancer development and pro-
gression [14]. However, peroxiredoxin-1 is also reported to act as a tumor suppressor in
some cancers, especially in breast cancers [15]. Upregulation of peroxiredoxin-1 has been
reported in endometrial cancer cells. However, the overexpression was not associated with
poor prognosis [16]. Even though an antioxidant, peroxiredoxin-1 promotes inflammation
by inducing the production of inflammatory cytokines [17]. Annexin A5, used as a probe
to detect apoptosis, was highly abundant in the diabetes group. Intracellular annexin
5 is involved in cell membrane repair and calcium channel activity. It inhibits protein
kinase C and promotes tumorigenesis and the progression of many cancers. It is also
linked to the metastasis and invasion of many cancers [18]. Upregulation of annexin A5 in
endometrial cancers has not been reported so far. A previous study reported that annexin
5 was suppressed at the transcription level in endometrial cancer tissue [19]. In cervical
cancers, annexin A5 was higher at the protein level and suppressed at mRNA level [19].
Inducible nitric oxide synthase (iNOS) promotes angiogenesis in cancer cells. Our results
show that iNOS was overexpressed in the diabetic group. iNOS plays a significant role in
the growth and maintenance of tumor cells by promoting angiogenesis. Overexpression of
iNOS in endometrial tissue was associated with increasing grades of EC [20]. It increased
microvascular density and deep myometrial invasion in endometrial cancer tissues [21].

Retinoic acid is known to suppress the estrogen-induced proliferation in endometrial
hyperplasia and metaplasia [22]. Retinol dehydrogenase 12 (RDH 12), an enzyme that
converts retinol to retinaldehyde during retinoic acid synthesis, is usually expressed in
endometrial stromal tissues [23]. It was significantly downregulated in the endometrial
tissues of diabetes patients in our study. Retinoic acid suppresses tumorigenesis by inhibit-
ing cell proliferation and angiogenesis. Human endometrial cancer cells express retinoic
acid receptors, and its activation inhibits tumor growth [24]. The downregulation of RDH
12 is likely to decrease retinoic acid levels in endometrial cells. Another enzyme involved
in retinoic acid synthesis, retinal dehydrogenase 1, was also found lower in abundance in
the diabetic group. This shows a substantial downregulation of retinoic acid synthesis in
the endometrial cancer cells of patients with diabetes. Type 2 diabetes is reported to be
associated with lower levels of vitamin A [25], and obesity is linked with lower levels of
retinoic acid through the downregulation of RDH and/or upregulation of retinal dehydro-
genase [26]. Animal studies showed that retinal dehydrogenase 1-deficient mice were more
insulin-sensitive and tolerant [27]. In our study, patients in the diabetic group exhibited
severe obesity (Table 1).

Therefore, the downregulation of RDH12 in the present study is as expected, but the
downregulation of retinal dehydrogenase in the diabetic group appears contradictory. The
downregulation of RDH12 decreases the production of retinaldehyde, a substrate of retinal
dehydrogenase 1. With less substrate, there would have been less requirement for the
enzyme, which might have led to the downregulation of retinal dehydrogenase 1. Since
the overexpression of aldehyde dehydrogenase isoforms was associated with enhanced
proliferation and poor prognosis [28], the downregulation may be expected to be beneficial.
However, downregulation of these enzymes would also decrease retinoic acid synthesis, a
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suppressor of proliferation and angiogenesis [24]. In the present study, the overall effect
of downregulation RDH12 and retinal dehydrogenase 1 in patients with diabetes appears
to be associated with a poor prognosis of EC as more patients in the diabetic group had a
high-grade stage 3 EC (Supplementary Table S1).

Superoxide dismutase [Cu-Zn] (SOD1) is an antioxidant enzyme that removes the
reactive oxygen species. Its production is increased under oxidative stress conditions. In
EC tissues, the protein level of SOD1 was found downregulated in all stages [29]. Our
results show that the SOD1 expression in the endometrial tissues of the diabetic group was
significantly lower. Myosins are actin-dependent molecules that generate force by utilizing
ATP. Myosin regulatory light polypeptide 9 (MYL 9), a motor protein from the myosin
superfamily, was found significantly downregulated in the diabetic group. The expression
of MYL 9 in cancer cells differs with different types of cancers. In ECs, the expression
of MYL 9 has been reported to be lower than in the normal tissues [30]. As the proteins
associated with cancer cells are more expressed in patients with diabetes, it reflects the
aggressive nature of cancer in these patients.

4.2. Proteins Associated with Cancer Metastasis

In this study, vinculin, an actin-binding protein, was found highly expressed in the
endometrial cancer tissues of patients with diabetes. It is usually localized in focal adhesions
and cell-adherence junctions. As a mediator of force transfer between the extracellular
matrix and cytoskeleton, vinculin promotes tumor cell invasiveness [31]. Endoplasmin
is another protein associated with cancer metastasis, and was highly expressed in the
endometrial cancer tissue of patients with diabetes. It is a heat shock protein beta family
member. Upregulation of endoplasmin in cancer tissues was associated with poor prognosis
and survival [32]. WWC family proteins are cytosolic scaffolding proteins that regulate cell
proliferation and invasion via the Hippo signaling pathway. Protein WWC3 was found
downregulated in the present study. Lower expression of protein WWC3 was reported
in lung cancer cells. It was associated with weak cell differentiation, metastasis, poor
prognosis, and a low survival rate in patients with lung cancer [33]. Knockdown of WWC3
enhanced the epithelial–mesenchymal transition of lung cancer cells [34]. It has not been
reported in EC so far. Downregulation of WWC3 in diabetic groups might indicate the
aggressive nature of EC in the presence of diabetes. Intraflagellar transport protein 88
homolog (IFT88), also known as TG737, is a protein known to suppress the invasion and
migration of cancer cells when overexpressed [35]. Silencing IFT88 resulted in the increased
proliferation, migration, and invasion of hepatocellular carcinoma [36]. It was found lower
in abundance in patients with diabetes and EC in the current study. Several proteins
associated with cancer invasiveness and metastasis were linked to the diabetic group in
this study.

4.3. Proteins with the Possible Interplay between Diabetes and EC

Calreticulin was found upregulated in the endometrial cancer tissues of the diabetic
group. It is involved in calcium homeostasis and glycoprotein folding. Overexpression
of calreticulin was reported to be associated with longer survival in endometrial cancer
patients [37]. It was found to be higher in the early stage and decreased in the advanced
stages of EC [29]. The clinical characteristics of the patients in our study show that more
patients had a higher grade of EC in the diabetic group than the control group. On the
other hand, calreticulin is an indicator of stress in the endoplasmic reticulum, which is
linked with the pathophysiology of diabetes. The calreticulin level was found to be higher
in obese and insulin-resistant individuals [38]. It appears that the preexisting diabetic
conditions might have augmented the overexpression of calreticulin. Alpha-enolase is a
glycolytic enzyme expressed ubiquitously in most tissues. It is reported to be upregulated
in EC tissues, and its overexpression was associated with an unfavorable prognosis in
patients with EC [39]. In another study, proteomic analysis of EC tissues revealed the
upregulation of alpha-enolase in the higher-stage ECs compared to healthy tissues [29].
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However, our study results show that alpha-enolase levels were lower in the EC tissue of
patients with diabetes. We speculate a possible interference from the underlying diabetic
conditions in the expression of alpha-enolase protein in the EC tissue. A study on db/db
diabetic mice demonstrated that inhibiting the non-glycolytic functions of alpha-enolase
produced an antidiabetic effect [40]. Therefore, the possible effect of antidiabetic treatment
in downregulating the alpha-enolase enzyme needs to be explored further.

The results demonstrate that the proteins favoring the proliferation, angiogenesis,
invasiveness, and metastasis of cancers are significantly expressed in the EC tissues of
patients with diabetes. In addition, the EC tissues from the diabetic group showed altered
expression of proteins that are usually associated with cancers, indicating the severity of
cancer in this group, which is further explained by the presence of more patients with
high-grade and higher-stage EC in the diabetic group. Therefore, it is not clear whether the
severity of the EC reflected in the altered protein expression pattern is linked to diabetes.
The possible effect of diabetes or antidiabetic treatment on the upregulation of calreticulin
and downregulation of enolase needs further investigation. A major limitation of this study
is not having a matched control group for the EC stage and grades. Protein expression
might have differed between different categories of EC stages. We also did not include a
normal control group. Comparison with a healthy group would have revealed whether the
expression seen in the diabetes group is anomalous or not.

5. Conclusions

The present study revealed EC tissues’ differential proteomic expression pattern in
patients with and without diabetes. Alterations in the proteins that are usually associated
with cancer, including the upregulation of peroxiredoxin-1, annexin 5, and iNOS, and down-
regulation of RDH12, retinaldehyde dehydrogenase 1, SOD1, and MYL 9, were found in
the EC tissues of the diabetic group. In addition, protein changes associated with cancer
metastasis, such as the upregulation of vinculin and endoplasmin, and downregulation of
WWC3 and IFT88, were seen in the patients with diabetes. Proteins associated with poor
prognosis of cancer were significantly expressed in the diabetic group, except calreticulin
and alpha-enolase. The altered expression of these two proteins in the EC tissues may
possibly be due to the underlying diabetic conditions. The bioinformatics analysis indicated
that the ERK1/2 and F Actin pathways were dysregulated, and these pathways are linked
with cell proliferation, differentiation, invasiveness, and apoptosis.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/life12040491/s1: Figure S1: Canonical pathways; Table S1: Cancer stage characteristics; Table
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