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Abstract

Background: Forecasting of COVID-19 cases daily and weekly has been one of the challenges posed to governments and the
health sector globally. To facilitate informed public health decisions, the concerned parties rely on short-term daily
projections generated via predictive modeling. We calibrate stochastic variants of growth models and the standard
susceptible-infectious-removed model into 1 Bayesian framework to evaluate and compare their short-term forecasts.
Results: We implement rolling-origin cross-validation to compare the short-term forecasting performance of the stochastic
epidemiological models and an autoregressive moving average model across 20 countries that had the most confirmed
COVID-19 cases as of August 22, 2020. Conclusion: None of the models proved to be a gold standard across all regions,
while all outperformed the autoregressive moving average model in terms of the accuracy of forecast and interpretability.

Keywords: COVID-19; SARS-CoV-2; stochastic growth model; stochastic SIR model; time-series cross-validation

Background

COVID-19, a respiratory disease caused by the coronavirus SARS-
CoV-2, rapidly caused an ongoing global pandemic. By October
2020, COVID-19 had become the third leading cause of death
in the USA for individuals aged 45–84 years, and it continues
to spread quickly in most countries. Given the extent of health
and economic distress caused by the pandemic, there is an ur-
gent public health need to improve prediction of the spread of
COVID-19 locally, nationally, and globally.

Since its emergence, a myriad of predictive modeling ap-
proaches have been proposed to forecast trends of COVID-19 dis-
ease to aid public health officials in developing effective poli-
cies and measures to suppress spread and minimize casual-
ties. Five general approaches to forecast new cases or expected
combined mortality linked to COVID-19 exist: (i) time-series
forecasting such as autoregressive integrated moving average
(ARIMA) [1,2], (ii) growth curve fitting based on the generalized
Richards curve (GRC) or its special cases [3–7], (iii) compart-
mental modeling based on the susceptible-infectious-removed
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2 Evaluating short-term forecasting of COVID-19 cases

(SIR) models or their derivations [8–18], (iv) agent-based mod-
eling [19], and (v) artificial intelligence (AI)-inspired modeling
[20–23].

Each approach, whether deterministic or stochastic, has its
own strengths. For example, the ARIMA model combines the re-
gressive process and the moving average, allowing prediction of
a given time series by considering its own lags and lagged fore-
cast error. Curve-fitting approaches (also known as phenomeno-
logical modeling) fit a curve to the observed number of cumu-
lative confirmed cases or deaths with a certain error structure
(e.g., Gaussian or Poisson), enabling meaningful interpretation
through curve parameters while accounting for measurement
errors. Compartmental modeling (also known as mechanistic
modeling) assigns partitions of the population to compartments
corresponding to different stages of the disease and character-
izes the disease transmission dynamics by the flow of individu-
als through compartments. Agent-based modeling approaches
use computer simulations to study the dynamic interactions
among the agents (e.g., people in epidemiology) and between
an agent and the environment. AI-based modeling approaches
usually combine time series, clustering, and forecasting, result-
ing in an exemplary predictive performance. Debate among re-
searchers has grown over model performance evaluation and
selection of the best model for a certain feature (e.g., cases,
deaths), a particular regional level (e.g., county, state, country),
and other parameters. Fair evaluation and comparison of the
output of different forecasting methods have remained elusive
[24] because models vary in their complexity and the variables
and parameters that characterize the dynamic states of a sys-
tem.

Although the literature has compared predictive models for
infectious diseases, to our knowledge, existing work does not
systematically compare their performance, specifically with the
same amount of a priori available information. We calibrate
stochastic variants of 6 different growth models (i.e., logistic,
generalized logistic, Richards, generalized Richards, von Berta-
lanffy, and Gompertz) and the standard SIR model. All models
can be included using an ordinary differential equation (ODE)
into 1 flexible Bayesian modeling framework. We limited the
analysis to these 2 modeling approaches because both not only
produce good short- and long-term forecasts but also provide
useful insights into the disease dynamics of COVID-19. The
growth models provide an empirical approach without a spe-
cific theory on the mechanisms giving rise to the observed pat-
terns in the cumulative infection data, while the compartmen-
tal models incorporate key mechanisms involved in the disease
transmission dynamics that explain patterns in the observed
data.

In our Bayesian modeling framework, the bottom level is
represented by a negative binomial model that directly mod-
els infection count data and accounts for the over-dispersed
observational errors. The top level is derived from a choice of
growth or compartmental models that characterize certain dis-
ease transmission dynamics through ODE(s). The Markov chain
Monte Carlo (MCMC) algorithm samples from the posterior dis-
tribution. The short-term forecasts derive from the resulting
MCMC samples. We perform the rolling- origin cross-validation
(ROCV) procedure to compare the prediction error of different
stochastic models. We used the 20 countries with the most con-
firmed case numbers for a country-level analysis. Observations
included that (i) as the models learned more, the predictive per-
formance improved in general for all regions; (ii) none of the
models proved to be a gold standard across all the regions; and
(iii) the ARIMA model underperformed all stochastic models pro-

posed in the article. We designed a graphical interface that al-
lows users to interact with future COVID-19 trends at different
geographic locations in the USA based on real-time COVID-19
data. This web portal is updated daily and used to inform lo-
cal policy-makers and the general public (https://qiwei.shinyapp
s.io/PredictCOVID19/ with Biotools ID: bayesepimodels webapp)
(BayesEpiModels Web App, RRID:SCR 019292).

Data Description

Let C = (C1, . . . , CT ) be a sequence of cumulative confirmed case
numbers observed at T successive equally spaced points in time
(e.g., day) in a specific region, where each entry Ct ∈ N for t = 1,
. . . , T. Further let C0 be the initial value and Ċ = (Ċ1, . . . , ĊT ) be the
lag 1 difference of C , where Ċ1 = C1 − C0 and each following en-
try Ċt = Ct − Ct−1, t = 2, . . . , T , i.e., the difference between 2 ad-
jacent observations. In the analysis and modeling of a series of
reported infectious disease daily data, the time-series data could
also be the cumulative death numbers, recovery case numbers,
or their sums, denoted by D (Death), E (Recovery), and R (Re-
moved), and their corresponding new case numbers, denoted by
Ḋ, Ė , and Ṙ. Assuming a closed population with size N, the time-
series data could also be the number of susceptible people, de-
noted by S, with each entry St = N − Ct. In reality, only confirmed
cases and deaths are reported in most regions. Recovery data are
not available or are hindered by under-reporting issues if avail-
able. Thus, our main goal was to make predictions of the future
trend of an infectious disease only based on the daily confirmed
cases Ċ .

Analysis

In this section, we discuss the findings of our COVID-19 data
analysis. We first implemented each of the growth models listed
in Table 1 and the standard SIR model under the proposed
Bayesian framework for the 20 countries with the most con-
firmed COVID-19 case numbers as of August 22, 2020. Input data
were the sequence of daily confirmed cases Ċ only, which were
accessible from the Johns Hopkins University Center for Systems
Science and Engineering COVID-19 Data Repository (https://gith
ub.com/CSSEGISandData/COVID-19/). Several recent COVID-19
studies also based their analyses on this resource (see e.g., [25–
27]). For our MCMC algorithms, we set 100,000 iterations with
the first half as burn-in and chose weakly informative priors.
We present numerical and graphical summaries for posterior in-
ference and short-term forecasting. Our final goal was to com-
pare the predictive performance of all models using ARIMA as a
benchmark model.

Forecasting of daily confirmed cases in the USA

We first present the forecasting of U.S. daily confirmed cases
made by the ARIMA model and our Bayesian framework with
the choices of a GRC or SIR model. As seen in Figure 1, the GRC
model demonstrates a downwards trend and the SIR model dis-
plays an upward trend, while the ARIMA model predicts a flat
trajectory of daily predicted cases. A natural epidemiological in-
terest is the estimated final size and end date of an epidemic.
Growth models include a model parameter K that estimates the
final epidemic size. For the SIR model, there is no available pa-
rameter that estimates the final size. Hence, the final case count
is approximated as the predictive mean that converges to a spe-
cific value from the related MCMC samples. We applied a similar
strategy to obtain the predicted mean of the final case counts us-

https://qiwei.shinyapps.io/PredictCOVID19/
https://scicrunch.org/resolver/RRID:SCR_019292
https://github.com/CSSEGISandData/COVID-19/


Li et al. 3

Table 1: Listof g( · )’s functions based on growth curves

Model g(Ct−1, �) Parameters �

Continuous
curve y(u)

Value at the
turning point Examples

GRC λC p
t−1

[
1 −

( Ct−1
K

)α
]

K ∈ N,λ ∈ R+,p ∈ (0, 1),α ∈ R+ NA
(

p
p+α

)1/α
K [7,28,29]

Richards λCt−1

[
1 −

( Ct−1
K

)α
]

K ∈ N,λ ∈ R+,α ∈ R+ K[1 + Aexp ( −
λαu)]−1/α ,where

A = −1 +
[

K
y(0)

]α

(
1

1+α

)1/α
K [30–34]

GLC λC p
t−1

(
1 − Ct−1

K

)
K ∈ N,λ ∈ R+,p ∈ (0, 1) N/A p

p+1 K [7,35,36,37]

Logistic λCt−1

(
1 − Ct−1

K

)
K ∈ N,λ ∈ (0, 1) K[1 + Aexp ( −

λu)]−1,where A = −1 + K
y(0)

1
2 K [3,6,7,28,38]

von
Bertalanffy

λC
2
3

t−1

[
1 −

( Ct−1
K

) 1
3

]
K ∈ N,λ ∈ R+

K
[
1 + Aexp(− 1

3 γ K −1/3u)
]3

,where

A = 1 −
[

y(0)
K

]1/3

8
27 K [6]

Gompertz λCt−1 log K
Ct−1

K ∈ N,λ ∈ (0, 1) Kexp [Aexp ( − λu)],where

A = log y(0)
K

1
e K [6]

GGC λC p
t−1 λ ∈ R+,p ∈ (0, 1) [A + λu(1 −

p)]1/(1 − p) ,where A =
y(0)1 − p

NA [7,29, 35, 36,39]

GGC: generalized growth curve; GLC: generalized logistic curve; GRC: generalized Richards curve; NA: not applicable.

Figure 1: The 1-month forecasting of new daily confirmed COVID-19 cases in the
USA made by the (a) GRC and (b) SIR model under the proposed Bayesian frame-

work, as well as the benchmark (c) ARIMA model. The black circles represent
the observed COVID-19 case numbers since early March 2020, while the colored
circles and ribbons represent the predicted means and 95% prediction intervals,

respectively.

ing the ARIMA model [2]. The estimated cumulative confirmed
cases by the end of 2020 were projected at 13.1, 106.1, and 10.0
(in millions), fitting the GRC, SIR, and ARIMA models, respec-
tively. Assuming that the epidemic continues until the end of
2021, the final epidemic sizes are predicted to be 13.4, 187.3, and
22.0 (in millions) by the 3 models, respectively. To account for
the discrepancies in forecasts and validate the forecast with ac-
tual reported figures, there is a need for an appropriate strategy
to evaluate and compare the predictive performance of the con-
cerned models.

Figure 2: A visual guide to rolling-origin cross-validation (ROCV), where the total

sample size T = 17, the initial training sample size is 9, and the testing sample
size is 3. The green, orange, and white circles indicate training, testing, and un-
used samples in 1 CV iteration.

Model comparison through rolling-origin
cross-validation

Cross-validation (CV) is a resampling procedure used to eval-
uate regression and classification models when only a limited
data sample is available. The procedure randomly splits all data
samples into 2 parts: training and testing sets, where the for-
mer is used to fit a model and the latter is used to evaluate the
model’s prediction performance in terms of certain error mea-
sures. The key assumption of CV is that all data points should
be independent and identically distributed (i.i.d.). Unfortunately,
time-series data are serially auto-correlated, meaning that the
observations are dependent on the time they were recorded. To
circumvent this issue, the ROCV technique was proposed [40].
It splits the data into training and testing sets without affect-
ing the i.i.d. assumption. We used an adaption of this method
to evaluate the short-term forecasting performance among dif-
ferent top-level choices under the proposed Bayesian framework
and ARIMA. Figure 2 shows the ROCV representation for an ex-
ample of time-series data (T = 17). Algorithm 1 summarizes this
evaluation procedure. The choice of initial training sample size
(denoted by k) was set to 7 days to evaluate how well the models
are able to generate forecasts during the initial phase of the pan-
demic, while the testing sample size (denoted by ω) was chosen
to be 3 days to meet with our objective of comparing short-term
forecasting performance. We defined the first day t = 1 as the
date when cumulative confirmed case load per country reached
100, resulting in different days for different countries.
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A CV algorithm requires a predictive error metric that can
quantify model performance in terms of forecasting accuracy.
Root mean square error (RMSE) and mean absolute deviations
(MAD) are candidates for error measures for out-of-bag predic-
tions but are dependent on scale. Thus, large values may in-
fluence the errors to be larger. Mean absolute percentage error
(MAPE) has been a widely used predictive measure owing to its
interpretability and its independence from scale, although the
distribution of such percentage errors can be skewed if the data
consist of values close to zero. Moreover, there is a possibility of
this measure being undefined due to a zero in the denominator.
In addition, MAPE can be subjected to unbounded extreme val-
ues if the actual data points are close to zero or if the absolute
forecasting error (Ct − Ĉt) is large. An improved percentage er-
ror metric, namely, symmetric mean absolute percentage error
(sMAPE), was proposed to address these issues [40]. This mea-
sure bounded the error between 0% and 200% by incorporating
the mean of actual and predicted cases (Ct + Ĉt)/2 in the denom-
inator. Values close to 0% result from accurate predictions, while
errors close to 200% signify inaccurate forecasting. This metric
was considered in our analysis as it addressed the problem of
having an unbounded measure and provided better symmetry
and interpretability compared to MAPE.

Algorithm 1 Rolling-origin cross-validation (ROCV)

1: Store the data starting day 1 to day T
2: Initialize the number of initial training observations k (k = 7)
3: Set the size of the testing set ω (ω = 3)
4: while k + ω ≤ T do
5: Learn the first k observations (green circles) as training

data
6: Hold out the next k + 1, . . . , k + ω observations (orange cir-

cles) as the testing data
7: Discard the remaining T − (k + ω) observations (white cir-

cles)
8: Compute an out-of-bag prediction error measure on the

testing set (orange circles):

sMAPE = 100%
ω

k+ω∑
t=k+1

∣∣∣∣∣ Ct − Ĉt

(Ct + Ĉt)/2

∣∣∣∣∣ , 0.1

where Ĉt denotes the predicted cumulative cases at time
point t.

9: k = k + 1
10: end while

Figure 3 displays the smoothed sMAPE curves generated by
the ROCV across time for the 20 countries with the most con-
firmed case numbers as of August 22, 2020. All models per-
formed poorly in the early stage, but as more data became avail-
able to be learned, the predictive performance gradually im-
proved as the sMAPE decreased. The ARIMA and SIR models
were performing significantly worse than the growth models in
the early phase, which may be attributable to ARIMA (not hav-
ing the growth-specific parameters) being unable to detect the
early growth. However, due to assumptions of a fixed transmis-
sion rate γ and under-reporting of data, SIR performed poorly.
The stochastic growth curves were able to learn the epidemio-
logical data trend in the initial phase with the help of the growth
and scaling parameters. In the latter half of the epidemic, all the
models were performing equally well. Hence, we were unable to

conclude that any one particularly dominated the entire dura-
tion of the epidemic.

To answer the question whether we could pick 1 model with
best predictive performance on average for any particular coun-
try, we constructed a Cleveland dot plot as shown in Figure 4 that
allowed us to rank the model performance averaged over the en-
tire pandemic by country. We arranged countries in ascending
order of predictive performance.

Discussion

We observed that all models performed best for Italy and worst
for South Africa. The Richards model had the minimum aver-
aged sMAPE for forecasting cumulative case counts in the USA,
while the GRC model had the lowest averaged sMAPE across 7
countries followed by the GLC model with 4. The SIR model was
the best performer for South Africa. The Richards, von Berta-
lanffy, and Gompertz models had a fair share of predictive dom-
inance in the remaining countries. The ARIMA model performed
below average across all countries.

The GRC and GLC models were consistent performers across
all countries owing to their ability to detect subexponential
growth rates at an early stage of an epidemic. The inclusion of
the scale parameter α that could account for any asymmetry in
the data allowed the GRC and Richards models to generally per-
form best in countries that did not have symmetric “S”-shaped
growth patterns and displayed randomness as well as multiple
peaks. Countries including the USA, Peru, Saudi Arabia, Iran,
Turkey, and France displayed multiple peaks in the daily con-
firmed case counts. As a result, the Richards model performed
the best in the USA, UK, and Peru, while the GRC model domi-
nated in the remaining countries with multiple peaks.

We observed a random structure in countries like Brazil,
Chile, Bangladesh, and Mexico. The GRC was the most com-
plex model and performed the best in these countries. However,
the GLC model usually performed better in countries that had
a single peak and an approximate “S”-shaped curvature. The
GLC model was able to generalize better than the GRC model
when data were well structured and less random. Argentina,
Pakistan, Germany, Colombia, and India had a single peak with-
out much randomness, and the GLC model performed better in
these countries. In South Africa, the usual growth models per-
formed the worst owing to a staggering growth rate in the ini-
tial and the middle phase of the epidemic. The SIR model per-
formed the best out of the worst while the logistic model per-
formed well due to its simplicity. The Gompertz model was the
best performer in Russia, Spain, and Italy because it generalizes
better than the other models.

Conclusion

We developed a number of stochastic variants of growth and
compartmental models in a unified Bayesian framework. The
literature has discussed a theoretical comparison of growth
models in great detail [5–7, 28, 29, 35, 36, 38]. However, to our
knowledge, no work systematically compares the performances
among all as well as against a compartmental model such as
the SIR model and a time-series forecasting model such as the
ARIMA model.

We conclude that the proposed Bayesian framework not only
allows room for interpretation but also offers an exemplary pre-
dictive performance when it comes to COVID-19 daily report
data. Moreover, ARIMA (being a pure learning algorithm) is not
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Figure 3: The smoothed sMAPE curves generated by the rolling-origin cross-validation (ROCV) over time for the 20 countries with the most confirmed COVID-19 case
numbers as of August 22, 2020.

Figure 4: The Cleveland dot plot of the averaged sMAPE generated by the rolling-

origin cross-validation (ROCV) for the 20 countries with the most confirmed
COVID-19 case numbers as of August 22, 2020.

able to match the forecasting accuracy of stochastic models. Fur-
thermore, the model parameters of ARIMA do not provide any
information of epidemiological interest.

In the future, we aim to develop an ensemble model that
can aggregate the prediction of each base model, resulting in
1 final prediction for the unseen data. Note that a group of re-

searchers have recently introduced a GGM-GLM ensemble model
[35] and compared forecasting performance with the individual
models for the Ebola Forecasting Challenge [41]. The ensemble
model outperformed the others under some circumstances. We
also plan to perform long-term forecasting evaluation using epi-
demic features described in [24]. A subepidemic wave model that
could detect multiple peaks in the data has been recently devel-
oped [37] and has the potential to improve forecasting perfor-
mance.

An “S”-shaped curvature on C attributes a simple growth
model as it assumes that an epidemic would last only a short
duration and that only a single peak would be observable on
Ċ . This oversimplified assumption could be problematic be-
cause COVID-19 is more likely to be an endemic. Moreover,
the changing government policies and public health guide-
lines as well as population behaviors (holiday) led to vari-
able disease transmission rates, resulting in multiple peaks.
Thus, developing stochastic growth models with the addition
of a change-point detection mechanism to account for multi-
ple peaks is worth investigating. We have demonstrated that
an approach that combines a change-point detection model
and a stochastic SIR model could significantly improve the
short-term forecasting of the new daily confirmed cases [42].
To handle the sophisticated extensions of the present work, we
need to utilize advanced versions of the Metropolis-Hastings
(MH) algorithm in the MCMC algorithms. For example, the MH
with delayed rejection [43], the combination of delayed rejec-
tion and adaptive Metropolis samplers [44], the multiple-try
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Metropolis [45, 46], and the methods discussed in Liang et al.
[47].

Potential Implications

The proposed Bayesian epidemiological models in a unified
framework lay the foundation for an integrative approach to
model and predict epidemiological data with tremendous ac-
curacy and interpretability. Growth and compartmental models
obtained as solutions to ODEs are implemented to model epi-
demiological data under a deterministic setting as they provide
a natural framework representative of such data types. How-
ever, the estimated model parameters crucial for providing in-
sights into the nature of the epidemic are unreliable under the
deterministic setting due to identifiability issues. The stochastic
models mimic the structure of epidemiological models and in-
corporate parameter-specific priors and measurement errors to
solve the issues. Researchers can follow a similar set-up to pre-
dict cases and deaths caused by an epidemic at any geographical
level given the availability of data. Furthermore, the stochastic
SIR model can be augmented by incorporating mobility, hospi-
talization, and recovery data, resulting in better forecasts. This
work also promotes an algorithmic strategy to measure forecast-
ing performances of time-series models in general.

On a much broader scale, this work encourages researchers
to explore probabilistic approaches to model epidemiological
data to develop computationally efficient algorithms that meet
time and cost constraints.

Methods

In this section, we present a bilevel Bayesian framework for pre-
dicting new confirmed cases during a pandemic in a closed soci-
ety. The bottom level directly models the observed counts while
accounting for measurement errors. Two alternatives for the top
level are then introduced and characterize the epidemic dynam-
ics through growth curve or compartmental trajectories, respec-
tively. Before introducing the main components, we summarize
the possibly observable data.

Bottom level: time-series count-generating process

We consider that the new case numbers observed at time t, i.e.,
Ċt, are sampled from a negative binomial (NB) model,

Ċt ∼ NB(g(Ct−1, �), φ), t = 2, . . . , T

as it automatically accounts for measurement errors and uncer-
tainties associated with the counts. Here, we use NB(μ, φ), μ, φ >

0 to denote an NB distribution with expectation μ and dispersion
1/φ. We assume that this stochastic process is a Markov process,
where the present state (at time t) depends only upon its previ-
ous state (at time t − 1). Therefore, the NB mean is a function,
denoted by g( · ), of the case number observed at time t − 1, char-
acterized by a set of interpretable/uninterpretable model param-
eters �. With this parameterization, the NB variance is μ + μ2/φ,
indicating that φ controls the variance of measurement error. A
small value leads to a large variance to mean ratio, while a large
value approaching infinity reduces the NB model to a Poisson
model with the same mean and variance. We can write the full

data likelihood as

f (Ċ |�, φ) =
T∏

t=2

�(Ċt + φ)

Ċt!�(φ)

[
φ

g(Ct−1,�) + φ

]φ [
g(Ct−1,�)

g(Ct−1, �) + φ

]Ċt

.

(1)

For the prior distribution of the dispersion parameter φ, we
choose a gamma distribution, φ ∼ Ga(aφ , bφ ). We recommend
small values, such as aφ = bφ = 0.001, for a non-informative set-
ting [48]. Note that the proposed framework can be viewed as a
stochastic discrete-time state-space model with a negative bino-
mial error structure. The proposed Bayesian models, on average,
mimic the epidemic dynamics and are more flexible than those
deterministic epidemiological models because they account for
measurement error and have the potential to incorporate exist-
ing information into the prior structure of �.

Top level I: Growth model

We first discuss the choices of g( · ) when implementing growth
models. The development of a variety of growth curves origi-
nates from population dynamics [49] and growth of biological
systems [50–53] modeling. A number of growth curves have been
adapted in epidemiology for trend characterization and fore-
casting of an epidemic, such as the severe acute respiratory syn-
drome (SARS) [30,31], dengue fever [32,33], pandemic influenza
A (H1N1) [34], Ebola virus disease [28,38], Zika fever [29], and
COVID-19 [3,6,7,54].

The underlying assumption is that the rate of growth of a
population, organism, or infectious individuals eventually de-
clines with size. The logistic curve (also known as sigmoid curve)
is the simplest growth curve of continuous time u ∈ R. It is a
non-negative symmetric “S”-shaped curve with equation y(u) =
K /{1 + exp[−λ(u − u0)]}, where u0 is the midpoint, K is the max-
imum value, and λ reflects the steepness of the curve. Clearly,
y(u) approaches K when u → ∞, while it converges to zero when
u → −∞. In fact, the continuous curve y(u) is the solution of a
first-order non-linear ODE,

dy(u)
du

= λy(u)
[
1 − y(u)

K

]

with condition y(u0) = K/2, where dy(u)/du can be interpreted as
time-variant growth rate of the curve y. The above ODE reveals:
(i) a non-negative growth rate, dy(u)/du > 0 as y(u) ∈ [0, K]; (ii)
an approximately exponential growth at the initial stage, y(u) ≈
exp (λu) as dy(u)/du ≈ λy(u) when y(u) → 0; (iii) no growth at the fi-
nal stage, y(u) dy(u)/du = 0 when y(u) → K; (iv) a maximum growth
rate of λK/4 occurred when y(u) = K/2, indicated by d2y(u)/du2 =
λdy(u)/du(1 − 2y(u)/K). Based on those curve characteristics, we
can use the growth curve to characterize the trend of cumulative
confirmed cases C .

We mainly considered a family of growth curves that are de-
rived from the GRC, which is the solution to the following ODE,

dy(u)
du

= λy(u)p
{

1 −
[

y(u)
K

]α}
(2)

in continuous time u, while its discretized form at time point
t is written as yt − yt−1 = λyp

t−1

[
1 − (yt−1/K )α

]
. For those model-

specific parameters in the context of epidemiology, K is the final
epidemic size and should be an integer in the range of (0, N],
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where N is the total population, λ ∈ R+ is the infectious rate at
early epidemic stage, p ∈ (0, 1) is known as scaling of growth, and
α ∈ R+ controls the curve symmetry. As our observed infectious
disease data are usually counts collected at successive equally
spaced discrete time points, we formulate the NB mean function
g( · ) based on the discretized form of (2),

g(Ct−1, � = {K , λ, p, α}) = λC p
t−1

[
1 −

(
Ct−1

K

)α]
. (3)

Table 1 provides a list of g( · )’s for growth curves with their char-
acteristics. All the listed growth curves have been utilized and
discussed in previous epidemiological studies. We include all of
those choices in our framework excluding the last one, which is
based on the generalized growth curve (GGC), because it lacks
the final epidemic size K specification.

Without any existing information, we assume that K is from
a discrete uniform distribution in its range and γ is from a γ -
or a β-distribution, depending on the choice of growth curves.
For example, for both logistic and Gompertz curves, we assume
γ ∼ β(aγ , bγ ), a natural modeling choice for parameter value re-
stricted to the (0,1) interval, and suggest choosing aγ = bγ = 1 for
a uniform setting; otherwise, we place a γ prior, i.e., γ ∼ Ga(aγ =
0.001, bγ = 0.001). For the choice of GRC and generalized logistic
curve (GLC), the prior of p is chosen to be β(ap = 1, bp = 1). Last,
we set α ∼ Ga(aγ = 0.001, bγ = 0.001) for fitting a GRC or Richards
curve.

Top level II: Compartmental model

The SIR model was developed to simplify the mathematical
modeling of human-to-human infectious diseases by Kermack
and McKendrick [55]. It is a fundamental compartmental model
in epidemiology. At any given time u, each individual in a closed
population with size N is assigned to 3 distinctive compartments
with labels: susceptible (S), infectious (I), or removed (R, being
either recovered or dead). The standard SIR model describes the
flow of people from S to I and then from I to R by the following
set of nonlinear ODEs:

⎧⎪⎨
⎪⎩

dS(u)
du = −βS(u) I (u)

N
dI (u)

du = βS(u) I (u)
N − γ I (u)

dR(u)
du = γ I (u)

,

where S(u), I(u), and R(u) are the population numbers of suscep-
tible, infectious, and removed compartments measured in time
u, subject to S(u) + I(u) + R(u) = N, ∀u. Another nature constraint
is dS(u)/du + dI(u)/du + dR(u)/du = 0. Here, β ∈ R+ is the disease
transmission rate, γ ∈ R+ is the removal rate, and their ratio
R0 = β/γ is defined as the “basic reproduction number.” The ra-
tionale behind the first equation is that the number of new infec-
tions during an infinitesimal amount of time, −dS(u)/du, is equal
to the number of susceptible people, S(u), times the product of
the contact rate, I(t)/N, and the disease transmission rate β. The
third equation reflects that the infectious individuals leave the
infectious population per unit time, dI(u)/du, at a rate of γ I(u).
The second equation follows immediately from the first and
third equations as a result of dS(u)/du + dI(u)/du + dR(u)/du = 0.
Assuming that only a small fraction of the population is infected
or removed in the onset phase of an epidemic, we have S(u)/N ≈
1 and thus the second equation reduces to dI(u)/du = (β − γ )I(u),
revealing that the infectious population is growing if and only if
β > γ . As the expected lifetime of an infected case is given by

γ −1, the ratio R0 = β/γ is the average number of new infectious
cases directly produced by an infected case in a completely sus-
ceptible population. The so-called basic reproduction number is
a good indicator of an infectious disease’s transmissibility.

We only consider the standard SIR model, although it is still
feasible to design g( · )’s from its variations (see a comprehensive
summary [56]), such as the susceptible-infectious (SIS) model,
the susceptible-infectious-recovered-deceased (SIRD) model,
the susceptible-exposed-infectious-removed (SEIR) model, the
susceptible-exposed-infectious-susceptible (SEIS) model, and
their versions with a maternally derived immunity compart-
ment [57], as well as the recently developed extended-SIR (eSIR)
model [14]. For modeling discrete time-series data, we use the
discrete-time version of the standard SIR model,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ṡt = −βSt−1
It−1
N

İt = βSt−1
It−1
N − γ It−1

Ṙt = γ It−1

, (4)

where Ṡt = St − St−1, İt = It − It−1, and Ṙt = Rt − Rt−1 are the dif-
ferences between 2 adjacent observations in the sequence of
susceptible, infectious, and removed case numbers, respectively.
The model has 3 trajectories, 1 for each compartment. The
compositional nature of the 3 trajectories implies that we only
need 2 of the 3 sequence data, e.g., St = N − Ct and Rt for t
= 1, . . . , T. However, recovery data only exist in a few regions
and are hindered by under-reporting even if they exist, which
makes both model inference and predictions infeasible. Alter-
natively, we consider both the removed and actively infectious
cases as missing data and mimic their relationship in spirit to
some compartmental models in epidemiology. Specifically, we
assume that the number of new removed cases at time t, i.e.,
Ṙt, is sampled from a Poisson distribution with mean γ It − 1, i.e.,
Ṙt ∼ Poi(γ It−1) = Poi(γ (N − Ct−1 − Rt−1)), where γ should be spec-
ified. Such a strategy but with different error structure was also
considered in some other compartmental models in epidemi-
ology [16,58,59]. We can estimate the value of γ from publicly
available high-quality data where confirmed cases, deaths, and
recovered cases are all well documented, or from prior epidemic
studies due to the same under-reporting issue in actual data. In
this article, we choose the removal rate γ = 0.1 as suggested by
Weitz et al. [60]. Based on this simplification, we rewrite the first
equation in (4) as,

(N − Ct) − (N − Ct−1) = −β(N − Ct−1)
N − Ct−1 − Rt−1

N
,

resulting in

Ċt = β(N − Ct−1)
N − Ct−1 − Rt−1

N
.

Thus, we formulate the NB mean function g( · ) for the standard
SIR model as,

g(Ct−1, � = {β}|R) = β(N − Ct−1)
N − Ct−1 − Rt−1

N
, (5)

where R can be sequentially inferred from C .
Without any existing information, in our Bayesian frame-

work we assume β from a γ -distribution with hyperparameters
that makes both the mean and variance of the transformed vari-
able R0 = β/γ equal to 1, i.e., β ∼ Ga(1, 1/γ ).
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Model Fitting

In this section, we briefly describe the MCMC algorithm for pos-
terior inference and forecasting. Our Bayesian inferential strat-
egy allows us to simultaneously infer all model-specific param-
eters and quantify their uncertainties.

MCMC algorithms

We first describe how to update the dispersion parameter φ in
the proposed Bayesian framework because it does not depend
on the choice of models. At each MCMC iteration, we perform
the following step:

Update of dispersion parameter φ. We update φ by using a
random walk Metropolis-Hastings (RWMH) algorithm. We first
propose a new φ∗, of which logarithmic value is generated from
N

(
log φ, τ 2

φ

)
and then accept the proposed value φ∗ with proba-

bility min (1, mMH), where the Hastings ratio is

mMH = f (Ċ |φ∗, �)

f (Ċ |φ, �)

π (φ∗)
π (φ)

J (φ ← φ∗)
J (φ∗ ← φ)

.

Here we use J( · ← · ) to denote the proposal probability distribu-
tion for the selected move. Note that the last term, which is the
proposal density ratio, cancels out for this RWMH update.

Top level as a growth model
We only present the updates of each parameter in the GRC
model because all other derivative models are its special cases.
Our primary interest lies in the estimation of the final pandemic
size K and the infectious rate at early epidemic stage λ.

Update of final epidemic size parameter K. We update K by
using an RWMH algorithm. We first propose a new K∗, of which
logarithmic value is generated from a truncated Poisson distri-
bution Poi(log K) within [log CT, log N], and then accept the pro-
posed value K∗ with probability min (1, mMH), where the Hastings
ratio is

mMH = f (Ċ |φ, K ∗, λ, p, α)

f (Ċ |φ, K , λ, p, α)

π (K ∗)
π (K )

J (K ← K ∗)
J (K ∗ ← K )

.

Note that with a discrete uniform prior on K , the last 2 terms
cancel out for this RWMH update.

Update of infectious rate parameter λ. We update λ by using
an RWMH algorithm. We first propose a new λ∗, of which log-
arithmic value is generated from N

(
log λ, τ 2

λ

)
, and then accept

the proposed value λ∗ with probability min (1, mMH), where the
Hastings ratio is

mMH = f (Ċ |φ, K , λ∗, p, α)

f (Ċ |φ, K , λ, p, α)

π (λ∗)
π (λ)

J (λ ← λ∗)
J (λ∗ ← λ)

.

Note that the last term, which is the proposal density ratio, can-
cels out for this RWMH update.

Update of growth scaling parameter p. We update p by using
an RWMH algorithm. We first propose a new p∗, of which loga-
rithmic value is generated from a truncated normal distribution
N

(
log p, τ 2

p

)
within [ − ∞, 0], and then accept the proposed value

p∗ with probability min (1, mMH), where the Hastings ratio is

mMH = f (Ċ |φ, K , λ, p∗, α)

f (Ċ |φ, K , λ, p, α)

π (p∗)
π (p)

J (p ← p∗)
J (p∗ ← p)

.

Note that with a uniform prior on p over its range [0,1], the last
2 terms cancel out for this RWMH update.

Update of symmetry parameter α. We update α by using an
RWMH algorithm. We first propose a new α∗, of which logarith-
mic value is generated from N

(
log α, τ 2

α

)
, and then accept the

proposed value α∗ with probability min (1, mMH), where the Hast-
ings ratio is

mMH = f (Ċ |φ, K , λ, p, α∗)

f (Ċ |φ, K , λ, p, α)

π (α∗)
π (α)

J (α ← α∗)
J (α∗ ← α)

.

Note that the last term, which is the proposal density ratio, can-
cels out for this RWMH update.

Top level as a compartmental model
Our primary interest lies in the estimation of the reproduction
number R0 = β/γ , which reflects the transmissibility of the dis-
ease. With our assumption that γ is given, we propose the fol-
lowing updates in each MCMC iteration.

Generate R based on C . We assume I1 = C1, i.e., all the con-
firmed cases are capable of passing the disease to all suscep-
tible individuals in a closed population at the very beginning.
In other words, R1 = 0. Then we sample Ṙ2 ∼ Poi(γ I1), where
γ is a prespecified tuning parameter and Ṙ2 = R2 − R1 (Ṙ2 = R2

here in that R1 = 0) is the new removed case numbers at time
t = 2. Owing to the compositional nature, we can compute I2 =
I1 + Ċ2 − Ṙ2, where Ċ2 = C2 − C1 is the new confirmed case num-
bers at time t = 2. Next, we repeat this process of sampling
Ṙt ∼ Poi(γ It−1) and computing It = It−1 + Ċt − Ṙt, t = 3, . . . , T , to
generate the sequence R.

Update of reproduction number parameter β. We update β by
using an RWMH algorithm. We first propose a new β∗, of which
logarithmic value is generated from a truncated normal distri-

bution N
(
log β, τ 2

β

)
, and then accept the proposed value β∗ with

probability min (1, mMH), where the Hastings ratio is

mMH = f (Ċ |β∗, R)

f (Ċ |β, R)

π (β∗)
π (β)

J (β ← β∗)
J (β∗ ← β)

.

Note that the last term, which is the proposal density ratio, can-
cels out for this RWMH update.

Posterior inference

We obtain posterior inference by post-processing the MCMC
samples Update of reproduction number parameterafter burn-
in. Suppose that a sequence of MCMC samples on θ , θ ∈ {φ, K, λ,
p, α, β},

θ (1), . . . , θ (U )

has been collected, where u, u = 1, . . . , U indexes the itera-
tion after burn-in. An approximate Bayesian estimator of each
parameter can be obtained simply by averaging over the sam-
ples, θ̂ = ∑U

u=1 θ (u)/U . In addition to that, a quantile estimation or
credible interval for each parameter of interest can be obtained
from this sequence as well.

Forecasting

On the basis of the sequences of MCMC samples on K, λ, p, and
α in the growth model or β in the compartmental model, we
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Figure 5: The web interface of the COVID-19 trend analysis page. The green box highlights the input panel that allows users to choose different mapping types and levels

for a region. The orange box highlights the visualizations for short-term forecasting as per the instructions of users. Other tabs offer different graphs for summarizing
the model performance, long-term forecasting, and county-level spatial maps.

can predict the cumulative or new confirmed cases at any fu-
ture time Tf by Monte Carlo simulation. Particularly, from time T
+ 1 to Tf, we sequentially generate

Ċ (u)
t ∼ NB(g(Ct−1, �

(u)), φ(u)), t = T + 1, . . . , Tf . (6)

Then, both short- and long-term forecast can be made by sum-
marizing the (Tf − T)-by-U matrix of MCMC samples. For exam-
ple, the mean predictive number of cumulative and new con-
firmed cases at time T + 1 are

∑U
u=1 C (u)

T+1/U and
∑U

u=1 Ċ (u)
T+1/U ,

respectively.

Software

This article introduces a user-friendly interactive web applica-
tion (https://qiwei.shinyapps.io/PredictCOVID19/ with Biotools
ID: bayesepimodels webapp) (BayesEpiModels Web App, RRID:
SCR 019292) integrated with the R Shiny package. Shiny is
a web platform that allows users to interact with real-time
data and use a myriad of visualization tools to analyze them.
Figure 5 shows a screenshot of the web application. The web ap-
plication has been developed to help the general public assess
both short- and long-term forecasts of COVID-19 across the USA
at both state and metropolitan level. The numbers of cumulative
or new daily confirmed cases as well as deaths are projected by
different growth models and the SIR model under the proposed
Bayesian framework. Alongside the numerical summaries, users
can view and interpret the trends that cover the same infor-
mation. To validate the short-term forecasting, numerical and
graphical summaries of MAE and MAPE of the predictions are

provided for the more advanced users. Moving on to the long-
term forecasting, the models estimate the peak number of cases
and deaths, as well as their respective dates. Moreover, predic-
tive estimates for the final size and date are also offered. Finally,
for the users keen on visualizing the currently observed cases
at a geographical level, the website offers county-level spatial
maps.

Availability of Source Code and Requirements
� Project name: BayesEpiModels
� Project home page: https://github.com/liqiwei2000/BayesEp

iModels
� Operating systems: Windows and Linux
� Programming language: R (version 3.6.0)
� Other requirements: None
� License: GNU General Public License v3.0
� Biotools ID: bayesepimodels
� RRID:SCR 019291

Data Availability

The related R/C++ codes for model preparation and execution
are available on GitHub at https://github.com/liqiwei2000/Bayes
EpiModels, with snapshots in the GigaScience GigaDB repository
[61]. The R Shiny web application is available for users at https://
qiwei.shinyapps.io/PredictCOVID19/. The COVID-19 data reposi-
tory is operated by the Johns Hopkins University Center for Sys-
tems Science and Engineering (JHU CSSE) and is freely available
on GitHub at https://github.com/CSSEGISandData/COVID-19/.

https://qiwei.shinyapps.io/PredictCOVID19/
https://scicrunch.org/resolver/RRID:SCR_019292
https://github.com/liqiwei2000/BayesEpiModels
https://github.com/liqiwei2000/BayesEpiModels
https://qiwei.shinyapps.io/PredictCOVID19/
https://github.com/CSSEGISandData/COVID-19/
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