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Human serum albumin (HSA) is the most prevalent protein in the blood plasma which binds an array of
exogenous compounds. Drug binding to HSA is an important consideration when developing new ther-
apeutic molecules, and it also aids in understanding the underlying mechanisms that govern their phar-
macological effects. This study aims to investigate the molecular binding of coronavirus disease 2019
(COVID-19) therapeutic candidate molecules to HSA and to identify their putative binding sites.
Binding energies and interacting residues were used to evaluate the molecular interaction. Four drug can-
didate molecules (b-D-N4-hydroxycytidine, Chloroquine, Disulfiram, and Carmofur) demonstrate weak
binding to HSA, with binding energies ranging from �5 to �6.7 kcal/mol. Ivermectin,
Hydroxychloroquine, Remdesivir, Arbidol, and other twenty drug molecules with binding energies rang-
ing from �6.9 to �9.5 kcal/mol demonstrated moderate binding to HSA. The strong HSA binding drug
candidates consist of fourteen molecules (Saquinavir, Ritonavir, Dihydroergotamine, Daclatasvir,
Paritaprevir etc.) with binding energies ranging from �9.7 to �12.1 kcal/mol. All these molecules bind
to different HSA subdomains (IA, IB, IIA, IIB, IIIA, and IIIB) through molecular forces such as hydrogen
bonds and hydrophobic interactions. Various pharmacokinetic properties (gastrointestinal absorption,
blood-brain barrier permeation, P-glycoprotein substrate, and cytochrome P450 inhibitor) of each mole-
cule were determined using SwissADME program. Further, the stability of the HSA-ligand complexes was
analyzed through 100 ns molecular dynamics simulations considering various geometric properties. The
binding free energy between free HSA and compounds were calculated using Molecular mechanics
Poisson–Boltzmann surface area (MM/PBSA) and molecular mechanics generalized Born surface area
(MM/GBSA) approach. The findings of this study might be useful in understanding the mechanism of
COVID-19 drug candidates binding to serum albumin protein, as well as their pharmacodynamics and
pharmacokinetics.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In December 2019, Wuhan, Hubei Province, China, reported
numerous cases of a new respiratory disease. By January 2020, it
had been proven that these illnesses were caused by a new coron-
avirus known as severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and the disease came to be known as coronavirus
disease 2019 (COVID-19) (Ashour et al., 2020). SARS-CoV-2 is a
new betacoronavirus that shares 79% of its genome sequence with
severe acute respiratory syndrome coronavirus (SARS-CoV) and
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50% similarity with Middle East respiratory syndrome coron-
avirus (MERS-CoV) (Lu et al., 2020). It has a genomic structure that
is similar to that of other betacoronaviruses. The six functional
open reading frames (ORFs) are replicase (ORF1a/ORF1b), spike
(S), envelope (E), membrane (M), and nucleocapsid (N) in order
from 50 to 30. Between the structural genes, there are additional
seven potential ORFs encoding accessory proteins (Chan et al.,
2020). The demand for new antiviral drugs against SARS-CoV-2
continues as the COVID-19 pandemic spreads quickly
(Villamagna et al., 2020). There is currently insufficient evidence
that any antiviral drugs available today may effectively treat
COVID-19 pneumonia. However, numerous clinical trials on possi-
ble antiviral treatments are now underway (Zhaori et al., 2020).
The antiviral treatments can be classified into two groups- the
one that targets the coronavirus, either by inhibiting a key viral
enzyme involved in genome replication or by preventing its entry
into human cells and the second that is intended to influence the
human immune system, either by enhancing the innate response
against viruses or by suppressing the inflammatory processes that
lead to lung damage (Tu et al., 2020). The majority of these drugs
were developed for different infections before being repurposed
for COVID-19. The method of repurposing existing antiviral agents
authorized or under development for other viral diseases has been
embraced in light of the necessity to discover an effective treat-
ment for symptomatic individuals (Singh et al., 2020). The SOLI-
DARITY study, an international clinical trial, was recently
initiated by the World Health Organization (WHO) to address this
issue. Lopinavir and ritonavir, with interferon b and chloroquine,
and remdesivir are among the drugs tested in this study (Uddin
et al., 2020). These drugs like others need to bind to the drug car-
rier protein known as human serum albumin which influences
their activity and half-life.

Human serum albumin (HSA) is a single-chain, non-
glycosylated polypeptide with a molecular weight of 66,500 Da
and 585 amino acids (Yamasaki et al., 2013). The structure of
HSA indicates the existence of three domains, namely domains I
(residues 1–195), II (196–383), and III (384–585), which are not
only topologically identical but also have comparable three-
dimensional structures, as anticipated by amino acid sequence
comparison (He and Carter, 1992; Yang et al., 2014). The polypep-
tide chain has an approximate dimension of 80 � 80 � 30 Å and
forms a heart-shaped structure (Sugio et al., 1999). Except for
Cys34 (in domain I), HSA has 35 cysteine residues, all of which
are involved in disulfide bond formation, which helps to stabilize
the protein. Interdomain and inter-subdomain interactions have
a crucial role in the stability of the HSA molecule, according to
crystallographic evidence (Yamasaki et al., 2013). It is the most
abundant protein in blood plasma that serves a variety of impor-
tant physiological functions. HSA controls colloidal osmotic pres-
sure and transports a variety of endogenous substances such as
fatty acids (FA), hormones, bile acids, amino acids, metals, and
toxic metabolites, among others (Yang et al., 2014). Furthermore,
through binding with HSA, a wide range of drugs are transported
to their target organs/tissues (Yamasaki et al., 2013). As a result,
HSA not only sequesters bound pharmaceuticals from oxidation
and impacts drug distribution in vivo, but it also changes drug
pharmacokinetic and pharmacodynamic characteristics (Tayyab
and Feroz, 2020).

HSA’s remarkable ability to bind a wide range of drugs is one of
its most distinguishing features (Yang et al., 2014). Given the large
quantity of HSA in plasma, drug binding affinity to HSA is an essen-
tial consideration when developing novel therapies. Furthermore,
the interaction of drugs that bind to HSA at the same time might
alter HSA binding behaviour and potentially affect the drugs’ ther-
apeutic efficacy (Tesseromatis and Alevizou, 2008). The structures
of HSA–ligand complexes have shown not only where distinct drug
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binding sites on HSA are located, but also reveal how several drugs
interact with HSA (Yang et al., 2013, 2012). When studying the pro-
cesses determining the pharmacological effects of these molecules,
understanding drug binding characteristics to HSA is critical (Yang
et al., 2014). In this study, the molecular mechanism underlying
the interaction between drug candidate molecules for COVID-19
and human serum albumin was investigated. The interaction
between the drug candidate molecules and HSA was evaluated in
terms of binding energies and binding site identification through
molecular docking studies. The pharmacokinetic properties of the
COVID-19 drug candidate molecules were also computationally
investigated. The dynamic behaviour of the free HSA and HSA-
ligand complexes were further explored through molecular
dynamics simulations in an aqueous environment.
2. Materials and methods

2.1. Retrieval of drug candidate molecules

A total of 55 chemical structures were downloaded from Pub-
Chem database (Kim et al., 2016) which comprises 16 experimen-
tal drug candidate molecules for COVID-19 (Set A) (Caly et al.,
2020; Choy et al., 2020; Dai et al., 2020; Devaux et al., 2020; Jin
et al., 2020; K.Y. Wang et al., 2020, M. Wang et al., 2020, X.
Wang et al., 2020), 26 in silico drug candidate molecules for
COVID-19 i.e. 15 molecules in Set-B from others’ publications
(Beck et al., 2020; Hall Jr. and Ji, 2020; Ho, 2020; Ke et al., 2020;
Pant et al., 2020), 11 molecules in Set C from our previous publica-
tions (Gurung et al., 2020a, 2020b, 2020c), and 13 control drug
molecules that bind serum albumin proteins (Set D) (Varshney
et al., 2010). The compounds that lacked a 3D structure were trans-
formed using OpenBabel version 2.4.1 (O’Boyle et al., 2011) and
optimized with the MMFF94 force field (Halgren, 1996).

2.2. Retrieval of protein structures

The three-dimensional X-ray crystal structure of human serum
albumin was obtained from Protein Data Bank (http://www.rcsb.
org/) using PDB ID: 6HSC. The structure consists of human serum
albumin in complex with Aristolochic acid at a resolution of 1.9 Å.

2.3. Molecular docking studies

The binding of COVID-19 drug candidate molecules to HSA was
studied using AutoDock Vina program which is based on a sophis-
ticated gradient optimization method (Trott and Olson, 2010). The
serum protein was prepared by removing the heteroatoms such as
ions, water molecules and cocrystal ligands and the addition of
polar hydrogen atoms and Kollman charges. The ligands were pre-
pared by adding hydrogen atoms, Gasteiger charges and optimally
defining the torsions. Blind docking was performed using a grid
box centred at XYZ coordinates of �71.2957, 1.2689 and 14.0226
with dimensions of X: 98.2245 Å, Y: 51.0570 Å and Z: 90.0794 Å
and exhaustiveness were set to 8. The binding conformations were
clustered and ranked based on their binding affinities. The molec-
ular interactions such as hydrogen bonds and hydrophobic interac-
tions between HSA and compounds were evaluated using
LigPlot + program version 1.4.5 (Laskowski and Swindells, 2011).

2.4. Determination of pharmacokinetic properties

Various pharmacokinetic properties (gastrointestinal absorp-
tion, blood-brain barrier permeation, P-glycoprotein substrate,
and cytochrome P450 inhibitor) of each molecule were determined
using SwissADME tool (Daina et al., 2017).

http://www.rcsb.org/
http://www.rcsb.org/


Fig. 1. The chemical structures of selected experimental and in silico COVID-19 drug candidate molecules used in the study.
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Table 1
Binding energy and binding sites determined using molecular docking studies.

Molecules Name PubChem ID Binding Energy (kcal/mol) Binding strength Binding region

A1 Ivermectin 6321424 �9.4 Moderate IB-IIA-IIIB
A2 Hydroxychloroquine 3652 �7.1 Moderate IIIA
A3 Arbidol 131411 �7.3 Moderate IB-IIA
A4 Ebselen 3194 �8.5 Moderate IIA-IIB-IIIA
A5 Remdesivir 121304016 �8.9 Moderate IIA-IIIA
A6 Lopinavir 92727 �9.1 Moderate IB-IIA-IIIA
A7 Emetine 10219 �8.1 Moderate IB-IIA-IIIA
A8 Homoharringtonine 285033 �6.9 Moderate IIA-IIB
A9 Chloroquine 2719 �6.5 Weak IIA-IIB
A10 b-D-N4-hydroxycytidine (NHC) 197020 �6.5 Weak IA-IIA
A11 Disulfiram 3117 �5 Weak IIIA
A12 Tideglusib 11313622 �10 Strong IB-IIA-IIIB-IIIA
A13 Carmofur 2577 �6.7 Weak IIA-IIIB-IIIA
A14 Shikonin 479503 �8.9 Moderate IIA-IIB
A15 Compound 11a – �9.3 Moderate IB-IIA
A16 Compound 11b – �10.4 Strong IIA-IIB-IIIA
B17 Zanamivir 60855 �7.8 Moderate IIIA
B18 Indinavir 5362440 �9.7 Strong IB-IIA-IIIA
B19 Saquinavir 441243 �10.2 Strong IB-IIA
B20 Atazanavir 148192 �8.7 Moderate IB-IIA-IIIA
B21 Bedaquiline 5388906 �8.7 Moderate IB-IIA
B22 Brequinar 57030 �9 Moderate IB-IIIA
B23 Celecoxib 2662 �9.8 Strong IIA-IIIA
B24 Clofazimine 2794 �9.5 Moderate IB-IIIA
B25 Conivaptan 151171 �11.2 Strong IIA-IIB-IIIA
B26 Gemcitabine 60750 �7.3 Moderate IIIA
B27 Tolcapone 4659569 �9.3 Moderate IB
B28 Vismodegib 24776445 �8.5 Moderate IB-IIIA
B29 Cobicistat 25151504 �9.3 Moderate IIA-IIIA
B30 Ritonavir 392622 �10.1 Strong IIA-IIB-IIIA
B31 Darunavir 213039 �7.9 Moderate IB-IIIA
C32 Ergotamine 8223 �11.5 Strong IIA-IIB-IIIA
C33 Dihydroergotamine 10531 �11.9 Strong IB-IIA
C34 Bonducellpin D 10835061 �7.9 Moderate IB-IIA
C35 Glecaprevir 66828839 �9.7 Strong IB-IIA-IIIB
C36 Daclatasvir 25154714 �12.1 Strong IB-IIIA
C37 Paritaprevir 45110509 �10.5 Strong IB-IIA-IIIA
C38 Vincapsusine 11646359 �7.6 Moderate IB-IIA
C39 Alloyohimbine 120716 �9.7 Strong IIA-IIIA
C40 Gummadiol 21722930 �9.9 Strong IA-IIA
C41 ZINC000254565785 �9.2 Moderate IIIA
C42 ZINC000726422572 �9 Moderate IA-IIA
D43 Indomethacin 3715 �8.6 – IIA
D44 Furosemide 3440 �8 – IIIA
D45 Warfarin 54678486 �8.7 – IIA-IIB
D46 Bezylpenecillin 5904 �8.4 – IIA-IIB
D47 Chlorpropamide 2727 �7.5 – IIA-IIIA
D48 Phenytoin 1775 �9.3 – IA
D49 Diazepam 3016 �7.7 – IIA
D50 Ibuprofen 3672 �7.4 – IIA-IIB
D51 Naproxen 156391 �8.3 – IIA-IIB
D52 Clofibrate 2796 �7 – IIA-IIIA
D53 Chlorpromazine 2726 �7.1 – IIA
D54 Imipramine 3696 �7.9 – IA
D55 Quinidine 441074 �7.8 – IB-IIIA
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2.5. Molecular dynamics simulation

The trajectories of the free HSA and HSA-ligand complexes were
studied through 100-ns of MD simulations using GROningen
MAchine for Chemical Simulations (GROMACS) 2019.2 software
(Hess et al., 2008) with GROMOS96 43a1 force field. The free
HSA and the HSA-ligand complexes were prepared for MD simula-
tion by considering a cubic box of 1 Å spacing and solvated with
simple point charge (SPC216) waters. A leap-frog time integration
algorithm was used for integrating Newton’s equations of motion.
The systems were neutralized by adding an appropriate number of
counterions and subsequently energy minimized. The systems
were heated to 300 K and equilibrated for 100 ps in NVT (Number
of particles, Volume and Temperature) ensemble and another
100 ps in NPT ensemble (Number of particles, Pressure and Tem-
56
perature). After heating and equilibration, the systems were sub-
jected to production MD run for 100 ns in NPT ensemble.
PRODRG web server (Schüttelkopf and Van Aalten, 2004) was used
to generate topology of the ligand. MD analysis was performed by
choosing parameters such as RMSD (root mean square deviation),
RMSF (root mean square fluctuation), Rg (radius of gyration), total
SASA (solvent accessible surface area) and the number of hydrogen
bonds (NHBs). Graphs were plotted using Xmgrace tool.

2.6. Binding free energy analysis

The binding free energy (DGbind) of the compounds was calcu-
lated using LARMD program (Yang et al., 2020) which uses the fol-
lowing equation (Equation 1).

DGbind = DEbind � TDSsol � TDSconf ð1Þ



Fig. 2. Binding poses and molecular interactions of the drug molecules with HSA- (A) HSA_A13 (B) HSA_C34 (C) HSA_A16 and (D) HSA_D43. The domain I of HSA consists of
subdomains IA coloured green (residues 5–107) and IB coloured orange (residues 108–196); domain II comprises subdomains IIA coloured blue (residues 197–297) and IIB
coloured yellow (residues 298–383); domain III has subdomains IIIA coloured magenta (residues 384–497) and IIIB coloured cyan (residues 498–582). Hydrophobic
interactions are shown as semi-arcs with red eyelashes, whereas hydrogen bonds are shown as green dashed lines.
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Table 2
Pharmacokinetic properties of the selected molecules.

Molecule Lipinski
#violations

Veber
#violations

ESOL Class GI
absorption

BBB
permeant

Pgp
substrate

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

A1 2 1 Poorly
soluble

Low No Yes No No No No No

A2 0 0 Soluble High Yes No Yes No No Yes No
A3 0 0 Moderately

soluble
High No No No Yes Yes Yes Yes

A4 0 0 Soluble High Yes No No No No No No
A5 2 2 Moderately

soluble
Low No Yes No No No No Yes

A6 1 1 Poorly
soluble

High No Yes No Yes No No Yes

A7 0 0 Moderately
soluble

High Yes Yes No No No No No

A8 1 1 Soluble High No No No No No Yes Yes
A9 0 0 Moderately

soluble
High Yes No Yes No No Yes Yes

A10 0 0 Very
soluble

Low No No No No No No No

A11 0 0 Soluble High No No Yes Yes Yes No Yes
A12 0 0 Moderately

soluble
High Yes No Yes Yes Yes No No

A13 0 0 Soluble High No No Yes No No No No
A14 0 0 Soluble High No No Yes No Yes No No
A15 0 1 Moderately

soluble
High No Yes No No Yes No Yes

A16 0 1 Soluble High No Yes No No Yes Yes Yes
B17 2 1 Highly

soluble
Low No Yes No No No No No

B18 1 1 Moderately
soluble

High No Yes No No No No No

B19 2 2 Moderately
soluble

Low No Yes No No No No Yes

B20 2 2 Poorly
soluble

Low No Yes No No No No Yes

B21 2 0 Poorly
soluble

Low No Yes Yes No No Yes Yes

B22 0 0 Poorly
soluble

High No Yes Yes Yes No No No

B23 0 0 Moderately
soluble

High No No Yes No Yes No No

B24 1 0 Poorly
soluble

Low No No No No No No No

B25 0 0 Poorly
soluble

High No No No Yes No No No

B26 0 0 Very
soluble

High No No No No No No No

B27 0 0 Soluble High No No No No Yes No Yes
B28 0 0 Moderately

soluble
High No No No Yes Yes No Yes

B29 2 2 Poorly
soluble

Low No Yes No No No No Yes

B30 2 2 Poorly
soluble

Low No Yes No No No No Yes

B31 1 2 Moderately
soluble

Low No Yes No No No No Yes

C32 1 0 Moderately
soluble

High No Yes No No Yes Yes Yes

C33 1 0 Moderately
soluble

High No Yes No No No Yes Yes

C34 0 0 Soluble High No Yes No No No Yes No
C35 2 1 Poorly

soluble
Low No Yes No No No No No

C36 2 2 Poorly
soluble

Low No Yes No No Yes No Yes

C37 2 1 Poorly
soluble

Low No Yes No No No No Yes

C38 0 0 Soluble High Yes No No No No Yes No
C39 0 0 Moderately

soluble
High Yes Yes No No No Yes No

C40 0 0 Soluble High No No No No No Yes No
C41 0 0 Moderately

soluble
High Yes No Yes Yes Yes No Yes

C42 0 0 Moderately
soluble

High No No Yes Yes Yes Yes Yes
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Table 2 (continued)

Molecule Lipinski
#violations

Veber
#violations

ESOL Class GI
absorption

BBB
permeant

Pgp
substrate

CYP1A2
inhibitor

CYP2C19
inhibitor

CYP2C9
inhibitor

CYP2D6
inhibitor

CYP3A4
inhibitor

D43 0 0 Moderately
soluble

High Yes No Yes Yes Yes No No

D44 0 0 Soluble High No No No No No No No
D45 0 0 Soluble High Yes No No Yes Yes No No
D46 0 0 Soluble High No No No No No No No
D47 0 0 Soluble High No No No No No No No
D48 0 0 Soluble High Yes No No No No No No
D49 0 0 Soluble High Yes No Yes Yes Yes Yes Yes
D50 0 0 Soluble High Yes No No No No No No
D51 0 0 Soluble High Yes No No No No No No
D52 0 0 Soluble High Yes No Yes Yes No No No
D53 1 0 Moderately

soluble
High Yes No Yes Yes Yes Yes No

D54 0 0 Moderately
soluble

High Yes No Yes No No Yes No

D55 0 0 Soluble High Yes No No No No Yes No

Table 3
Average geometric properties of the systems calculated during 100 ns MD simulation studies.

Systems RMSD (nm) Rg (nm) Total SASA (nm2) Number of Hydrogen bonds

Protein Ligand Protein Protein-Ligand

HAS 0.448642 ± 0.048833 2.618873 ± 0.022697 264.0154 ± 6.698827 482.4416 ± 11.10697
HSA_A13 0.462448 ± 0.064559 1.457102 ± 0.504222 2.655904 ± 0.026257 271.306 ± 7.533425 470.2488 ± 11.8971 1.082917 ± 0.867247
HSA_C34 0.490956 ± 0.058781 0.609009 ± 0.092277 2.633126 ± 0.024887 267.8342 ± 5.879287 481.6254 ± 11.67786 0.588412 ± 0.717235
HSA_A16 0.589058 ± 0.078123 0.322053 ± 0.045001 2.587976 ± 0.030269 265.9578 ± 8.209247 475.4775 ± 11.42339 2.310689 ± 1.061308
HSA_D43 0.478107 ± 0.0692 0.612155 ± 0.058157 2.618333 ± 0.03179 269.5354 ± 8.744237 475.3816 ± 11.46369 1.641359 ± 1.008091

Fig. 3. The RMSD plot of backbone atoms of the free HSA and HSA-ligand
complexes.

Arun Bahadur Gurung, Mohammad Ajmal Ali, J. Lee et al. Saudi Journal of Biological Sciences 29 (2022) 53–64
where DEbind is the binding energy, TDSsol is the solvation entropy
and TDSconf is the conformational entropy. While entropy was
computed using an empirical method (Hao et al., 2009; Pan et al.,
2008), the enthalpy was derived using the Molecular mechanics
Table 4
Statistics of binding free energy calculation of HSA-ligand complexes (kcal/mol).

Protein-ligand
complexes

ELE1 VDW2 GAS3 PBSOL4 P

HSA_A13 �2.87 ± 1.23 �40.49 ± 1.95 �43.36 ± 2.46 12.10 ± 2.24 �
HSA_C34 �6.76-±3.16 �50.79 ± 2.92 �57.54 ± 3.52 24.72 ± 3.08 �
HSA_A16 �6.45 ± 2.00 �65.66 ± 2.67 �72.12 ± 3.37 25.51 ± 2.48 �
HSA_D43 15.79 ± 5.50 �37.93 ± 2.87 �22.15 ± 6.28 �9.15 ± 5.10 �

1 Electrostatic energy as calculated by the MM force field; 2Van der Waals contribution
based on PB/GB model; 5Final estimated binding free energy calculated from GAS and P

59
Poisson–Boltzmann surface area (MM/PBSA) or molecular mechan-
ics generalized Born surface area (MM/GBSA) method (Hou et al.,
2011).
3. Results

A total of 55 molecules comprising of experimental (N = 16, Set
A1-A16) and in silico COVID-19 drug candidate molecules (N = 26)
which include set B17-B31 (N = 15) and set C32-C42 (N = 11) along
with the control drugs (known binders of HSA) (N = 13, set
D43-D55) were docked into the human serum albumin protein
using the blind docking method (Fig. 1). The molecular docking
results of the compounds are represented in Table 1. On comparing
the binding energy scores with the control data set (�7 to �9.3
kcal/mol), the selected COVID-19 drug candidate molecules were
classified into three different categories- weak, moderate and
strong binding molecules. Four drug candidate molecules viz.,
Chloroquine (A9), b-D-N4-hydroxycytidine (A10), Disulfiram
(A11), and Carmofur (A13) demonstrate weak binding to HSA, with
binding energies ranging from �5 to �6.7 kcal/mol, according to
molecular docking studies. Ivermectin (A1), Hydroxychloroquine
(A2), Arbidol (A3), Ebselen (A4), Remdesivir (A5), Lopinavir (A6),
BTOT5 GBSOL4 GBTOT5 -TS6 4GPB
7 4GGB

7

31.26 ± 2.43 9.61 ± 1.45 �33.75 ± 1.99 14.46 ± 1.65 �16.80 �19.29
32.83 ± 2.69 18.29 ± 2.43 �39.25 ± 2.61 22.73 ± 2.74 �10.10 �16.52
46.60 ± 3.44 16.39 ± 1.86 �55.72 ± 2.94 22.38 ± 2.19 �24.22 �33.34
31.30 ± 3.07 �5.57 ± 5.30 �27.72 ± 2.74 15.76 ± 2.06 �15.54 �11.96

from MM; 3Total gas-phase energy; 4Non-polar and polar contributions to solvation
BSOL/GBSOL; 6Entropy; 7Binding free energy with entropy



Fig. 4. RMSF plot of backbone atoms of HSA-ligand complexes-(A) HSA_A13 (B) HSA_C34 (C) HSA_A16 and (D) HSA_D43 compared to the free HSA. The labelled regions
indicate high fluctuating regions.

Fig. 5. Plot of Radius of gyration versus time for free HSA and HSA-ligand
complexes.

Fig. 6. Plot of total SASA for free HSA and HSA-ligand complexes versus time.
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Emetine (A7), Homoharringtonine (A8), Shikonin (A14), Compound
11a (A15), Zanamivir (B17), Atazanavir (B20), Bedaquiline (B21),
Brequinar (B22), Clofazimine (B24), Gemcitabine (B26), Tolcapone
(B27), Vismodegib (B28), Cobicistat (B29), Darunavir (B31), Bondu-
cellpin D (C34), Vincapsusine (C38), ZINC000254565785 (C41) and
ZINC000726422572 (C42) with binding energies ranging from
�6.9 to �9.5 kcal/mol demonstrated moderate binding to HSA.
The strong HSA binding drug candidates consist of fourteen mole-
cules Tideglusib (A12), Compound 11b (A16), Indinavir (B18),
Saquinavir (B19), Celecoxib (B23), Conivaptan (B25), Ritonavir
(B30), Ergotamine (C32), Dihydroergotamine (C33), Glecaprevir
(C35), Daclatasvir (C36), Paritaprevir (C37), Alloyohimbine (C39)
and Gummadiol (C40) with binding energies ranging from �9.7
to �12.1 kcal/mol. All these molecules bind to different HSA sub-
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domains (IA, IB, IIA, IIB, IIIA, and IIIB) (Table 1) through molecular
forces such as hydrogen bonds and hydrophobic interactions. The
Carmofur (A13) binds to HSA with a binding energy of �6.7 kcal/-
mol and the HSA_A13 complex is stabilized by a hydrogen bond
with Ser480 and hydrophobic interactions through Gly328,
Lys212, Ala213, Leu327, Ala210, Val482, Leu347, Lys351, Leu331,
Ala350, Val216 (Fig. 2A). The Bonducellpin D (C34) binds to HSA
with a binding energy of �7.9 kcal/mol and the HSA_C34 complex
interaction occurs through four hydrogen bonds with Glu153,
Ser192, Gln196 and His288 and hydrophobic interactions through
Lys199, Lys195, Ala291, Phe157, Glu292, Glu188, Asp451 (Fig. 2B).
The compound 11b (A16) binds to HSA with a binding energy of
�10.4 kcal/mol and the HSA_A16 complex is stabilized through
two hydrogen bonds with Trp214 and Asp451 and hydrophobic



Fig. 7. Variations in the number of intramolecular hydrogen bonds with time free
HSA and HSA-ligand complexes (A) intermolecular hydrogen bonds (B) protein-
ligand hydrogen bonds.
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interactions through Lys195, Lys199, Val482, Ala210, Ser480,
Ser202, Leu481, Ser454, Leu457, Leu453, Glu450, Arg485, Val344,
Leu198 (Fig. 2C). The control Indomethacin (D43) binds to HSA
with a binding energy of �8.6 kcal/mol and the HSA_D43 interac-
tion is facilitated through one hydrogen bond with Ser287 and
hydrophobic interactions through Leu260, Ile290, Ala291, Lys199,
Arg222, Val241, Trp214, Arg257, His242, Leu238 and Ala261
(Fig. 2D). The pharmacokinetic properties such as gastrointestinal
absorption, blood-brain barrier permeation, P-glycoprotein sub-
strate, and cytochrome P450 inhibitor which play a significant role
in absorption, distribution, metabolism, excretion, and toxicity
(ADMET) were calculated for each molecule (Table 2).

The free HSA and HSA-ligand-bound complexes (HSA_A13,
HSA_C34, HSA_A16 and HSA_D43) were subjected to 100 ns of
MD simulation to determine the stability of their trajectories.
The geometric properties analysed in the study include RMSD,
RMSF, Rg, SASA and NHB (Table 3). Root mean square deviation
(RMSD) computes the average distance between the backbone
atoms of starting structure (reference structure) with simulated
structures (frame by frame) when superimposed. The RMSD plot
of backbone atoms of the free HSA and HSA-ligand-bound com-
plexes show stable fluctuations that sustained till the end of the
simulation period (Fig. 3). The average RMSD of the backbone
atoms of free HSA, HSA_A13, HSA_C34, HSA_A16 and HSA_D43
complexes were 0.448642 ± 0.048833 nm, 0.462448 ± 0.064559 n
m, 0.490956 ± 0.058781 nm, 0.589058 ± 0.078123 nm and 0.478
107 ± 0.0692 nm respectively (Table 4). A higher RMSD was seen
in HSA-ligand complexes which may be due to structural modula-
tion of the protein upon binding of the ligand molecules. The aver-
age RMSD of the heavy atoms of A13, C34, A16 and D43 were 1.
457102 ± 0.504222 nm, 0.609009 ± 0.092277 nm, 0.322053 ± 0.0
45001 nm and 0.612155 ± 0.058157 nm respectively (Table 4).
The RMSF plot was generated (Fig. 4) which provide further
insights into the structural regions of the protein contributing to
greater fluctuations. Root mean square fluctuation (RMSF) com-
putes fluctuations (standard deviation) of atomic positions of each
amino acid residue in the trajectory. The binding of A13 to HSA
causes a significant increase in the amplitude of fluctuations
around Ser58-Glu60, Arg114-Arg117 and Asp301 (Fig. 4A) and
the region encompassing residues Arg114-Arg117, Lys564 and
Glu565 witnessed enhanced amplitude of fluctuations upon bind-
ing of D43 (Fig. 4D). It is interesting to note that the residues
Asp301 and Glu321 in the free HSA show increased amplitude of
fluctuations compared to the HSA-ligand complexes (Fig. 4). Simi-
larly, binding of A16 to HSA causes an increase in the amplitude of
fluctuations particularly in the region encompassing Pro113
(Fig. 4C). The radius of gyration (Rg) computes the structural com-
pactness of a molecule and the radii of gyration about the x-, y- and
z-axes, as a function of time. From the Rg plot (Fig. 5) it is evident
that free HSA, HSA_A13, HSA_C34, HSA_A16 and HSA_D43 com-
plexes show a stable Rg graph from 10 ns onwards which averaged
at 2.618873 ± 0.022697 nm, 2.655904 ± 0.026257 nm, 2.633126 ±
0.024887 nm, 2.587976 ± 0.030269 nm and 2.618333 ± 0.03179 n
m respectively (Table 3). This indicates that the overall compact-
ness of HSA is altered upon binding of ligand molecules. Fig. 6 rep-
resents the plot of total SASA (hydrophobic + hydrophilic) of the
free HSA and HSA-ligand complexes with time. Solvent-
accessible surface area (SASA) can be explained as an approximate
area of a biomolecular surface that is accessible to solvent mole-
cules as a function of time. The average total SASA value for free
HSA, HSA_A13, HSA_C34, HSA_A16 and HSA_D43 was calculated
to be 264.0154 ± 6.698827 nm2, 271.306 ± 7.533425 nm2, 267.83
42 ± 5.879287 nm2, 265.9578 ± 8.209247 nm2 and 269.5354 ± 8.
744237 nm2 respectively (Table 3). The increase in total SASA for
HSA-ligand complexes indicates that the folding of the protein is
altered upon binding of the ligand molecules. Fig. 7 A and B repre-
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sent the plot of the number of hydrogen bonds within the protein
(intramolecular hydrogen bonds) and HSA-ligand complexes
respectively. The number of intramolecular protein hydrogen
bonds for free HSA, HSA_A13, HSA_C34, HSA_A16 and HSA_D43
were 482.4416 ± 11.10697, 470.2488 ± 11.8971, 481.6254 ± 11.6
7786, 475.4775 ± 11.42339 and 475.3816 ± 11.46369 respectively
(Table 3). A decrease in the number of intramolecular hydrogen
bond formations may be attributed to the less folded state of the
protein upon ligand binding. The number of hydrogen bonds
between HSA and ligand in HSA_A13, HSA_C34, HSA_A16 and
HSA_D43 were 1.082917 ± 0.867247, 0.588412 ± 0.717235, 2.310
689 ± 1.061308 and 1.641359 ± 1.008091 respectively (Table 3).

Molecular mechanics Poisson–Boltzmann surface area (MM/
PBSA) and molecular mechanics generalized Born surface area
(MM/GBSA) binding free energies of A13 (DPB = �16.80 kcal/mol,
DGB = �19.29 kcal/mol), C34 (DPB = �10.10 kcal/mol, DGB = �1
6.52 kcal/mol), A16 (DPB = �24.22 kcal/mol, DGB = �33.34 kcal/
mol) and the control (D43) (DPB = �15.54 kcal/mol, DGB = �11.
96 kcal/mol) were tabulated in Table 4. In each of the HSA-ligand
complexes, van der Waals energy is the dominant force of molec-
ular interactions. The top ten residues which contribute signifi-
cantly towards the binding interaction between A13 and HSA
include Arg209, Leu347, Ala213, Leu327, Ala210, Lys351, Gly328,
Leu331, Ala350 and Val482 (Fig. 8A). In case of HSA_C34 complex,
residues such as Gln196, Lys195, Trp214, Ser192, Arg257, Tyr150,
Leu238, Glu292, Lys199 and Phe149 has higher contributions
(Fig. 8B). The major residues contributing towards the binding
interaction between A16 and HSA include Glu450, Trp214,



Fig. 8. Heatmap showing the top ten residues contributing significantly to the total binding free energy of HSA-ligand complexes-(A) HSA_A13 (B) HSA_C34 (C) HSA_A16 and
(D) HSA_D43.
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Ser454, Leu481, Lys199, Val344, Leu198, Lys195, Arg485 and
Leu457 (Fig. 8C). In case of HSA_D43 complex, residues such as
Arg257, Leu238, Leu260, Ser287, Ile290, Leu219, Ala291, Arg222,
Ala261 and Ile264 has higher contribution to the total binding
energy (Fig. 8D).
4. Discussion

There is a high paucity of new antiviral drugs against the
COVID-19 pandemic which is caused by a novel betacoronavirus
known as SARS-CoV-2. Numerous clinical trials on possible antivi-
ral treatments are still underway and the majority of these drug
candidate molecules are the repurposed drugs. The drug molecules
in the body are bound to the drug carrier protein know as human
serum albumin which influences their activity and half-life. In the
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process of developing novel therapies, the binding affinity of the
drugs towards HSA is an important parameter of study given the
large quantity of HSA in plasma. In addition, the therapeutic effi-
cacy of drugs is altered upon binding to HSA (Tesseromatis and
Alevizou, 2008). Human serum albumin (HSA) is a non-
glycosylated polypeptide with a molecular weight of 66,500 Da
(Yamasaki et al., 2013). The polypeptide chain forms a heart-
shaped structure with a dimension of approximately
80 � 80 � 30 Å and (Sugio et al., 1999). The presence of three
domains, namely domains I (residues 1–195), II (196–383), and
III (384–585) are structural characteristics of HSA (He and Carter,
1992; Yang et al., 2014). In our studies, we have characterized
the binding energy and putative binding sites of selected anti-
COVID-19 drug candidate molecules to HSA. Comparing the bind-
ing energies of the control drugs to HSA, we have classified the
strength of their binding into weak, moderate, and strong. The
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weak binding molecules include four molecules such as Chloro-
quine (A9), b-D-N4-hydroxycytidine (A10), Disulfiram (A11), and
Carmofur (A13). Molecules such as Ivermectin (A1), Hydroxy-
chloroquine (A2), Arbidol (A3), Ebselen (A4), Remdesivir (A5), Lopi-
navir (A6), Emetine (A7), Homoharringtonine (A8), Shikonin (A14),
Compound 11a (A15), Zanamivir (B17), Atazanavir (B20), Bedaqui-
line (B21), Brequinar (B22), Clofazimine (B24), Gemcitabine (B26),
Tolcapone (B27), Vismodegib (B28), Cobicistat (B29), Darunavir
(B31), Bonducellpin D (C34), Vincapsusine (C38),
ZINC000254565785 (C41) and ZINC000726422572 (C42) exhibited
moderate binding to HSA. The molecules strongly binding to HSA
comprises Tideglusib (A12), Compound 11b (A16), Indinavir
(B18), Saquinavir (B19), Celecoxib (B23), Conivaptan (B25), Riton-
avir (B30), Ergotamine (C32), Dihydroergotamine (C33), Glecapre-
vir (C35), Daclatasvir (C36), Paritaprevir (C37), Alloyohimbine
(C39) and Gummadiol (C40). These molecules bind to different
domains of HSA through both hydrogen bonds as well as
hydrophobic interactions. We have selected one drug molecule
from each category-A13 (weak binding), C34 (moderate binding),
A16 (strong binding), and a control (D43) for molecular dynamics
simulation studies. The dynamic structural changes in the HSA
upon binding of these molecules resulted in variations in the geo-
metric properties such as RMSD, RMSF, Rg, total SASA, and the
number of hydrogen bonds. Molecular mechanics Poisson–Boltz-
mann surface area (MM/PBSA) and molecular mechanics general-
ized Born surface area (MM/GBSA) binding energies of the
molecules exhibited negative DG values indicating the sponta-
neous binding interaction of these molecules with HSA. Due to
the computational limits in our present studies, the molecular
dynamics simulations of only a few selected molecules were per-
formed. It is worthwhile to investigate the number of binding sites,
thermodynamic parameters, and dissociation constants using
experimental techniques such as fluorescence quenching, isother-
mal titration calorimetry (ITCs) and surface plasmon resonance
(SPR) which will provide further insights into the binding of
COVID-19 drug candidate molecules to HSA.
5. Conclusion

Human serum albumin (HSA) is an important drug carrier pro-
tein that modulates the activity and half-life of the majority of drug
molecules. Using molecular docking and dynamics simulation
techniques, we were able to characterize the binding sites of the
selected experimental and in silico COVID-19 drug candidates.
Our study unravels that these drug molecules bind to different
domains of HSA using intermolecular forces such as hydrogen
bonds and hydrophobic interactions. The drug molecules also show
different degrees of binding strength to HSA and the HSA-drug
complexes were also stable throughout the molecular dynamics
simulation time. Various experimental techniques such as fluores-
cence quenching, isothermal titration calorimetry (ITC) and surface
plasmon resonance (SPR) will shed further light on the thermody-
namic binding properties of COVID-19 drugs to HSA.
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