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Abstract: Human apurinic/apyrimidinic (AP) endonuclease APE1 hydrolyzes phosphodiester bonds
on the 5′ side of an AP-site, and some damaged nucleotides such as 1,N6-ethenoadenosine (εA),
α-adenosine (αA), and 5,6-dihydrouridine (DHU). To investigate the mechanism behind the broad
substrate specificity of APE1, we analyzed pre-steady-state kinetics of conformational changes in DNA
and the enzyme during DNA binding and damage recognition. Molecular dynamics simulations
of APE1 complexes with one of damaged DNA duplexes containing εA, αA, DHU, or an F-site
(a stable analog of an AP-site) revealed the involvement of residues Asn229, Thr233, and Glu236
in the mechanism of DNA lesion recognition. The results suggested that processing of an AP-site
proceeds faster in comparison with nucleotide incision repair substrates because eversion of a small
abasic site and its insertion into the active site do not include any unfavorable interactions, whereas
the insertion of any target nucleotide containing a damaged base into the APE1 active site is sterically
hindered. Destabilization of the α-helix containing Thr233 and Glu236 via a loss of the interaction
between these residues increased the plasticity of the damaged-nucleotide binding pocket and the
ability to accommodate structurally different damaged nucleotides. Nonetheless, the optimal location
of εA or αA in the binding pocket does not correspond to the optimal conformation of catalytic amino
acid residues, thereby significantly decreasing the cleavage efficacy for these substrates.

Keywords: base excision repair; AP endonuclease; conformational dynamics; active site plasticity;
apurinic/apyrimidinic site; 5,6-dihydrouridine

1. Introduction

Apurinic/apyrimidinic sites (AP-sites) are regarded as common lesions that occur in DNA
spontaneously or owing to the hydrolysis of N-glycosidic linkages by DNA glycosylases [1,2]. It has
been estimated that >10,000 AP-sites form in every mammalian cell every day and have both mutagenic
and cytotoxic effects [3–5]. The major enzyme of base excision repair (BER), human APE1 (AP
endonuclease), initiates the process of removal of AP-sites from the genome [6,7]. It is thought that the
key function of this enzyme is phosphodiester bond hydrolysis on the 5′ side of an AP-site in DNA,
thereby causing the cleavage of the deoxyribose-phosphate backbone and forming termini carrying a
2′-deoxyribose-5′-phosphate and 3′-hydroxyl group [8]. On the other hand, regarding substrates, it has
been shown that this enzyme can recognize not only various AP-sites but also some types of damaged
bases, for example, oxidatively damaged pyrimidines [9], bulky photoproducts [10], benzene-derived
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DNA adducts [11], etheno-derivatives of DNA bases [12,13], α-anomers of 2′-deoxynucleosides [14],
and 2′-deoxyuridine [15]. In addition, the APE1 enzyme has 3′-phosphodiesterase, 3′-5′-exonuclease,
and 3′-phosphatase activities [16,17].

X-ray crystallography of human APE1 when free [18–20] or in various complexes with DNA [21–24]
has revealed that APE1 induces DNA bending and eversion of an AP-site from the double helix into
the enzyme’s active site. The structural findings suggest that the rigid core of the APE1 protein causes
conformational distortions of DNA because of the formation of specific contacts that are needed for a
catalytically competent state. Amino acid residues Arg73, Ala74, and Lys78 come into contact with three
successive DNA phosphates in the opposite strand, 5′ to the AP-site. Met270 is incorporated into the
DNA minor groove, thereby displacing the nucleobase opposite the AP-site. Gly127 and Tyr128 broaden
and span the DNA minor groove. Amino acid residue Arg177 is inserted through the major groove
of DNA and enters into a hydrogen bond with the AP-site 3′-phosphate. The set of DNA–enzyme
contacts makes the extrahelix conformation of the abasic site stable, coordinates the active-site scissile
5′-phosphate group, and results in effective enzymatic hydrolysis of the phosphodiester linkage
between nucleotides. In spite of good characterization of crystal structures of human APE1 in complex
with a DNA substrate containing a stable analog of a natural AP-site devoid of the OH group on the
C1′ atom of ribose (i.e., an F-site) or a cleaved product (DNA), currently, there are no documented
structures of an APE1 complex with substrate DNA carrying a lesion (damaged base).

In our previous study [25], an analysis of conformational dynamics during an interaction of this
enzyme with DNA containing 1,N6-ethenoadenosine (εA), α-adenosine (αA), 5,6-dihydrouridine
(DHU), or an F-site revealed that the DNA distortions induced by enzyme binding and initial-complex
formation depend on the nature of the damaged nucleotide. It has been suggested that the key factor
responsible for the substrate specificity of APE1 is the ability of a damaged nucleotide to get everted
from a double helix and to get inserted into the damaged-nucleotide binding pocket. Nevertheless,
it should be mentioned that in addition to the eversion of a target nucleotide from the substrate
structure, its insertion into the active site should also be taken into account in such studies. Indeed, on
the basis of literature data, we can compare APE1 activities on various damaged DNA duplexes: the
recognition and cleavage of an F-site in a complementary duplex proceeds during a 1 s period [26–28],
whereas the duration of recognition of such damaged nucleotides as εA, αA, or DHU is much longer
and takes up to 1000 s [25,29,30]. Moreover, native nucleotides are processed in the 3′-5′ exonuclease
reaction within 100–1000 s [31], but endoribonuclease cleavage of native ribonucleotides takes place
much more slowly, up to hours [32]. Overall, it could be suggested that during the eversion of a small
abasic site and its insertion into the active site of the enzyme, the deoxyribose residue does not engage
in any unfavorable interactions. On the other hand, insertion of any kind of target nucleotide bearing a
native or damaged base into the APE1 active site is far slower than abasic-nucleotide insertion owing to
a steric hindrance. Consequently, the main objective of this study was to clarify the major steps in the
mechanism underlying DNA–protein interaction that enable specific recognition of structurally varied
damaged nucleotides αA, εA, or DHU as compared to an F-site. We analyzed the pre-steady-state
kinetics of conformational alterations of APE1 and certain DNA substrates in the course of DNA
binding. Changes in fluorescence intensity of tryptophan residues were recorded to characterize
conformational transitions in the protein molecule. Fluorescently labeled DNA duplexes containing a
damaged nucleotide and a FRET pair of dyes made it possible to detect conformational changes in
DNA that were induced by the enzyme. Molecular dynamics (MD) simulations of enzyme–substrate
complexes revealed that destabilization of the α-helix containing Thr233 and Glu236 via a loss of the
interaction between these residues increases the plasticity of the damaged-nucleotide binding pocket
and the ability to accommodate structurally different damaged nucleotides. Moreover, the obtained
data allow us to conclude that the efficacy of cleavage of different substrates is related to the coherence
of the optimal location of a damaged base in the enzyme’s binding pocket and optimal distances
between catalytic amino acid residues and the scissile phosphate group.
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2. Results and Discussion

2.1. Relative Cleavage Activity of APE1

PAGE analysis of product accumulation in the course of the interaction of APE1 with every
X-substrate (X = αA, DHU, F-site, or εA as damage) was performed first. Direct registration of product
formation helped to rank the efficacy of DNA cleavage as follows: F-site > DHU >> αA > εA, in line
with other studies [25,30,33].

2.2. Effects of Mg2+ Ions on DNA Binding and Catalysis

The DHU-substrate containing the smallest damaged pyrimidine base is cleaved with greater
efficiency than αA and εA; therefore, this substrate was chosen for further detailed analysis of
the substrate-binding process. It should be mentioned that the activity of APE1 depends on the
concentration of Mg2+ [14,34]. Typically, the AP-site cleavage activity is tested in the presence
of ≥5 mM Mg2+ [14,35–38], but the cleavage of DNA bearing a damaged base is tested at a low
concentration of Mg2+, within the 0.01–0.5 mM range [12,14,35,36,39]. Consequently, to verify the
efficiency of APE1 binding to the DHU-containing DNA duplex at various Mg2+ levels, the kinetics of
substrate–enzyme complex formation and of the catalysis were investigated by the stopped-flow method
(Figure 1a). Without Mg2+ ions, only a decreased phase of Trp fluorescence intensity was recorded,
reflecting the formation of an enzyme–substrate complex. With an increase in the concentration of
Mg2+, this process accelerated, and the growth phase appeared at later reaction time points, indicating
the progression of a catalytic reaction and subsequent dissociation of the enzyme–product complex.
Indeed, the onset of the phase of the increase in intensity at late time points is consistent with the onset
of the product accumulation revealed by PAGE (Figure 1b).
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Figure 1. The influence of Mg2+ ions on the APE1 interaction with the DHU-substrate. (a) Stopped-flow
kinetic traces of Trp fluorescence. The first syringe contained 1.0 µM APE1 that was incubated with
different concentrations of MgCl2. The second syringe held 1.0 µM DHU-substrate and an equivalent
amount of MgCl2. Final MgCl2 concentrations are indicated beside the kinetic trace. (b) Reaction
product accumulation as evidenced by PAGE.

2.3. Analysis of DNA Conformational Changes in the Course of Interaction with APE1

To analyze conformational changes in DNA during the interaction with APE1, we used
FRET-X-substrates, where X = C, F-site, or DHU (Figure 2). In the FRET experiments, to prevent the
possible effects associated with unsaturation of the active site of the enzyme by Mg2+, we employed a
high MgCl2 concentration (5.0 mM) in reaction buffer. These conditions clearly illustrated the difference
between the DNA-binding process alone (absence of Mg2+ in the active site) and DNA binding with a
subsequent catalytic step (the active site saturated by the Mg2+ ion). Duplex FRET-C served as a control
for conformational changes occurring during the formation of a nonspecific complex. As presented
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in Figure 2, the interaction of APE1 with the FRET-C duplex (blue trace) leads to a slight increase
in the FRET signal within the period up to time point 0.1 s. When a catalytically inactive form of
apo-APE1 interacted with the FRET-F-substrate in the absence of Mg2+ ions (black trace) and catalysis
was blocked, only the phase of the FRET signal decrease was recorded. The decrease in the FRET
signal indicates that FAM and the BHQ1 quencher became spatially close to each other, and this
event may be associated with bending of the DNA backbone. Otherwise, in the presence of Mg2+

ions (red trace), in the region of the kinetic curves up to 0.02 s, a rapid decrease in the FRET signal
takes place, reflecting the formation of the enzyme–substrate complex, followed by a growth phase
between time points 0.05 and 5 s. The increase in the FRET signal is associated with an increase in the
distance between FAM and the BHQ1 quencher, and this event is possible after the catalytic step and
dissociation of the enzyme–product complex. The visually obvious decrease in FRET signal amplitude
for FRET-F-substrate in the presence of Mg2+ ions is related to the overlap of the complex formation
stage with catalytic stage and dissociation of the enzyme–product complex, thereby leading to an
increase in the FRET signal.
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Figure 2. Changes in the FRET signal during the interaction of APE1 with each FRET-X-substrate in the
absence “−” or presence “+” of 5.0 mM Mg2+. FRET traces of the interaction of APE1 with the FRET-F-
and FRET-DHU-substrates in the absence of Mg2+ have been reported earlier [25].

As depicted in Figure 2, the interaction of APE1 with the FRET-DHU-substrate in the absence of
Mg2+ ions induces a decrease in the FRET signal up to time point 1 s, thus reflecting the formation
of the complex. These data revealed that the bending of DNA containing DHU is ~10-fold slower
in comparison with an abasic site (1 s and 0.1 s, respectively). By contrast, in the presence of Mg2+

ions, the growth phase characterizing the catalytic stage was not detectable, as in the case of the F-site,
indicating that the duplex bending alone is not a sufficient process for the formation of the catalytically
competent state of the active site.

2.4. MD Simulations

Structures of the complex of APE1 with F-site-containing DNA and a Mg2+ ion (retrieved from
X-ray structures 1DE8 and 4IEM) were equilibrated within 10 ns to stabilize total potential energy
of the complex. As shown in Figure 3a, the equilibrated structures of the complex of APE1 with
F-site-containing DNA and a Mg2+ ion have very similar positions of the F-site located in the active
site; the same is true for the Mg2+ ion. Equilibrium 100 ns MD trajectories were generated for both
APE1–DNA complexes and did not reveal significant differences in the final structures.
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Figure 3. Molecular dynamics (MD) structure and trajectories of the APE1 complex with DNA
containing the F-site. (a) Comparison of the 1DE8 X-ray structure (red) with equilibrated structures
of the complex of APE1 with F-site-containing DNA and a Mg2+ ion derived from 1DE8 (blue) or
4IEM (green). The F-site and Mg2+ ion are highlighted in the same color as proteins. (b) The structure
of APE1′s binding pocket adapted to an F-site. The F-site and key amino acid residues of the
damaged-nucleotide–binding pocket are shown. (c) Changes in distances between catalytic amino acid
residues and the scissile phosphate group in the dynamic trajectories for the complexes of APE1 with
DNA containing the F-site.

Specific distances between atoms of the F-site and active-site amino acid residues did not
significantly change throughout the MD trajectory (Figure 3b). The phosphate group of the F-site
forms stable H-bonds with Asn212 and Tyr171 and engages in a strong interaction with the Mg2+

ion (Figure 3c). The weak unstable contact of the bridging oxygen atom of the scissile phosphate
group with His309 features the average distance of 3.5 Å during the final 50 ns of the MD trajectory.
The distance between the carboxyl group of the catalytic Asp210 residue and O5′ of the F-site was also
very stable. The distances observed in the complex of the enzyme with F-site-containing DNA were
used as reference values of the catalytically competent state of the active site for comparisons with
other substrates.

On the basis of the equilibrated structure of the complex of APE1 with F-site-containing DNA,
initial structures of the APE1 complex with DNA containing DHU, αA, or εA were obtained. They
were equilibrated also within 10 ns to stabilize the complex’s total potential energy. Next, equilibrium
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MD trajectories (100–180 ns) were obtained at 300 K (room temperature) for every complex of APE1
with DNA.

The productive MD simulation of the structure of the APE1 complex with DHU after energy
optimization and simulated annealing revealed two stable states of the damaged nucleotide in the
active site (Figure 4a). In the initial part of the MD trajectory (Figure 4b), the Asn229 residue managed
to form an H-bond with O2 of DHU, thus leading to the stabilization of this state. Then, Asn229 came
into contact with Asn226 and unblocked the DHU base. Moreover, analysis of the MD trajectories
indicated that the loss of the direct Asn229–DHU contact is accompanied by the loss of the H-bond
between residues Thr233 and Glu236, thus resulting in significant loop reorganization (Figure 4a),
thereby allowing the DHU base to acquire mobility, shifting the whole nucleotide deeper into the
active site of the enzyme. Interestingly, no steric hindrance is caused by the amino acid backbone of
the loop residues, but rather the loop reorganization leads to an Asn229 shift together with the amino
acid backbone. This phenomenon is associated with the rotation of the Asn229 side chain and the loss
of a direct contact with O2 of the DHU base. This relocation of DHU leads to a decrease in the average
distance between His309 and the scissile phosphate group from 4.5 to 3.9 Å, which enables the catalytic
state of the active site.
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Figure 4. MD structures and trajectories of the APE1 complex with DNA containing DHU.
(a) The structure of APE1′s binding pocket adapted to DHU blocked by Asn229 (reddish) or transformed
to the catalytic state (greenish). DHU, Asn229, Thr233, and Glu236 are highlighted in brown (blocked
state) or dark cyan (catalytic state). Key amino acid residues of the damaged-base–binding pocket are
shown. (b) Changes in distances between catalytic amino acid residues and the scissile phosphate
group in the dynamic trajectories of the complexes of APE1 with DNA containing DHU.

It is noteworthy that, in the case of αA (Figure 5), the decrease in the distance between His309
and the scissile phosphate group was also accompanied with a loss of the interaction between Thr233
and Glu236 and destabilization of the loop. Nevertheless, the subsequent turn and shift of the αA
base during MD simulation cause an increase in the distance from another catalytic residue, Asn212,
from 3.4 to 4.4 Å, supporting the disruption of the catalytic conformation. These data indicate
that the optimal location of the αA base in the enzyme’s binding pocket does not correspond to an
optimal conformation of catalytic amino acid residue Asn212, thereby correlating with experimental
data on reduced efficiency of cleavage of the αA-substrate in comparison with the DHU-substrate.
These findings also suggest that conformational instability of the loop region may be important for the
recognition of a damaged nucleotide.

The MD simulation of the complex of APE1 with DNA containing εA (Figure 6) also uncovered
the loss of the direct Thr233–Glu236 interaction in the initial part of the trajectory. Moreover, distances
between residues Asn212 and His309 and the phosphate group are growing during the initial 30–50 ns
of the simulation and stabilize at 4.2 and 5.9 Å, respectively, which supports the full disruption of
catalytic-network contacts.
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Figure 5. MD structures and trajectories of the APE1 complex with DNA containingαA. (a) The structure
of APE1′s binding pocket adapted to the initial state of αA (reddish) or in the disrupted final state
(greenish). αA, Asn229, Thr233, and Glu236 are highlighted in brown (initial state) or dark cyan
(disrupted state). Key amino acid residues of the damaged-base–binding pocket are shown. (b) Changes
in distances between catalytic amino acid residues and the scissile phosphate group in the dynamic
trajectories for the complexes of APE1 with DNA containing αA.
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Figure 6. MD structures and trajectories of the APE1 complex with DNA containing εA. (a) The structure
of APE1′s binding pocket adapted to the initial state of εA (reddish) or in the disrupted final state
(greenish). εA, Asn229, Thr233, and Glu236 are highlighted in dark cyan (initial state) or brown
(disrupted state). Key amino acid residues of the damaged-base–binding pocket are presented.
(b) Changes in distances between catalytic amino acid residues and the scissile phosphate group in the
dynamic trajectories for the complexes of APE1 with DNA containing εA.

A comparison of all the structures revealed that the Mg2+ ion engages in a stable interaction
with a nonbridged oxygen atom of the scissile phosphate group. Indeed, superposition of the MD
structures at minimal total potential energy (Figure 7a) showed that the Mg2+ ion is moved to the active
site together with the phosphate group of the damaged nucleotide. Therefore, the experimentally
determined dependence of the enzymatic activity on the concentration of Mg2+ most likely is related
to saturation of the active site by Mg2+, which is strongly needed to coordinate the scissile phosphate
group. The overlap of all structures indicated that both functionally important loops containing
Arg177 and Met270, which intercalate into DNA to stabilize the extrahelical state of the damaged
nucleotide, are very stable in the complexes with all the tested damaged nucleotides. Otherwise,
the loop containing Asn229/Thr233/Glu236 underwent significant damage-dependent reorganization,
indicating the important role of this loop in the recognition of the damaged nucleotide (Figure 7a).
Indeed, the close-up view illustrates the plasticity of this loop depending on the size of the damaged
nucleotide (Figure 7b).
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Figure 7. (a) Superposition of the MD structures of the APE1 complex with DNA containing an F-site
(red), DHU (dark green), εA (reddish), or αA (green). Damaged nucleotides inserted into APE1′s
binding pocket. Stable positions of intercalating loops designated as Arg177 and Met270 are shown.
(b) Close-up view of the damage recognition loop adapted to different damaged nucleotides.

Taken together, the obtained data mean that the movement of the recognition loop is associated
with optimal accommodation of the damaged base in the pocket of the active site. For instance, in the
case of DHU, two stable conformational states exist, in which DHU is blocked by Asn229 or fully
inserted into the active site. The hydrolysis of the phosphodiester bond is possible only in the second
state due to the formation of optimal distances to catalytic residues Asn212 and His309. Experimental
data revealed that DHU-substrate cleavage (Figure 1b) reaches a plateau at ~30%, indicating the
saturation of the second catalytic state at this level and suggesting that the transition between these
states is associated with energy costs and proceeds slowly. On the other hand, the cleavage of αA- and
εA-substrates is much less efficient because the optimal position of these bases in the binding pocked
does not correspond to optimal distances between the scissile phosphate group and catalytic amino
acid residues. Indeed, in the case of the αA base, Asn212 moves away and cannot come into contact
with the phosphate group, but in the case of the biggest base (εA), the contacts with both Asn212 and
His309 are lost.

Of note, alignment of amino acid sequences of AP endonucleases from Danio rerio, Xenopus
laevis, and Drosophila melanogaster indicates that Thr233 and Glu236 are fully conserved among these
species, whereas Asn229 is substituted by Thr only in the AP endonuclease from Xenopus laevis.
Therefore, our data on active-site plasticity seem to reflect a common feature of AP endonucleases
of the APE1 structural family. Moreover, because of the X-ray data analysis, it is known that AP
endonuclease APE1 has a rigid core that slightly differs between the free enzyme and the enzyme
complexed with an abasic DNA. Because there are no structural data on the complexes of APE1 with
other types of damaged nucleotides, we assumed that this rigidity is a common feature of APE1
proteins. The results obtained in the present study indicate that during recognition of various damaged
nucleotides, the DNA-binding site of APE1 must undergo conformational changes to accommodate
the nucleotides containing the damaged base. Therefore, these findings constitute the evidence of high
plasticity of the damaged-nucleotide–binding pocket of APE1.

3. Materials and Methods

3.1. Protein Expression and Purification

Wild-type APE1 was expressed and purified as described previously [40,41]. The protein
concentration was measured by the Bradford method [42]; the stock solution was stored at −20 ◦C.
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3.2. Oligodeoxynucleotides (ODNs)

Sequences of the ODNs employed in this study are given in Table 1. These ODNs were prepared
by widely accepted phosphoramidite methods by means of an ASM-700 synthesizer (BIOSSET Ltd.,
Novosibirsk, Russia) from phosphoramidites that were bought from Glen Research (Sterling, VA,
USA). α-2′-Deoxyadenosine phosphoramidite was purchased from ChemGenes Corp. (Wilmington,
MA, USA). The synthesized ODNs were separated from solid support by means of ammonium
hydroxide in keeping with the manufacturer’s instructions. The deprotected ODNs were purified via
high-performance liquid chromatography. Concentrations of the ODNs were computed from A260.
ODN duplexes were generated via annealing of modified and complementary strands in a molar ratio
of 1:1.

Table 1. DNA sequences and structures of modified nucleotides *.

Shorthand Sequences of DNA Duplexes

X-substrate
X = F-site, DHU, εA, or αA

5′-TCTCTCXCCTTCC-3′

3′-AGAGAGGGGAAGG-5′

FRET-X-substrate
Y = F-site, DHU, εA, αA, or C

5′-FAM-GCTCAXGTACAGAGCTG-3′

3′-CGAGTGCATGTCTCGAC-BHQ1-5′

* FAM is 6-carboxyfluorescein, BHQ1 is black hole quencher.

3.3. PAGE (Polyacrylamide Gel Electrophoresis) and Enzymatic Analyses

The endonuclease assay was carried out in reaction buffer (50 mM Tris-HCl pH 7.5, 50 mM KCl,
1.0 mM DDT, 1.0 mM EDTA, 7% [v/v] of glycerol, and various levels of MgCl2 within 0.0–1.0 mM).
The reaction mixture contained 1.0 µM DNA substrate and 1.0 µM APE1. To increase enzyme stability
during the experimental procedures, all the experiments were conducted at 25 ◦C. The reactions were
allowed to proceed at 25 ◦C and were stopped by a gel-loading dye containing 50 mM EDTA and 7 M
urea and were next loaded onto a 20% polyacrylamide gel (w/v) including 7 M urea. Formation of the
product and disappearance of the substrate were investigated by autoradiography and quantitated
via scanning densitometry using Gel-Pro Analyzer software v.4.0 (Media Cybernetics, Rockville,
MD, USA).

3.4. Stopped-Flow Measurements with Fluorescence Detection

These measurements were taken mostly as described before [43,44]. In short, we utilized a
SX.18MV stopped-flow spectrometer (Applied Photophysics Ltd., Leatherhead, UK) equipped with an
optical cell with 2 mm path length and a 150 W Xe arc lamp. The dead time of this equipment is known:
1.4 ms. Trp fluorescence was excited at 290 nm (λex) and monitored at >320 nm (λem) as transmitted
by the WG-320 filter (Schott, Mainz, Germany). 6-Carboxyfluorescein (FAM) residue fluorescence
was excited at 494 nm and detected at >515 nm, as transmitted by the OG-515 filter (Schott, Mainz,
Germany). The experiments on Trp fluorescence detection were carried out at 25 ◦C with catalytically
active APE1 in a buffer composed of 50 mM Tris-HCl pH 7.5, 1.0 mM DTT, 50 mM KCl, 7% of glycerol
(v/v), and various levels of MgCl2 within 0.0–1.0 mM. Detection of the process of DNA binding using
a FRET signal was performed at 25 ◦C with Mg2+-free catalytically inactive apo-APE1 in a buffer
composed of 50 mM Tris-HCl pH 7.5, 1.0 mM EDTA, 1.0 mM DTT, 50 mM KCl, and 7% of glycerol
(v/v). In all the experiments, when the concentration of Mg2+ was declared to be zero, first of all,
the catalytic activity of APE1 was abrogated by the treatment with EDTA. For this purpose, the solution
of APE1 was incubated with 1.0 mM EDTA for 5 min to chelate any divalent metal ions and to obtain
catalytically inactive apo-APE1. The reaction solution was supplemented with a certain concentration
of MgCl2 when required. Of note, our previous data [34] have revealed that supplementation of the
solution of apo-APE1 and 1.0 mM EDTA by MgCl2 (even at 0.05 mM) restores catalytic activity to some
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extent with subsequent saturation of the enzyme by the Mg2+ ion with the increasing concentration of
MgCl2. Therefore, in the present report, we used the same design of experiments.

APE1 was added into one of the syringes of the instrument and was mixed rapidly in a reaction
chamber with a DNA substrate that came from the other syringe. Concentrations of APE1 and the
DNA substrate were 1.0 µM in all the assays. The reported concentrations of reactants correspond to
the concentrations in the reaction chamber upon mixing. As a rule, each trace depicted in the figures is
the mean of ≥4 fluorescent traces acquired in individual experiments.

Protein conformational alterations were examined via changes in fluorescence intensity of Trp.
FRET-X-substrates modified at 5′ ends with the dye–quencher couple FAM/BHQ1 (Table 1) were
analyzed by Förster resonance energy transfer (FRET) measurements. The latter detected changes in
the distance between the quencher and dye during DNA helix distortion in the course of APE1–DNA
complex formation. In figures, for clarity, the curves were moved apart by hand. This approach does
not influence the results of fitting: background fluorescence is fitted for each curve individually.

3.5. MD Simulations

Molecular modeling of the complex of APE1 with each DNA duplex containing DHU, εA, αA,
or an F-site (Table 1) involved the following stages: (i) building up the initial atomic structure of the
complex, (ii) atomic-structure refinement for the complex through simulated annealing and energy
optimization, (iii) productive MD modeling of every complex and collection of a representative series
of instant structures throughout an equilibrated MD trajectory.

A comparison of several X-ray crystal structures was performed to choose an initial structure for
the simulations of APE1 with damaged DNA. We analyzed the 2.95 Å resolution structure (Protein Data
Bank [PDB] ID 1DE8) of the APE1 complex with DNA containing an F-site without a Mg2+ ion [21],
the 1.63 Å resolution structure (PDB ID 5DFI) of the APE1 complex with DNA containing 2′-O-methyl
phosphorothioate backbone modification 5′ to an F-site without a Mg2+ ion [24], and 2.39 Å resolution
structure (PDB ID 4IEM) of the APE1 complex with product DNA with a Mg2+ ion [23]. A comparison
of the 1DE8 and 5DFI structures shows a close common overlap of protein and DNA molecules.
Nevertheless, in the 5DFI structure, the phosphorothioate backbone modification has two isomers,
Sp and Rp. Even though both isomers are everted into the active site, the Rp isomer is shifted away
from the active site by 2.1 Å. This observation indicates that the modification in question has some
influence on the structure of DNA bound to the active site of the enzyme; therefore, this structure
was not appropriate for MD simulation. Then, for the 1DE8 structure, the Mg2+ ion was added,
and for the 4IEM structure, product DNA with a hydrolyzed phosphodiester bond was replaced by
an F-site. Both modified structures were refined by energy optimization and simulated annealing.
The final structures of the complex of APE1 with F-site-containing DNA and a Mg2+ ion were very
similar and were chosen for productive modeling of the MD of APE1 complexes with each tested
damaged nucleotide.

The simulations were performed by means of GROMACS 2019.5 [45] and the AMBER ff99SB-ILDN
force field [46]. Hydrogen atoms were placed onto the structure using pdb2gmx, and the solvent
consisted of TIP3P [47] water in periodic dodecahedron boxes containing a protein–DNA complex
and at least a 1 nm layer of the solvent. Solvent molecules were replaced with counterions until the
system was neutralized. Simulations were performed under 300 K with protonated histidine residues.
The Verlet cutoff approach [48] was employed with a cutoff of 1.2 nm for both van der Waals and
electrostatic interactions, whereas LINCS was utilized to constrain bonds [49]. Electrostatic interactions
were computed in PME [50]. The solvated systems were minimized next (through steepest-descent
minimization). After that, the systems were equilibrated over two stages with positional restraints on
DNA and protein atoms. First of all, the systems were equilibrated for 400 ps in the NVT ensemble
with subsequent equilibration for additional 400 ps in the NPT ensemble. At last, production dynamics
were realized with a 2 fs time step in the NPT ensemble, and every 10 ps, the coordinates were saved.
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All simulations were conducted for at least 100 ns. To prevent DNA despiralization at the ends,
16 kJ/(mol·nm2) restraints on the terminal nucleotide atoms were applied [51].
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