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Recent advances in PTEN signalling axes in cancer

1 Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario, Canada
2 Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada

Abstract

In over two decades since the discovery of phosphatase and tensin homologue deleted on chromosome 10 (PTEN), nearly 18,000 
publications have attempted to elucidate its functions and roles in normal physiology and disease. The frequent disruption of 
PTEN in cancer cells was a strong indication that it had critical roles in tumour suppression. Germline PTEN mutations have 
been identified in patients with heterogeneous tumour syndromic diseases, known as PTEN hamartoma tumour syndrome 
(PHTS), and in some individuals with autism spectrum disorders (ASD). Today we know that by limiting oncogenic signalling 
through the phosphoinositide 3-kinase (PI3K) pathway, PTEN governs a number of processes including survival, proliferation, 
energy metabolism, and cellular architecture. Some of the most exciting recent advances in the understanding of PTEN biology 
and signalling have revisited its unappreciated roles as a protein phosphatase, identified non-enzymatic scaffold functions, and 
unravelled its nuclear function. These discoveries are certain to provide a new perspective on its full tumour suppressor potential, 
and knowledge from this work will lead to new anti-cancer strategies that exploit PTEN biology. In this review, we will highlight 
some outstanding questions and some of the very latest advances in the understanding of the tumour suppressor PTEN.
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Background
PTEN the lipid phosphatase
Best known as a critical tumour suppressor, phosphatase and  
tensin homologue deleted on chromosome 10 (PTEN) is a key 
member of a complex intracellular phosphoinositide signal-
ling network. The canonical function of PTEN is as a lipid  
phosphatase that dephosphorylates the 3 position on the inositol 
ring of phosphatidylinositol-(3,4,5)-triphosphate (PIP

3
) to gen-

erate PI(4,5)P
2
1 (Figure 1). By this mechanism, PTEN opposes  

signalling of the oncogenic phosphoinositide 3-kinase (PI3K) 
pathway by limiting the recruitment and activation of AKT at the 
cell membrane1,2 (Figure 2). Loss of PTEN function in cancer 
cells (through a diversity of mechanisms that are not discussed 
in this review because of space limitations) almost invariably  
leads to accumulation of PIP

3
 and associated activation of AKT 

signalling. Downstream activation of PI3K pathway effectors 
in cancer are the foremost hallmarks of PTEN loss; however, 
PTEN loss has also been demonstrated to activate a plethora of  
pathways including Ras–MAPK, Wnt/β-catenin, Notch, and 
Hippo pathways through PIP

3
-dependent signals3–7. Overall, 

many other thousands of publications have cemented PTEN as  
an essential tumour suppressive phosphoinositide phosphatase 
that controls crucial signalling events and processes including  
growth, proliferation, survival, and migration8–12.

PTEN the protein phosphatase
Although critically debated since its discovery, PTEN’s pro-
tein phosphate activities have been shown to contribute to 
its tumour suppressive function by an increasing number of  
studies13–15. By using specific mutants of PTEN lacking lipid  
phosphatase function, an early study concluded that PTEN may 
block cell migration through a protein phosphatase-mediated  
function on focal adhesion kinase (FAK) protein14. PTEN-
mediated G1 cell cycle arrest has also been linked to protein  
phosphatase-mediated downregulation of cyclin D116,17. Since 
these first studies, PTEN has been reported to directly dephos-
phorylate an array of proteins involved in cell motility and 
migration18. Convincing data also point to the PTEN protein 
as its own substrate in an auto-dephosphorylation mechanism  
at its C-terminal phosphorylation sites18.

The most compelling data on this topic come from the gen-
eration of mouse models expressing specific loss-of-function  
mutations of Pten19,20. By modelling two cancer-associated  
PTEN mutations at Cys124 and Gly129, Wang et al. and Papa  
et al., respectively, attempted to dissect the specific roles of Pten 
catalytic activities19,20. Pten G129E mutation renders the lipid  
phosphatase activity inactive whilst sparing protein phosphatase 
activity21, whereas the Pten C124S mutation eliminates the 

Figure 1. Schematic of PTEN’s lipid phosphatase activity. Briefly, PTEN dephosphorylates the 3 position on the inositol ring of 
phosphatidylinositol-(3,4,5)-triphosphate (PIP3) to generate PI(4,5)P2. PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin 
homologue deleted on chromosome 10.



Faculty Reviews 2020 9:(31)Faculty Opinions

essential cysteine in the phosphatase consensus site and renders  
all Pten phosphatase activity dead22. In these studies, homozy-
gosity of either of these mutant alleles was associated  
with embryonic lethality. In adulthood, heterozygosity of 
either allele was associated with tumour development simi-
lar to observations in Pten knockout mice23,24. Despite some  
measurable differences in the spectrum of tumours observed 
with each specific mutant allele, the results from these studies  
indicate that the lipid phosphatase function of PTEN is respon-
sible for a majority of the PTEN loss-driven cancer phenotypes.  
Nevertheless, the abundance of in vitro data supporting a pro-
tein phosphatase role for PTEN remains compelling. Further  
cancer and non-cancer focussed studies on Pten G129E and 
C124S could shed light on protein phosphatase functions.  
Moreover, the characterisation of the cancer-associated PTEN 
Y138L mutation by Davidson et al., with specific loss of PTEN 
protein phosphatase activity and retention of lipid phosphatase 
activity, presents a new tool that should be investigated in vivo25.  
Investigation of Pten G129E, Pten C124S, and Pten Y138L  

mice, among others, will provide critical insight into both the 
physiological and the pathological roles of the lipid and pro-
tein phosphatase functions of PTEN. In addition to being a  
dual specificity phosphatase for lipid and protein substrates, 
PTEN can also be dephosphorylated at serine/threonine and  
tyrosine residues. In sum, the physiological relevance of the 
protein phosphatase and phosphatase-independent functions 
of PTEN have yet to be clearly elucidated. However, many  
excellent tools are available to resolve these questions.

PTEN the nuclear scaffold protein
A tumour suppressive role for nuclear PTEN has been  
supported by the discovery of a number of novel functions 
exerted in the nucleus, most of which are independent of its  
phosphatase activity. Indeed, a phosphatase-independent func-
tion of PTEN in the nucleus was observed to be crucial for  
chromosome stability26. This function was attributed to a role 
for PTEN in centromere organisation via direct physical asso-
ciation with centromere protein C (CENP-C)26. Additionally, 

Figure 2. PTEN opposes the PI3K pathway and downstream oncogenic signalling to AKT. By dephosphorylating PIP3, PTEN prevents 
the activation of AKT via PDK1 and thus protects against tumorigenesis. mTORC2, mammalian target of rapamycin complex 2; PDK1, 
phosphoinositide-dependent protein kinase 1; PI3K, phosphoinositide 3-kinase; PIP3, phosphatidylinositol-(3,4,5)-triphosphate; PTEN, 
phosphatase and tensin homologue deleted on chromosome 10.
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nuclear regulation of the cell cycle was linked to direct binding  
of PTEN to the APC/C-E3-ligase27, which facilitated bind-
ing to APC, in turn facilitating APC/C and CDH1 interaction to 
promote the tumour-suppressive activity of the CDH1–APC/C  
complex27. PTEN was also found to physically associate with 
replication protein A1 (RPA1), which is a subunit of the RPA 
single-strand DNA-binding protein complex essential for main-
taining genomic integrity, to thereby stabilise DNA replication  
forks and to protect against replication stress28. In another 
study, PTEN was observed to interact with histone H1 via the  
C-terminal domains of both proteins, leading to the maintenance 
of chromatin condensation and integrity29. PTEN can also physi-
cally associate with and dephosphorylate MCM2, a subunit of 
the MCM2–7 protein complex of the replisome30,31, to restrict  
replication fork progression under replicative stress conditions to 
prevent DNA strand breaks32. Moreover, PTEN has been found 
to associate with stalled replication forks and recruit Rad51,  
a protein involved in DNA double-strand break repair, to facili-
tate stalled replication fork restart33. Overall, nuclear functions 
of PTEN are emerging as critical determinants of the tumour  
suppressor function of PTEN in disease34.

Recent advances in PTEN regulatory mechanisms
While the PTEN–PI3K axis is well established, there are a  
plethora of regulatory mechanisms feeding into PTEN and an 
equal number of downstream mechanisms by which PTEN 
can function, contributing to the ever-growing complex-
ity of PTEN signalling in cancer. Among these mechanisms,  
post-translational modifications (PTMs) and protein–protein 
interactions (PPIs) have been demonstrated to exquisitely con-
trol PTEN stability, activity, and localisation. We present a col-
lection of PTEN studies that represent major current findings  
and highlight exciting directions for future PTEN research.

PTEN phosphorylation
Novel signalling mechanisms by which inhibitory phosphor-
ylation on the C-terminal tail of PTEN can regulate its tumour  
suppressive function have been recently uncovered35,36. Masson 
et al. previously identified six inhibitory phosphorylation sites  
in the PTEN C-terminal tail that effectively block both the  
phosphatase active site and the membrane-binding site of PTEN, 
where only the unphosphorylated state of PTEN was able to 
exert its phosphatase activity37. Phosphorylation status of T366  
and S370 residues in PTEN were also found to influence its  
catalytic activity. When phosphorylated, these residues occluded 
the PTEN active site without affecting membrane binding.  
Notably, partial dephosphorylation at these sites allowed PTEN 
to act on only select substrates37. In supporting work, PDZ 
Domain Containing 1 (PDZK1) protein was shown to interact 
with and block phosphorylation of the C-terminal tail of PTEN  
to allow the PI3K pathway to remain suppressed38. Signal-
ling through the PDZK1/PTEN/PI3K axis resulted in reduced  
growth and proliferation of gastric cancer (GC) cells38. Clini-
cally, PDZK1 was low in GC patient specimens and was associ-
ated with poor disease prognosis38. In another study, the heat  
shock-like protein Clusterin was shown to increase AKT2  
activity and promote the motility of both normal and malig-
nant prostate cells via an inhibitory activity on PTEN-S380  

phosphorylation and consequent inactivation of PTEN39. Clus-
terin was also found to specifically reduce the function of the  
AKT2-specific phosphatase PHLPP1 through miR-19039. In  
sum, combined suppression of PTEN and PHLPP1 provides 
evidence for a Clusterin/PTEN/PHLPP1/AKT2 signalling axis  
involving regulation through miR-190 in prostate cells39. Alto-
gether, these studies provide novel insights supporting the  
importance of C-terminal PTEN phosphorylation as a critical 
regulatory point of contact on the PTEN protein. Importantly, 
these findings demonstrate potential therapeutic targets that 
may mitigate cancer progression, at least in part through the  
regulation of PTEN phosphorylation at its C-terminus.

PTEN and ubiquitination
Second only to phosphorylation, PTEN ubiquitination is the  
most widely studied of all PTMs on PTEN. Indeed, intriguing 
insights into PTEN-associated cancers have been attributed 
to mechanisms associated with PTEN ubiquitination40–47, a  
recent example of which is a report demonstrating that the  
ubiquitin E3 ligase WWP1 can inhibit PTEN function by block-
ing its dimerisation and membrane recruitment48. This study 
proposed the existence of a putative MYC/WWP1/PTEN  
oncogenic axis, where WWP1 joins a list of thousands of genes 
transcriptionally regulated by the pleiotropic MYC oncoprotein48. 
Notably, the study of individuals with germline WWP1 vari-
ants identified gain-of-function effects that support a putative  
role for WWP1 as a cancer-susceptibility gene49. Finally, a natu-
ral compound called indole-3-carbinol was identified as a  
natural inhibitor of WWP1, thereby identifying a potential  
therapeutic strategy for cancer prevention and treatment  
through reactivation of PTEN function48.

In another study, the FOXO-regulated deubiquitinase (DUB)  
USP11 was identified to mediate a PTEN–PI3K autoregula-
tory loop50. This study uncovered that USP11/PTEN signalling 
integrates with PTEN/PI3K/AKT/FOXO signalling to generate  
a PTEN feedforward signalling network. Mechanistically, 
USP11 deubiquitinates PTEN to increase its stability, which  
promotes the inhibition of PI3K signalling50. Conversely, in cells 
where PI3K and AKT signalling is highly active, AKT-medi-
ated phosphorylation promotes its cytoplasmic sequestration 
of FOXO. This event reduces USP11 expression and promotes  
ubiquitin-mediated PTEN degradation to sustain the feedforward 
PI3K activation that can drive malignant growth. The existence  
of the PTEN/PI3K/AKT/FOXO/USP11 axis confirms the  
importance of regulating PTEN stability in cancer.

Two new studies further highlight the importance of PTEN  
ubiquitination in cancer. First, RPN10, a ubiquitin receptor that 
is part of the 19S regulatory subunit of the 26S proteasome51, 
was found to promote PTEN ubiquitination and proteasomal  
degradation in hepatocellular carcinoma (HCC)52. Under hypoxic 
conditions, HIF1α translocation to the nucleus induced tran-
scription of RPN10, leading to the increased degradation of  
PTEN, elevation of PI3K signalling, and accelerated growth and 
proliferation of HCC cells52. Second, LASP1, an actin-binding  
protein with roles in cytoskeletal organisation, was found to pro-
mote activation of the PI3K pathway and the progression of 
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nasopharyngeal cancer (NPC) by promoting the ubiquitination- 
mediated degradation of PTEN53. The precise mechanism  
of how LASP1 promotes PTEN ubiquitination still remains 
elusive53. Both the LASP1/PTEN/PI3K/AKT/mTOR and the  
HIF1α/RPN10/PTEN/PI3K/AKT pathways represent new sig-
nalling axes that influence PTEN function and present novel  
therapeutic avenues.

In sum, these studies add to an increasing body of data  
demonstrating the diverse consequences of conjugation of mon-
omeric ubiquitin or ubiquitin chains to PTEN including sta-
bility, cellular localisation, protein interactions, and catalytic  
activity54,55. The study by Lee et al. also exemplifies that agents 
with modulating effects on ubiquitin ligases and/or deubiq-
uitinases may also be relevant targets for the development of  
therapies aiming to indirectly enhance PTEN expression48.

PTEN-interacting proteins
Advances in proteomic technologies and bioinformatic approaches 
for large-scale PPI mapping provide an attractive and emerg-
ing approach to identify novel therapeutics56. Through such 
work, novel insights into PTEN-associated PPIs and net-
works have been uncovered. As the complex interactome of  
PTEN is methodically unravelled, novel therapeutic approaches 
can be envisioned through the knowledge these studies pro-
vide. As such, PPIs represent potential therapeutic strategies to  
modulate endogenous levels of PTEN.

Novel studies have uncovered that DMBT1, a tumour suppres-
sor in various cancers, can suppress PI3K pathway signalling 
through a stabilising interaction with PTEN57. In another study,  
FAM46C protein was demonstrated to inhibit prostate cancer  
(PCa) growth by promoting PTEN expression levels58. FAM46C 
stabilises PTEN protein by inhibiting ubiquitination to prevent 
its proteasomal degradation58. Sirtuin 6 (SIRT6) was recently 
reported to interact with PTEN, resulting in higher protein  
expression levels and lipid phosphatase activity in colon can-
cer cells59. The SIRT6–PTEN interaction was found to pro-
mote apoptosis and inhibit cell proliferation in vitro through 
inhibition of PI3K signalling, altogether revealing a novel 
SIRT6/PTEN/PI3K signalling axis with tumour suppressive  
capacity59.

An interesting comparative study found that the PTEN interac-
tome shared a significant amount of overlap with the interac-
tomes in autism spectrum disorders (ASD) and cancer, suggesting  
that PTEN is a crucial player in the biology of both diseases60.  
Moreover, this study identified that PTEN germline mutations 
leading to ASD induced a different conformation compared to  
germline mutations that led to cancer, which may perturb the 
PTEN interactome in different ways60. Given that both ASD and 
cancer are clinical manifestations of PTEN hamartoma tumour  
syndrome (PHTS)61–63, different germline mutations in PHTS 
individuals may govern which phenotype occurs by altering the  
PTEN interactome differently60. Overall, like PTMs, PTEN PPIs 
are emerging as important regulators of PTEN function.

Recent advances in PI3K-independent functions and 
beyond
An increasing amount of data suggests that both protein  
phosphatase activity and phosphatase-independent functions 
play roles in PTEN-mediated tumour suppression. Peculiarly,  
this is the case for most of the recently reported PTEN  
functions in the nucleus, where it has been characterised to 
have adaptor or scaffold functions. In sum, elucidating novel 
pathways that involve PTEN signalling will further our under-
standing and appreciation of PTEN’s role in protecting against  
tumorigenesis.

Nuclear PTEN
Nuclear transport of PTEN. A number of experimental and  
clinical observations have posited that nuclear localisation 
of PTEN is a contributor to its tumour suppressive functions. 
Indeed, PTEN is readily detectable in the nucleus of many  
healthy tissues, whereas nuclear exclusion of PTEN is frequently 
observed in advanced cancers64,65. A recent review on PTEN  
nuclear function by Ho and colleagues comprehensively 
described the current state of knowledge34. Studies examining 
PTEN in the nucleus have shed light on how it is transported, 
retained, or excluded from the nucleus. Mechanisms including  
monoubiquitination, sumoylation, and direct interactions have 
also been studied26,45,47,66–68. Many such studies utilise mutant 
PTEN species that harbour non-modifiable residues as clever  
molecular tools26,45,47,66–68. Data suggest that several lysine resi-
dues in PTEN have important roles in nuclear translocation  
mechanisms45,69.

In keeping with this theme, a new study has identified that the  
F-box only protein (FBXO22), a component of the SCF ubiq-
uitin ligase complex, induces ubiquitylation at lysine 221 and 
degradation of nuclear but not cytoplasmic PTEN70. FBXO22 
is overexpressed in various cancer types and contributes to 
the regulation of nuclear PTEN levels in colorectal cancer  
tissues70.

PTEN was also demonstrated to directly interact with the cyto-
plasmic protein myosin 1b (MYO1B)71, which is an actin-binding  
motor protein72. This interaction resulted in nuclear exclu-
sion of PTEN, nuclear AKT activation, and suppression of cell  
apoptosis71. Furthermore, PHTS and ASD-associated germ-
line PTEN Q17E mutant protein was reported to accumulate in 
the nucleus owing to changes in an N-terminal nuclear localisa-
tion sequence. The Q17E mutation and nuclear accumulation of  
PTEN were posited to have pathogenic effects73, illustrating 
that elevated levels of mutant Q17E PTEN are likely not well  
tolerated. Interestingly, a cytoplasmic localisation signal (CLS) 
was previously characterised to be adjacent to Q17 at the PTEN  
N-terminus, where mutations in this sequence induced PTEN 
nuclear localisation and subsequently impaired its tumour sup-
pressive activity74. Given that Q17E resulted in the nuclear  
accumulation of PTEN73, this CLS could possibly include 
Q17. However, this study investigated the Q17A mutation and 
observed cytoplasmic localisation of PTEN74, which may suggest  
that only specific mutations at Q17 induce nuclear localisation.
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Genome integrity and DNA damage. More than localisation, a 
clear understanding of the importance of PTEN nuclear function 
remains elusive. Roles for PTEN in DNA damage repair have  
gained momentum in recent years with studies showing the  
accumulation of DNA strand breaks in PTEN-deficient cells66. 
More recent contributions to this theme include the discovery 
that PTEN is a key scaffold protein in DNA repair complexes. 
One study showed that Nuclear Receptor Binding SET Domain 
Protein 2 (NSD2)-mediated dimethylation of PTEN promotes 
53BP1 interactions and subsequent recruitment to sites of  
DNA-damage sites75. Another study demonstrated that phos-
phorylation of PTEN on tyrosine 240 by FGFR2 promotes 
chromatin binding through an interaction with Ki-67, which 
facilitates the recruitment of RAD51 to promote DNA repair76. 
Figure 3 summarises these novel functions and signalling axes  
of nuclear PTEN.

PTEN-associated transcriptional signalling. As the repertoire 
of PTEN functions increases, a number of previously unappre-
ciated roles for PTEN in the regulation of gene expression and  
processing of RNA transcripts have come to light in the 
last two years. It is known that AKT signaling plays a criti-
cal role in the regulation of pre-mRNA splicing77 and PTEN 
has been shown to modulate G6PD pre-mRNA splicing in an  
AKT-independent manner78. Newer studies add to this small 
body of data, including an intriguing study where a novel PTEN/
ARID4B/PI3K pathway in which PTEN inhibits the expression  
of ARID4B was characterised. ARID4B is one of several mem-
bers of the ARID gene family, which are chromatin remodelling 
factors. PTEN inhibits ARID4B expression and thus prevents  
the transcriptional activation of ARID4B transcriptional tar-
gets PIK3CA and PIK3R2 (PI3K subunits)79. This PTEN/
ARID4B/PI3K signalling axis identifies a novel player in the  

Figure 3. The complexity of PTEN signalling in the nucleus. Schematic representation of the recent advances in PTEN nuclear biology. 
53BP1, p53-binding protein 1; ARID4B, AT-rich interaction domain 4B; CENP-C, centromere protein C; FBXO22, F-box only protein; FGFR2, 
fibroblast growth factor receptor 2; MYO1B, myosin 1b; NSD2, nuclear receptor binding SET domain protein 2; PTEN, phosphatase and tensin 
homologue deleted on chromosome 10; RNAPII, RNA polymerase II.
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PTEN-mediated suppression of the PI3K pathway and  
provides a new opportunity to design novel therapeutics to target 
this axis to promote the tumour suppressive functions of PTEN.  
Furthermore, nuclear PTEN directly interacted with and inhib-
ited RNA polymerase II (RNAPII)-mediated transcription, where  
it was involved in direct downregulation of critical transcrip-
tional control genes including AFF4 and POL2RA80. Similar 
findings were reported by Abbas et al., where PTEN was found  
to dephosphorylate the C-terminal domain of RNAPII, leading 
to its inhibition81. They also found that PTEN could modulate  
genome-wide transcription by redistributing RNAPII across 
the genome under conditions of metabolic stress82,83. Further  
roles for PTEN in transcriptional modulation were dem-
onstrated in a report where nuclear PTEN interacted with  
spliceosomal proteins to promote pre-mRNA splicing in a  
phosphatase-independent manner84. PTEN was also found to 
be dimethylated at Arg159 by PRMT6; this methylation event 
was demonstrated to be involved in pre-mRNA alternative 
splicing85. Altogether, these studies identify roles for PTEN in  
global gene regulation and transcript processing that are  
consistent with previously reported changes in gene expression  
after loss of PTEN86,87. The extensive range of genes that are 
impacted by PTEN through these mechanisms provides further  
evidence of a complex role for nuclear PTEN.

PTEN and other oncogenic signalling pathways
A large body of data demonstrates that PTEN signalling is 
involved in various cross-talks with other pathways88, including  
Hippo signalling, WNT/β-catenin signalling, and Notch path-
ways. A large majority of these cross-talk studies demon-
strate an indirect association with PTEN through PI3K- and  
AKT-dependent mechanisms. In this section, we focus most of 
our discussions on those mechanisms where PTEN is directly  
linked to other pathways. For instance, the Hippo pathway was 
linked to the PI3K pathway through PTEN suppression via 
the induction of miR-29 by the Hippo pathway effector YAP6. 
A more recent study found that the inactivation of the lipid  
phosphatase activity of PTEN can inhibit the Hippo pathway by 
promoting the nuclear translocation of YAP and TAZ in GC.  
Hippo pathway inhibition allows oncogenic transcriptional  
programs to be induced89. These findings suggest that the tum-
origenic effect of PTEN inactivation in GC is twofold, as Hippo  
inactivation is synergistic with the established derepression of  
PI3K signalling downstream of PTEN inactivation89.

Similarly, a large number of studies support that PI3K–AKT 
and WNT/β-catenin signalling pathways are highly connected.  
However, a new study highlights a direct interaction of PTEN 
with β-catenin and Wnt signalling90. This study investigated 
the role of CREB-binding protein (CBP)–β-catenin signalling 
on both the expression of the stem cell antigen CD133 and the  
PP2A–PTEN pathway in tumour-initiating cells (TICs) in 
liver cancer. CBP–β-catenin signalling regulated the levels of  
C-terminal PTEN phosphorylation in TICs and promoted 
stemness via CD133 induction. Overall, WNT/β-catenin was  
demonstrated to control PTEN phosphorylation via a PP2A-
dependent mechanism90. This study provides a novel link 
between the two highly oncogenic PI3K and WNT/β-catenin 

pathways directly through PTEN in the form of a novel  
CBP/β-catenin/PP2A/PTEN/PI3K/AKT axis90.

PTEN and Notch have also been demonstrated to cross-talk  
extensively, mainly through PI3K- and AKT-dependent mecha-
nisms. However, the evidence for direct interactions between 
PTEN and Notch signalling make up only a minority of those  
studies. In one of these studies, Baker et al. reported that 
Notch1 can mediate transcriptional suppression of PTEN, result-
ing in the derepression of PI3K signalling and development 
of trastuzumab resistance91. This study was the first to link the  
Ras–MAPK and PI3K pathways through Notch1 transcriptional 
suppression of PTEN91. Furthermore, the known cancer/testis  
antigen Plac1 was reported to interact with Furin, a proprotein 
processing enzyme92, to degrade Notch1 into Notch1 intracellular 
domain (NICD) fragments that undergo nuclear translocation to 
suppress PTEN transcription93, forming a Plac1/Furin/Notch1/
NICD/PTEN signalling mechanism that results in transcrip-
tional repression of PTEN and allows for the hyperactivation  
of AKT signalling in breast cancer (BC) cells93. Perhaps devel-
oping a small molecule to stabilise PPIs in the ASXL1–BAP1 
complex could elevate the expression of PTEN and thereby  
tumour suppressive activity. Conversely, inhibiting the inter-
action of Plac1 with Furin could derepress PTEN expression. 
PTEN was also implicated in regulating epithelial–mesenchymal 
transition (EMT) and metastasis in tongue squamous cell  
carcinoma through a Numb/Notch1/RBP-Jκ/PTEN/p-FAK/EMT 
axis94. Numb inhibits Notch1, leading to the downregulation of  
RBP-Jκ94, which upregulates PTEN and anti-EMT effectors, lead-
ing to the downregulation of p-FAK and pro-EMT effectors94.  
However, the precise mechanisms remain elusive. Is the upreg-
ulation of PTEN due to increased transcription or reduced  
degradation? How does PTEN affect p-FAK levels? In spite of 
this, this report suggests yet another signalling axis in which  
PTEN is implicated.

Overall, each of these studies highlight the importance of  
PTEN signalling in protecting against tumorigenesis and build  
upon existing bodies of work on the complex crosstalk between 
PTEN signalling and other pathways. A further understand-
ing of PTEN crosstalk with Hippo, WNT, and Notch signalling  
(Figure 4) and other signalling pathways in cancer will provide 
critical insights into an understanding of cancer development  
as well as novel therapeutic strategies and resistance pathways  
frequently observed in cancer relapse.

PTEN metabolic signalling
Metabolic reprogramming in cells is one of the hallmarks of  
cancer as described by Hanahan and Weinberg95. The Warburg 
effect is one of the most notable metabolic changes that takes 
place in cancerous cells, where cells become increasingly reli-
ant on glycolysis compared to the more-efficient citric acid  
cycle96–98. In recent years, PTEN has been shown to be involved 
in the regulation of glycolysis in cancer cells; its loss or  
inactivation allows cells to become “Warburg-like” and become 
reliant on glycolysis, consequently making them more aggres-
sive and resistant to chemotherapy. In a study by Qian et al., the  
protein phosphatase activity of PTEN was linked to metabolic 
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changes that occur in tumorigenesis99. It was reported that  
PTEN could dephosphorylate PGK1, a glycolytic enzyme 
and protein kinase with a tumorigenic role in glioblastoma99.  
Dephosphorylation of PGK1 by PTEN was found to inhibit its 
activity, downstream glycolytic functions, and glioblastoma 
cell proliferation99, thereby presenting another mechanism in 
which PTEN functions as a tumour suppressor. Another role for  
PTEN in metabolic processes was reported in a study linking  
it to pyruvate dehydrogenase kinase 1 (PDHK1)100. In this study, 
PTEN was observed to dephosphorylate the NF-κB-activating  
protein (NKAP) and limit NF-κB activity and downstream 
transcriptional changes of target genes including PDHK1100.  
PTEN and PDHK1 were observed to have a synthetic-lethal rela-
tionship, as loss of PTEN and upregulation of PDHK1 in cells  
induced glycolysis and a dependency on PDHK1100. This was 
supported by observations that PTEN-deficient tumours have  
elevated PDHK1 levels, which is a biomarker for poor  
survival100. These data point to a potential PTEN/NKAP/NF-
κB/PDHK1/glycolysis signalling axis that could potentially be  
targeted in PTEN-deficient cancers100.

In small-cell lung cancer (SCLC) cells, PTEN is targeted 
and suppressed by miR-214, which subsequently leaves the  
PI3K/AKT/mTOR pathway unopposed101. This was found to 
signal to hexokinase 2 (HK2) and pyruvate kinase isozyme 2 
(PKM2), resulting in the upregulation of glycolysis and prolif-
eration of SCLC cells101. Furthermore, inhibition of miR-214 
resulted in the elevation of PTEN and downregulation of the  
PI3K/AKT/mTOR pathway and reversed the effects on glyco-
lysis and proliferation101. This suggests that miR-214 and PTEN 
can signal onto HK2/PKM2 via the PI3K pathway in SCLC  
cells that regulates glycolysis and proliferation101. PTEN was 
also found to be involved in regulating glycolysis in refractory 
acute myeloid leukaemia (AML) cells, leading to the develop-
ment of chemotherapy resistance102. In refractory AML cells, 
PTEN was depleted and phosphorylated AKT was increased 
compared to non-refractory cells102. Moreover, these changes in 
the PTEN/PI3K/AKT pathway were associated with increased  
glucose transporter 1 (GLUT1) and HK2 expression as well as  
lactate production102. Inhibition of AKT activity not only decreased 
proliferation and glycolysis in refractory AML cells but also 

Figure 4. PTEN signalling in other major oncogenic pathways. All of the major oncogenic pathways here signal through PTEN to affect 
the PI3K pathway. CBP, CREB-binding protein; MAPK, mitogen-activated protein kinase; miR-29, microRNA 29; NICD, Notch1 intracellular 
domain; PI3K, phosphoinositide 3-kinase; PTEN, phosphatase and tensin homologue deleted on chromosome 10; YAP, Yes-associated 
protein.
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sensitised these cells to chemotherapy102. The data from this  
study suggest that in refractory AML cells, depletion of PTEN 
and the unopposed hyperactivity of AKT result in the upregu-
lation of glycolysis and subsequently confer resistance to  
chemotherapy102.

These studies provide more evidence that links PTEN to the  
regulation of glycolysis in cells. Indeed, suppressing glycoly-
sis appears to be a major endpoint of PTEN tumour suppressive  
signalling. As the role of PTEN in glycolysis continues to 
expand, so will the number of possible signalling axes by which  
PTEN can regulate glycolysis. These new axes can then serve 
as potential targets in PTEN-deficient cancers that rely on  
glycolysis for tumorigenesis.

A major clinical challenge in PHTS is predicting which of these 
clinical manifestations individuals will develop63. Given that  
PTEN signalling has a role in metabolic reprogramming,  
particularly in glycolysis99,100 as we have described, it is intrigu-
ing that various tricarboxylic acid (TCA) cycle metabolites  
were found to be associated with various clinical manifestations 
of PHTS103. This metabolomic study identified that increased 
isocitrate and reduced citrate levels in PHTS individuals were  
associated with the development of BC103. Fumarate was also 
identified as a metabolite that was decreased in PHTS indi-
viduals who developed ASD compared to those who developed  
cancer103. The differential levels of these TCA metabolites 
and their association with clinical manifestations of PHTS103 
could serve as a basis for the future development of prognostic  
metabolic biomarkers that could help predict the clinical  
progression of PHTS individuals.

PTEN isoforms
Several groups have identified alternative translational start 
sites upstream of the canonical PTEN start codon, result-
ing in the production of PTEN isoforms with an extended  
N-terminus104–106. To date, only two isoforms have been 
described: PTENα (or PTEN-Long)104,105 and PTENβ106. PTEN 
isoforms including PTENα and PTENβ have been reported to 
function both in and beyond the PI3K pathway, adding more  
complexity to the field of PTEN signalling biology (Figure 5).

Initial characterisation of PTENα revealed that this isoform is 
membrane permeable, is secreted from cells, and can be taken  
up by neighbouring cells104. Indeed, exogenous PTENα was 
identified to oppose the PI3K pathway in the receiving cells and  
induced in vitro and in vivo cell death104. These data present a 
potential approach to restoring PTEN levels in deficient cells 
that could be explored in future studies104. The discovery of the  
PTENα isoform was subsequently confirmed by Liang et al. 
using mass spectrometry, where it was revealed to be co-localised  
with canonical PTEN at the mitochondria, suggesting a role in 
mitochondrial signalling105. Colocalisation of PTEN/PTENα  
promoted the function of PINK1, a mitochondrial-target kinase, 
and subsequently promoted energy production105. PTENα was 
also shown to play a role in regulating mitophagy through a 
direct interaction with the mitophagy initiator protein PRKN107.  

PTENα promotes PRKN self-association at the mitochondria in 
a PTENα phosphatase-independent manner107. PTENα/PRKN  
signalling in mitophagy was supported by evidence demonstrat-
ing that the PTENα–PRKN interaction was stronger when mito-
chondria were damaged and depolarised107. PTENα was also  
reported to regulate neutrophil morphology and chemotaxis  
through direct binding and dephosphorylation of Thr558 on 
moesin, a membrane cross-linking protein108. Moesin dephos-
phorylation disrupts actin filaments that are associated with the  
plasma membrane and results in morphologic changes in  
neutrophil pseudopodia that are required during chemotaxis108. 
This evidence suggests a role for PTENα, its protein phos-
phatase activity, and its signalling at the plasma membrane in  
the regulation of neutrophil morphology and chemotaxis.

PTENβ was more recently identified and has a longer  
N-terminus than both PTENα and canonical PTEN106. Liang  
et al. characterised the localisation of PTENβ at the nucleo-
lus, where it interacts with and dephosphorylates Thr84 on  
nucleolin106. Interaction of PTENβ with nucleolin, a nucleolar  
protein that is essential in ribosomal biogenesis109,110, points to a 
role in ribosomes and translation106. Indeed, PTENβ overexpres-
sion was found to regulate rDNA transcription, and inhibiting  
PTENβ results in the promotion106 of ribosomal biogenesis. It 
was concluded that PTENβ regulates cell proliferation through  
regulating ribosomal biogenesis; however, an exact signal-
ling mechanism has not been characterised and requires future  
study.

Given the renowned and classical role of canonical PTEN in  
tumour suppression, it is plausible to hypothesise that PTENα/β 
have similar tumour suppressive functions. However, Shen et al. 
demonstrated that PTENα/β isoforms may also be tumour  
promoting in specific contexts, in contrast to canonical PTEN111. 
Mechanistically, the isoforms were able to promote tumorigen-
esis by interacting with WDR5 and activating trimethylation  
of histone H3 lysine 4 (H3K4), which could maintain the 
expression of a tumour-promoting gene signature111. PTENα and 
PTENβ were also observed to be regulated by ubiquitin-specific  
peptidase 9, X-linked (USP9X), and F-box/WD repeat-containing  
protein 11 (FBXW11) through interactions with lysine resi-
dues on their extended N-terminal regions111. This study presents 
intriguing first evidence of a contrasting role for PTEN iso-
forms in the tumorigenic process111. Future studies are required  
to confirm these newly identified functions. Overall, the evidence 
presented from this study points to a more complex signalling 
network of PTEN and its isoforms than previously envisioned 
and raises questions about the established tumour suppressive  
role of PTEN.

Future directions and conclusion
It is evident that there is still much to learn about PTEN, as 
shown by the continuous high pace of discovery. As technological  
approaches continue to advance, the ability to measure, moni-
tor, detect, visualise, and experimentally manipulate PTEN  
in vitro and in vivo brings forth the understanding of novel  
features of this extraordinary gene and protein. While this review 
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mainly focused on PTEN signalling in cancer, PTEN signal-
ling has been implicated in a variety of other diseases such as  
PHTS61–63, autoimmunity and immunological functions112, and 
other neurodevelopmental disorders113; future studies should be  
aimed at further understanding the role of PTEN signalling in 

these contexts and how it relates to its renowned function in 
cancer. Novel PTEN-linked signalling axes revealed by new 
studies present additional novel approaches for targeting the 
PTEN pathway for a wide range of diseases, both in and beyond  
cancer.

Figure 5. PTEN isoform signalling. Schematic representation of signalling axes involving the PTENα and PTENβ isoforms. Interestingly, 
PTENα/β appear to have tumour promoting functions that are in contrast to canonical PTEN. FBXW11, F-box/WD repeat-containing protein 
11; PTEN, phosphatase and tensin homologue deleted on chromosome 10; PRKN, parkin RBR E3 ubiquitin protein ligase; USP9X, ubiquitin-
specific peptidase 9, X-linked; WDR5, WD repeat-containing protein 5.
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