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Abstract

The accessory genes of prokaryote and eukaryote pangenomes accumulate by horizontal gene transfer, differential gene loss, 
and the effects of selection and drift. We have developed Coinfinder, a software program that assesses whether sets of homolo-
gous genes (gene families) in pangenomes associate or dissociate with each other (i.e. are ‘coincident’) more often than would 
be expected by chance. Coinfinder employs a user-supplied phylogenetic tree in order to assess the lineage-dependence (i.e. 
the phylogenetic distribution) of each accessory gene, allowing Coinfinder to focus on coincident gene pairs whose joint pres-
ence is not simply because they happened to appear in the same clade, but rather that they tend to appear together more often 
than expected across the phylogeny. Coinfinder is implemented in C++, Python3 and R and is freely available under the GNU 
license from https://​github.​com/​fwhelan/​coinfinder.

Data Summary
1. Coinfinder is freely available at https://​github.​com/​fwhelan/​
coinfinder.

2. A list of the Identifiers of the genomes used within as well 
as all input/output files are available at https://​github.​com/​
fwhelan/​coinfinder-​manuscript.

Introduction
Pangenomes consist of core genes, common across all strains 
of a species, and accessory genes that are present in some 
but not all strains [1]. Accessory genes by definition are not 
essential to every strain of a species. Accessory genes are 
often pathogenicity islands, or associated with niche adapta-
tion, or defence from predation, and so forth [2]. Why some 
members of a species might have some of these genes, while 
others do not is subject to debate [3, 4]. It is likely that some 
genes co-occur, or associate, because they positively influ-
ence each other's fitness in a particular set of host genomes. 
Similarly, we expect some genes to avoid, or dissociate with 

one another because their co-occurrence produces a negative 
fitness effect. We expect that genes whose products function 
together in a biochemical pathway, or that can combine 
to form a useful heteromeric protein complex, will appear 
together in the same genome more often than their observed 
frequency in the dataset would predict. For example, MYD88 
consistently co-occurs with the genetic components of the 
MYD88-dependent TLR-signalling pathway in vertebrate 
species [5]. In contrast, genes that produce a toxic by-product 
when they are expressed in the same cell, or that perform 
the same function and therefore induce functional redun-
dancy, are expected to appear together less often than their 
observed frequency in the dataset would predict. This is seen, 
for example, with siderophore biosynthetic gene clusters in 
Salinispora spp. where an isolate either has one iron-chelating 
siderophore or a different non-homologous system, but never 
both [6]. As a first step towards understanding these kinds 
of gene-to-gene interactions in the accessory pangenome, it 
is useful to identify genes that appear together or that avoid 
one another significantly more often than would be expected 
by chance.

http://mgen.microbiologyresearch.org/content/journal/mgen/
https://github.com/fwhelan/coinfinder
https://creativecommons.org/licenses/by/4.0/deed.ast
https://github.com/fwhelan/coinfinder
https://github.com/fwhelan/coinfinder
https://github.com/fwhelan/coinfinder
https://github.com/fwhelan/coinfinder-manuscript
https://github.com/fwhelan/coinfinder-manuscript
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Previously established methodology can identify various 
forms of co-occurrence patterns in prokaryotes. For example, 
many tools (e.g. [7–9]) and tool comparisons [10] are avail-
able for the identification of species–species co-occurrence 
patterns in microbial communities. For example, the 
program SparCC identifies correlations in compositional 
data, including species presence–absence patterns within 
microbial communities [11]. Other tools, such as NetShift 
[12], find differences in species association networks of 
microbial communities across datasets (e.g. healthy versus 
diseased states). Similarly, methods have been established to 
identify associations between genotypic and phenotypic traits 
in pangenomes (i.e. gene-trait co-occurrence). Usually called 
pangenome genome-wide association studies (pan-GWAS), 
tools such as bugwas [13] and Scoary [14] compare compo-
nents of the pangenome to a user-provided list of phenotypic 
traits. New methods such as SpydrPick [15] identify single 
nucleotide polymorphisms (SNP)–SNP co-occurrence 
patterns by comparing SNPs in multiple sequence alignments 
of proteins in microbial population genomic datasets.

A few approaches have focussed on gene–gene 
co-occurrence. Pantagruel [16] uses gene and species trees 
to identify genes which have similar patterns of gain and loss 
in a pangenome to define co-evolved gene modules. Simi-
larly, CoPAP [17] searches for correlated patterns of gene 
gain and loss across a species tree to find co-evolutionary 
interactions of clustered orthologous groups (COGs). While 
conceptually similar to Coinfinder, these methodologies 
are based on phyletic patterns; further, the dissociation of 
genes is not considered by either method. The most similar 
method to Coinfinder in concept is the identification of 
correlogs and anti-correlogs, genes which favour or dis-
favour co-occurrence within a genome, by Kim and Price 
[18]. However, this method was not packaged into publicly 
available software and was not coupled with the pangenome 

concept, instead focusing on global patterns of gene asso-
ciations across the bacterial Domain.

Currently, the identification of gene–gene coincident 
patterns is not part of pangenome analyses tools. Pange-
nome pipelines – such as Roary [19], PIRATE [20], or 
Pandora (https://​github.​com/​rmcolq/​pandora) – cluster 
open reading frames (ORFs) into homologous gene clusters 
and report a presence–absence matrix of these clusters in 
relation to each input genome. These pipelines also generate 
statistics as to the numbers of core and accessory genes, 
a core gene alignment (from which a phylogeny can be 
determined), and the distribution of genes across genomes; 
however, these pipelines fail to determine statistically 
significant gene–gene relationships.

Here, we present Coinfinder, a command line software 
program that identifies coincident (associating or disso-
ciating) genes across a set of input genomes. Coinfinder 
can run in any Unix environment using a user-specified 
number of processing cores. Coinfinder can be used to 
investigate the structure of strain- or species-pangenomes 
and is not restricted to prokaryote or eukaryote genomic 
input.

Theory and implementation
Input
Coinfinder accepts genome content data in one of two 
formats: (a) the ​gene_​presence_​absence.​csv output from 
Roary [19]; or (b) as a tab-delimited list of the genes 
present in each strain. If option (b) is used, genes should 
be clustered into orthologous groups/gene clusters prior 
to using Coinfinder (for example, using blast [21] and a 
clustering algorithm, such as MCL [22, 23]). Additionally, 
Coinfinder requires a Newick-formatted phylogeny of the 
genomes in the dataset. We suggest that this phylogeny can 
be constructed using the core genes from the input genomes 
as produced using programs such as Roary, or using ribo-
somal RNA genes, or a similar approach [24].

Table 1. Description of Coinfinder output files

Suffix File description

_pairs.tsv Tab-delimited list of significant coincident gene pairs

_nodes.tsv Node list of all unique coincident genes and their D 
value

_edges.tsv Edge list of significant gene–gene pairs and the 
associated P-value

_network.gexf GEXF (Graph Exchange XML Format) v1.2 formatted 
network file. Nodes are coloured by connected 
component (i.e. coincident gene set) and sized by D 
value; edge thickness is proportional to the P-value 
of the coincident relationship between any two 
connected genes

_components.tsv Tab-delimited list of all connected components within 
the gene–gene coincident network

_heatmap[0-X].
pdf

Heatmap images (R, ggplot2 [35], ggtree [36]) of the 
presence–absence patterns of coincident components 
across input genomes. The heatmap is split across 
multiple files when needed for ease of visibility

Impact Statement

Coinfinder identifies genes that co-occur (associate) with 
or avoid (dissociate) each other across the accessory 
genomes of a pangenome of interest. Genes that asso-
ciate or dissociate more often than expected by chance, 
suggest that those genes have a connection (attraction 
or repulsion) that is interesting to explore. Identification 
of these groups of genes will further the field’s under-
standing of the importance of accessory genes. Coin-
finder is a freely available, open-source software, which 
can identify gene patterns locally on a personal computer 
in a matter of hours.

https://github.com/rmcolq/pandora
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Fig. 1. Example of Coinfinder output. The network (a,c) and heatmap (b,d) outputs from Coinfinder executed on 534 Streptococcus 
pneumoniae genomes. (a, c) The resultant gene association (a) and dissociation (c) networks. Each gene (node) is connected to (edge) 
another gene if they statistically associate/dissociate with each other in the pangenome. Nodes are coloured by connected component 
(i.e. coincident gene sets) and the colours correspond to those used in the heatmap outputs. The network file Coinfinder generates 
includes all node and edge colouring; Gephi [37] was used to apply the Fruchterman Reingold layout. (b,d) A portion of the heatmaps of 
the presence/absence patterns of the associating (b) and dissociating (d) gene sets. Similar to the network, each set of coincident genes 
are co-coloured. Genes are displayed in relation to the input core gene phylogeny. Here the phylogeny tip and gene cluster labels have 
been removed from the output for clarity. Additionally, the largest connected component in the network (wine colour) has been omitted 
from the heatmap for ease of display.

Table 2. Real computational time for Coinfinder executed on a 534 
genome dataset consisting of 2,813 accessory genes using different 
numbers of CPUs (GenuineIntel; Intel Xeon Gold 6142 CPU @ 2.60 GHz)

No. of CPUs Real computer clock 
time

2 31m16.265s

4 17m56.973s

8 11m15.469s

16 7m44.942s

32 6m16.218s

Table 3. Number of gene–gene associations identified with different 
sized subsets of the original 534 genome dataset

Iteration n=400 n=300 n=200 n=100 n=50

1 75 586 52 038 24 196 1137 0

2 71 977 50 420 21 167 1389 0

3 75 190 51 459 25 545 1382 0

Identifying coincident genes
For each set of genes in the input genomes, Coinfinder 
examines the presence/absence pattern of the gene pair to 
determine if they represent a coincident relationship; i.e. if 
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Fig. 2. Example of the association relationships Coinfinder can identify. (a) A clique of genes in the ntp operon which was identified within 
the association network (Fig. 1a). Six of these genes were correctly labelled with their gene names via the Prokka/Roary pipeline; one 
gene was given an alternative gene name often used as a synonym in the literature; a further two genes were listed as ‘hypothetical 
proteins’. Collectively, the nine genes that compose the V-ATPase/ntp operon form cliques with an additional 51 genes. These cliques 
are shown as a network (b) and as a presence–absence heatmap (c). In the heatmap, unlabelled gene columns represent unnamed 
hypotheticals.

gene i and gene j are observed together or apart in the input 
genomes more often than would be expected by chance.

As a pre-processing step, the input gene set is culled for 
high- and low-abundance genes. Genes present in every 
genome (i.e. core genes) are removed as they cannot 
statistically associate or dissociate (i.e. be coincident with) 

another gene more or less often than expected. Similarly, 
genes whose presence is constrained to a small number of 
genomes will not produce significant associations, therefore 
low-abundance genes can be removed from the input at a 
user-determined cutoff. Coinfinder's default is to remove 
any gene present in less than 5 % of the input genomes.
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Coinfinder has two modes for identifying coincident rela-
tionships: association and dissociation. When testing for gene 
associations, Coinfinder evaluates whether gene i and gene j of 
a given gene pair are observed together in the input genomes 
more often than would be expected by chance. More formally, 
for a set of genomes N, we define the probability of observing 
gene i as

	﻿‍ Pi = Ni / N‍�

where Ni is the number of occurrences of gene i in the dataset. 
The expected rate of association, EA, of gene i with gene j, is 
then defined as:

	﻿‍ EA(ij) = Pi ∗ Pj ∗ N‍�

and the observed rate of association, OA, as:

	﻿‍ OA(ij) = Nij‍�

where Nij is the number of times gene i and gene j are present 
within the same genome.

When testing gene dissociation, Coinfinder evaluates whether 
gene i and gene j of a given gene pair are observed separately 
in the input genomes more often than would be expected 
by chance. Formally, the expected rate of dissociation, ED, is 
defined as

	﻿‍ ED(ij) = [Pi(1− Pj) + Pj(1− Pi)] ∗ N‍�

and the observed rate of dissociation, OD, as

	﻿‍ OD(ij) = Ni + Nj − 2Nij‍�

In each mode, Coinfinder's default behaviour is to use a 
Bonferroni-corrected binomial exact test statistic (adapted 
from https://​github.​com/​chrchang/​stats) of the expected and 
observed rates to evaluate whether each gene pair are signifi-
cantly coincident with each other.

Coincident genes that share an evolutionary history are 
more likely to have indirect correlations with each other. 
For example, if two genes are found to associate and each 
is observed only within a particular clade, the most parsi-
monious explanation for the observation is that the last 
common ancestor of the clade obtained both genes at the 
same evolutionary step. These two genes may, or may not, 
have a functional relationship with one another, and are 
of potential interest. However, non-monophyletic – or 
lineage-independent – genes that are dispersed throughout 
a phylogeny and are found to be significantly coincident are 
more likely to have a direct relationship with each other – 
their patchy phylogenetic distribution, combined with their 
statistically significant rate of association is prima facie 
evidence that they interact in some way, prefer a particular 
ecological niche, or have some other direct association with 
each other. Thus, Coinfinder focuses on identifying coinci-
dent relationships between lineage-independent accessory 
genes. To do this, Coinfinder uses a previously established 
phylogenetic measure of binary traits (D, as coded into the R 
function phylo.d [25]) to determine the lineage-dependence 
of each coincident gene. D is a measure of phylogenetic signal 

strength of a binary trait, which quantifies the amount of 
dispersion of the trait – here, the presence of a gene – over 
a phylogenetic tree [25]. Coinfinder does not implement a 
particular threshold for lineage independence but instead 
reports the D value of each gene in the output for the user 
to consider in conjunction with their input phylogeny. The 
calculations for gene association/dissociation and lineage 
independence are conducted independently of one another.

Output
Coinfinder visualizes the results of its analysis in two ways. 
First, Coinfinder produces a network in which each node is 
a gene family and each edge is a statement of significant gene 
association (corrected for lineage effects) or significant gene 
dissociation. The size of a node is proportional to the gene's 
D value. Second, Coinfinder generates a presence–absence 
heatmap, indicating the presence of coincident genes in the 
context of the input phylogeny. The genes in the heatmap are 
ordered by D value (from most lineage-independent to least) 
and are coloured according to coincident patterns.

Coinfinder produces a number of output files, with the default 
prefix of coincident_, as described in Table 1. Examples of 
the network and heatmap outputs of Coinfinder are shown 
in Fig. 1.

Results
As an example, Coinfinder was executed using 534 Strepto-
coccus pneumoniae genomes as input, a subset of the Global 
Pneumococcal Sequencing Project (GPS; https://www.​pneu-
mogen.​net/​gps/) whose ORFs were identified using Prokka 
[26] and clustered into orthologous gene families using Roary 
[19]. Coinfinder took 7.2 min (using 20 cores; see Table 2 for 
more runtime details) to examine the relationships between 
2 813 gene families across 534 genomes (3 957 891 pairwise 
tests in total). Coinfinder identified 104 944 associating gene 
pairs, which clustered into 32 connected components or sets 
of genes that associate with each other. Similarly, Coinfinder 
took 7.5 min using 20 cores to identify 98 461 dissociate gene 
relationships within this dataset. The network and heatmap 
outputs of Coinfinder from this example set are shown in 
Fig. 1.

Although the availability of sequenced genomes is increasing 
rapidly, it is still rare to have access to such a large species-
level pangenomic dataset. As such, the user could consider 
analyses at the genus- or family-level to increase dataset 
size. In order to identify the effect of input dataset size on 
Coinfinder’s ability to identify gene–gene associations, we 
randomly subsetted the 534 genome S. pneumoniae dataset 
into datasets sized between 400 and 50 genomes (Table 3). 
Analyses of these data with Coinfinder returned less gene–
gene associations than observed in the full dataset, and the 
number of associations observed decreased substantially with 
smaller numbers of genome inputs, culminating with no asso-
ciations identified with an input of 50 genomes. Although 
this provides an estimate of the necessary number of input 

https://github.com/chrchang/stats
https://www.pneumogen.net/gps/
https://www.pneumogen.net/gps/


6

Whelan et al., Microbial Genomics 2020 ;6

genomes to Coinfinder, it should be noted that the power of 
Coinfinder will vary based on the average number of genes 
per genome as well as the diversity of genes within the dataset 
(i.e. the ‘openness’ of the pangenome).

Of the gene associations and dissociations that Coinfinder 
identified, many are in line with previous investigations 
of S. pneumoniae pangenomes. For example, we identify 
a large number of associations between widely dispersed 
genes, which agrees with evidence that S. pneumoniae has 
an extensive set of ‘soft core’ genes in its pangenome [27]. 
Further, many genes involved in coincident relationships 
are lineage independent, which is expected given the high 
natural competency of the species and, therefore, affinity 
for horizontal gene transfer events [28]. As an example, we 
focus on a V-ATPase present in S. pneumoniae. V-ATPases are 
enzymes which transport protons across the cell membrane in 
a process which hydrolyses ATP [29]. V-ATPases are intricate 
protein complexes, providing an excellent use case for Coin-
finder’s potential to identify the genes expected to co-occur 
as part of a multi-protein enzyme. While the V-ATPase in 
S. pneumoniae has been understudied, it has been well-
documented in S. pyogenes and sister taxon Enterococcus 
hirae [29, 30]. In E. hirae the V-ATPase consists of 10–11 
proteins organized into the ntp operon: ntpFIKECGABD(H)
J [29]. In S. pneumoniae, the V-ATPase complex is predicted 
to contain nine proteins (KEGG pathway spx_M00159 [29]). 
In the annotation of S. pneumoniae that we performed here, 
only six genes of the ntp operon were annotated success-
fully: ntpA, ntpB, ntpC, ntpD, ntpG and ntpK. Coinfinder 
identified consistent co-occurrence relationships between 
these six genes, forming a clique (i.e. a complete subgraph 
of gene associations; Fig. 2a). However, these six genes also 
co-occurred with other genes in the dataset; we extended our 
analyses to determine whether any other genes consistently 
co-occurred with all six genes of this operon. In doing so, 
we identified three genes – atpE, and two unnamed genes – 
with homology to ntpE, ntpI and ntpG/H, respectively, that 
consistently co-occur with the rest of the ntp operon (Fig. 2a). 
An additional 51 genes formed cliques with the genes of the 
ntp operon. Of the 51 genes, three encode neuraminadase 
genes from nan gene clusters (Fig.  2b–c). Another three 
genes co-occurring with the V-ATPase complex belong 
to the dpnMAB operon which encode the DpnII system 
implicated in DNA transformation (among other functions) 
[31] and an additional three are homologous to transposase 
IS66-related domains, perhaps suggesting how this operon 
has been horizontally transferred in this species (Fig. 2b–c). 
Additionally, four of these proteins contained a putative 
cell wall binding repeat (‘CW_binding_1’) which has been 
implicated in choline binding [32]. Choline-binding proteins 
(CBPs) contain a choline-binding module/domain which 
allows them to bind to the cell wall of S. pneumoniae, func-
tioning as essential elements of cell division, as well as strong 
determinants of virulence [32, 33]. It is unknown why four 
CBPs co-occur with the V-ATPase complex; in eukaryotes, 
it has been shown that acetylcholine can be transmitted via 
the V-ATPase complex of vacuoles [34] but the result has not 

been generalized to prokaryotic cell membranes. A further 11 
genes are of uncharacterized function. This example shows 
the power of Coinfinder in (a) identifying gene associations 
between proteins in a known protein complex; (b) being able 
to overcome poor gene annotations by looking for patterns 
in gene co-occurrence and gene association networks; and 
(c) being able to extrapolate those results to other genes with 
known protein interactions.

Coinfinder uses parallel processing to compute pairwise 
tests of coincident relationships. The most time-consuming 
step is the determination of the lineage-dependence of each 
gene; consequently, we have programmed this part of the 
software to run in parallel for only those genes that are found 
in statistically significant coincident relationships. For the S. 
pneumoniae example, using the input set of 2 813 accessory 
gene families, the lineage-dependence calculation was only 
necessary on the 1 961 genes deemed to be in coincident 
relationships. Using these data, the computation time varied 
from 6 to 31 min when using 32 to 2 CPUs, respectively 
(Table 2).

Conclusions
Coinfinder is an accurate and efficient tool for the identifica-
tion of coincident gene relationships within pangenomes. 
Coinfinder is open-source software available from https://​
github.​com/​fwhelan/​coinfinder.
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