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Central nervous system effects of TAK-653, an investigational
alpha-amino-3-hydroxy-5-methyl-4-isoxazole receptor (AMPAR)
positive allosteric modulator in healthy volunteers
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TAK-653 is a novel AMPA receptor positive allosteric modulator in clinical development for the treatment of major depressive
disorder (MDD). This study aimed to measure the functional pharmacodynamic central nervous system (CNS) effects of TAK-653.
A randomised, double-blind, placebo-controlled, three-way crossover (placebo, TAK-653 0.5 mg and 6mg) study with 24 healthy
volunteers was performed. NeuroCart tests consisting of body sway (BS), saccadic peak velocity (SPV), smooth pursuit eye
movements (SP), adaptive tracking (AT), Bowdle and Bond and Lader Visual Analogue Scales (B-VAS and BL-VAS) and Stroop test
were performed pre-dose and 3.5 and 4 h post-dose. Data were analysed using a mixed model analysis of covariance with baseline
as covariate. It was found that TAK-653 did not affect BS and subjective drug effects as measured by B-VAS and BL-VAS at either
dose level. TAK-653 0.5 mg increased SPV (degrees/second) (19.49 [5.98, 32.99], P= 0.02) and affected Stroop difference in reaction
time between correct congruent and correct incongruent answers and number of correct responses in incongruent trials (22.0 [4.0,
40.0], P= 0.05 and −0.3 [−0.5, −0.1], P= 0.02, respectively). TAK-653 6mg improved AT (%) (1.68 [0.51, 2.84], P= 0.02) and
increased SPV (degrees/s) (15.40 [1.91, 28.90], P= 0.06) and SP (%) (2.32 [0.37, 4.27], P= 0.05). Based on these findings it can be
concluded that TAK-653 demonstrated a psychostimulant-like pharmacodynamic profile on the NeuroCart consistent with
previously reported increase of cortical excitability following Transcranial Magnetic Stimulation (TMS) of the human motor cortex.
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INTRODUCTION
Since ketamine, a N-methyl-D-aspartate (NMDA) receptor antago-
nist, has been shown to have rapid occurring antidepressant
effects [1–3], there is growing interest in the NMDA receptor as
potential novel target for the pharmacological treatment of
depressive disorders. Studies into the mechanisms underlying
the antidepressant effects of NMDA receptor antagonism have
demonstrated an important role for alpha-amino-3-hydroxy-5-
methyl-4-isoxazole (AMPA) receptor-mediated signalling [4–7].
Blocking NMDA receptors and thereby indirectly stimulating
AMPA receptors, leads to a shift towards predominantly stimula-
tory glutamate-mediated neurotransmission [4–7]. This is believed
to affect molecular processes implicated in the pathophysiology of
(chronic) mood disorders related to synaptic plasticity and/or
cellular resilience [8], including the enhanced production of brain-
derived neurotrophic factor and triggering of the mammalian
target of rapamycin (mTOR) signalling [6]. The importance of
AMPA receptor-mediated signalling is further supported by the
finding that the preclinical antidepressant-like effects of ketamine
and related compounds are opposed by AMPA receptor
antagonists [9]. These findings support the development of novel
antidepressants that target AMPA receptors.

The novel AMPA receptor positive allosteric modulator (PAM)
TAK-653 (9-[4-(cyclohexyloxy)phenyl]-7-methyl-3,4-dihydropyra-
zino[2,1-c][1,2,4] thiadiazine 2,2-dioxide) is an investigational
potential therapeutic compound in clinical development for major
depressive disorder. As full functional agonism of AMPA receptors
is associated with potential untoward central nervous system
(CNS) stimulation, AMPA receptor PAMs have been proposed as
an alternative pharmacological strategy for glutamatergic mod-
ulation [10]. In initial healthy volunteer studies with oral doses of
TAK-653 0.3 mg to 18mg, the compound was well tolerated and,
in contrast to ketamine, did not cause dissociative adverse effects
[11]. Maximum plasma concentrations were attained within 1.25 h
to 5 h after dosing, the terminal half-life varied from 33.1 h to
47.8 h and cerebrospinal fluid concentrations were suggestive of
rapid brain penetration [11]. These pharmacokinetic (PK) and
safety profiles in healthy volunteers were promising for further
clinical development, but the pharmacodynamic (PD) properties
of TAK-653 had not been systematically assessed.
In early phases of clinical drug development a full characterisa-

tion of both the PK and PD properties of innovative compounds is
crucial to rationally guide drug development [12, 13]. The question-
based clinical development (QBCD) concept has previously been
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proposed as a conceptual framework for characterising drugs in
early clinical development [12]. Specific to CNS drug development,
QBCD allows for systematic investigation of crucial issues such as
blood–brain barrier (BBB) penetration, intended target engagement
and off-target effects [12]. By explicitly incorporating methodolo-
gies to address these issues when designing early-phase CNS
studies, findings may support go/no-go decisions in subsequent
development phases [12].
In order to characterize TAK 653's PD profile, we applied

transcranial magnetic stimulation (TMS) as a potential biomarker
for cortical excitability and we performed a test battery of
extensively validated, drug-sensitive neurophysiological and
neurocognitive CNS tests, the Neurocart [14]. Based on its
in vitro profile and preclinical effects, TAK-653 was hypothesised
to yield stimulatory CNS effects in healthy clinical populations. As
TAK-653 was the first AMPA receptor PAM to be tested using the
NeuroCart it was decided to compare the NeuroCart profile of
TAK-653 to the profiles of both excitatory or CNS-stimulant (e.g.
dopamine releasers) [15] and inhibitory or CNS-depressant (e.g.
GABAA-agonists) compounds [16–21]. Although the mechanism of
action of these compounds differs from TAK-653's mechanism of
action, their PD profiles were expected to be relevant for the
‘pharmacological benchmarking’ of TAK-653's functional PD
effects in healthy humans.
Our previous paper reported the effects of TAK-653 0.5 mg and

6mg on TMS motor evoked potentials following stimulation of the
motor cortex [22]. It was observed that TAK-653 increased the
amplitude of motor evoked potentials, indicative of increased
AMPA receptor-mediated cortical excitability [22]. In the current
paper, the NeuroCart data will be presented.

METHODS
Study design and participants
The study was a randomised, double-blind, placebo-controlled, three-
period crossover study (Fig. 1). A fourth, open-label period was conducted
with ketamine for assay sensitivity, but the TMS and NeuroCart results were
equivocal for reasons discussed previously [22], and will not be discussed
here. During the three-period crossover phase, each treatment period was
one day in duration and separated by a wash-out period of 10 to 15 days.
During treatment days, volunteers received one oral dose of either
placebo, TAK-653 0.5 mg or TAK-653 6mg; all treatments had the same
appearance to guarantee blinding of volunteers and research staff. At 12 to
16 days after the last study visit, a telephone call was made to volunteers
as part of the follow-up procedure.
TAK-653 dose levels of 0.5 mg and 6mg were selected as the lower

dose was expected to have minimum to no effects based on the
preclinical data and the higher dose to fall into the pharmacological active
range [22]. Both dose levels were well tolerated in the previous healthy
volunteer study [11].
Twenty-four healthy volunteers were included in this study. To assess

eligibility, volunteers were screened using the following procedures: a
review of their medical and psychiatric history, a physical examination,
measurement of vital signs, an electrocardiogram (ECG), blood chemistry
and haematology laboratory assessments, and urinalysis. Volunteers who
had a clinically significant previous or current psychiatric disorder
according to Diagnostic and Statistical Manual-5 were excluded. In
addition, volunteers who had a history of drinking an average of two or
more alcoholic drinks per day were excluded.

During treatment days, volunteers reported at the research facility in the
morning. Before a test dose was given, safety assessments were
performed, including: adverse event (AE) occurrence, a physical examina-
tion, a suicidality assessment using the Columbia suicide severity rating
scale [23], measurement of vital signs, an ECG, laboratory assessments and
urinalysis. The same safety assessments and AE recording were performed
at set times after dosing.
During the study, volunteers were instructed to restrict the use of

substances that could alter brain activity, including concomitant medica-
tion, alcoholic beverages, caffeinated products and nicotine-containing
products. First, volunteers were instructed not to use concomitant
medication starting from the seven days before the first test dose through
to the end of the study. Second, they were instructed not to consume
alcoholic beverages seven days before the screening visit and each
treatment day. Third, they were instructed not to consume caffeinated
products 24 h before the screening visit and each treatment day. Outside
of these restrictions, volunteers could consume up to six servings of
caffeinated products a day. Finally, they were instructed not to use
nicotine-containing products 48 h before the screening visit and each
treatment day. Otherwise, volunteers could use up to five nicotine-
containing products per day.

Pharmacokinetic assessments
The PK sample collection times were aligned with timings of the TMS
assessments, as these were the assessments of primary interest in this
study; PK samples were collected before drug administration, and 0.5 h
and 2.5 h after administration. Based on initial healthy volunteer studies, it
was expected that the mean maximal plasma concentration (Cmax) would
be reached at 2.5 h post-dose and due to the relatively long terminal half-
life (t1/2) TAK-653 of 33.1 to 47.8 h, plasma levels were then expected to
remain stable over a few hours [11]. A validated high-performance liquid
chromatography with tandem mass spectrometry assay with a lower limit
of quantification of 0.1 ng/mL and coefficient of variation between 1.41%
and 5.22% was used to measure TAK-653's plasma concentrations.

Functional pharmacodynamic NeuroCart assessments
NeuroCart tests that have been shown sensitive to CNS depressant and/or
CNS stimulant compounds were selected for this study [14]. These were:
body sway, smooth pursuit eye movements, saccadic eye movements,
adaptive tracking test, Stroop coloured word test, and Bond and Lader and
Bowdle Visual Analogue Scales (VAS). In Table 1 the effects of different CNS
depressant and CNS stimulant compounds on the NeuroCart tests
performed in this study are summarised. The tests were performed twice
prior to dosing as well as at the time of expected maximum plasma
concentrations, namely 3.5 hours and 4 hours post-dose (Fig. 1). During all
tests, lighting conditions were standardised and volunteers were
comfortably seated in front of a computer screen, except for body sway
measurements, for which volunteers were standing.

Body sway. Body sway measurements are used to assess postural stability
and are often used in pharmacologic studies [24–26]. Measurements of
movements in the anteroposterior direction were performed as in
previously published studies [26, 27], with a string similar to the Wright
ataxiameter [28] attached to the waist of participants. Volunteers were
instructed to stand comfortably on a firm surface with their feet slightly
apart and eyes closed for 2 minutes. In previous studies, CNS-stimulant
compounds demonstrated reductions in body sway; for example,
modafinil (200mg), dexamphetamine (20mg) and clinical doses (average
20mg) of methylphenidate reduced body sway by approximately 35%
[29], 19.4% [15] and 36.8%, respectively [30]. Conversely, CNS-depressant
compounds such as benzodiazepines are associated with increased body
sway; for example, diazepam (10mg) increased body sway by 119% [31].

Screening
Day -28 to -1

Treatment 
Day 1 

Wash-out
(10-15 days)

Treatment 
Day 2

Wash-out
(10-15 days)

Treatment 
Day 3

Treatment Day Detail

- 2 hr: 
NeuroCart 

(twice)

+ 3.5 hr: 
NeuroCart

+ 4 hr: 
NeuroCart

0 hr:
Dose

Study Design

Wash-out
(12-16 days)

Follow-up 
call

Fig. 1 Study design. Study design and the timing of NeuroCart assessments on treatment days.
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Smooth pursuit eye movements. The computerised smooth pursuit
measurement was performed as described previously [32] and used in
many studies to assess drug effects [14]. During this test, participants
followed a light source with their eyes, that moved continuously in a
horizontal direction on a screen placed 58 cm away. The outcome of
smooth pursuit was defined as the percentage of time the participant’s
eyes were in smooth pursuit of the target for each stimulus velocity and
frequency. In a previous study, the velocity of smooth pursuit eye
movements was impaired by diazepam (10mg) [32]. Improvements in
smooth pursuit of approximately 6% have been reported with CNS
stimulants such as methylphenidate (average 20mg) [30].

Saccadic eye movements. The computerised measurement of saccadic
eye movements was performed as described previously [33] and used in
many pharmacological studies [14]. Briefly, to measure saccadic eye
movements, participants were positioned identically to when performing
the smooth pursuit measurement and instructed to follow a light source
that jumped from side to side [33]. The parameter collected was saccadic
peak velocity (SPV) in degrees/second (deg/s). Previous studies have
demonstrated that CNS-stimulant compounds such as caffeine (60 mg),
modafinil (200 mg) and dexamphetamine (20 mg) increased the average
SPV by 11.6 deg/s [34], 24.6 deg/s [29], and 12.7 deg/s [15], respectively.
CNS-depressant compounds such as benzodiazepines have been shown
to decrease SPV [35].

Adaptive tracking test. Adaptive tracking tests have been used in many
pharmacological studies to evaluate visuomotor coordination and
vigilance [14]. In this study, we used an adaptive tracking test according
to specifications from Borland and Nicholson [36]. During the test, a circle
moved randomly on a screen. Participants were given a joystick and
instructed to use it to keep a dot within the moving circle. When an effort
was successful, the speed of the moving circle increased. Conversely, the
speed decreased if the participant was not able to maintain the dot within
the circle, resulting in a constant and individually adapted challenge
throughout the procedure. The outcome of the test is the average speed of
the moving circle as a percentage of the maximum speed of the circle. In
previous studies, CNS-stimulant compounds such as caffeine (60mg),
modafinil (200mg), dexamphetamine (20 mg) and methylphenidate
(average 20mg) improved average adaptive tracking by approximately
1.6% [34], 1.8% [29], 4.2% [15], and 2.2% [30], respectively. For CNS-
depressant compounds, such as benzodiazepines, an impairment of
adaptive tracking has been demonstrated [14].

Stroop coloured word test. The Stroop effect test involves identifying the
colour of coloured words [37], many CNS-active compounds have an effect
on this test [38–40]. In this study, we used a computer-adapted version
from the Psychology Software Tools website (https://pstnet.com/products/
e-prime/), comprising two subtests as described in a previous publication
[41]. In the first subtest, six coloured items were presented at random. The
possible colours were green, red and blue, and each colour corresponded
to a number key on the numpad section of the keyboard; green
corresponded with 1, red with 2 and blue with 3. Participants were
instructed to place the index, middle and ring fingers of their dominant
hand on keys 1, 2 and 3. When a coloured item appeared on the screen,
participants were to press the corresponding key as quickly as possible. In
the second subtest, which immediately followed the first, 34 colour and
word pairs were presented randomly. The words that were used were ‘red’,
‘green’ and ‘blue’, and the colour and word pairs were either congruent or
incongruent matches. Again, the participants were asked to identify the
correct colour as quickly as possible by pressing either keys 1, 2 or 3 on the
numpad. Each item or word was shown for 4 seconds, and there was a 0.5 s
pause after every response. Two parameters were derived from this test:
Stroop 1 is the difference in reaction time between correct congruent and
correct incongruent answers (ms) and Stroop 2 is the number of correct
responses in incongruent trials. Previous studies demonstrated that
benzodiazepines impair performance on this test [38].

Bond and Lader and Bowdle Visual Analogue Scales. VAS, as originally
described by Norris, have commonly been used to quantify the subjective
effects of sedative agents [35, 42]. Subjects were instructed to use the
computer mouse to select their response to each VAS item. The Bond and
Lader VAS involved collecting scores from 16 horizontal scales related to
how a person feels. From these measurements, three main factors, namely
‘alertness’, ‘mood’ and ‘calmness’, were calculated as described in previous
publications [34, 43]. Benzodiazepines have consistently shown reductionsTa
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on VAS alertness [44], whereas variable but consistent increases are
observed with caffeine [34], dexamphetamine [15], modafinil [29], and
methylphenidate [30]. Psychedelic effects were measured using the
Bowdle VAS as previously described [45]. This scale consists of 13 items
on which three summary scales (internal perception, external perception
and ‘feeling high’) are calculated using log transformation as described in
previous publications [46]. Dexamphetamine (20 mg) has been shown to
increase the summary scale ‘feeling high’ [15], in contrast to the other CNS
stimulants mentioned earlier.

Statistical analysis
Analyses were performed using SAS software version 9.4 (SAS Institute,
Cary, NC, USA). Residual Q-Q plots were produced for all NeuroCart
parameters to check the assumption of normality of the error term in the
mixed effects models. This was done by visual inspection and the
Shapiro–Wilk test statistic. To assess the treatment effects, data for each
parameter were analysed with a mixed model analysis of covariance. We
defined treatment, time, period and treatment by time as fixed factors;
subject, subject by treatment and subject by time as random factors; and
the (average) baseline measurement per study period as a covariate. The
Kenward–Roger approximation was used to estimate denominator degrees
of freedom and the model parameters were estimated using the restricted
maximum likelihood method. Individual treatment effects over the 4-hour
post-dose time period for the different doses were reported with the least
squares mean estimated difference, the two-sided 90% confidence interval
(CI) and the P-value. Owing to the exploratory nature of this study, a 90% CI
instead of 95% CI was deemed sufficient. Next to that, no correction for
multiple comparisons was performed as due to the exploratory nature of
this study, hypothesis testing was not used in the strict way, but to guide
the direction of future research.

RESULTS
Demographics
In total, 69 volunteers were screened, of which 24 healthy
volunteers (23 male and 1 female of non-childbearing potential)
between 18 and 55 years of age were included (Table 2). Subject
disposition can be found in Fig. 2. All participants completed the
three study periods.

Table 2. Demographic characteristics of study participants.

Characteristic Subjects enrolled (N= 24)

Age (years), mean (SDa) 27.9 (9.0)

Sex, n (%)

Female 1 (4.2%)

Male 23 (95.8%)

Weight (kg), mean (SD) 79.12 (10.81)

Height (cm), mean (SD) 181.98 (9.88)

BMIb(kg/m2), mean (SD) 23.92 (2.85)
aSD standard deviation; bBMI body mass index

Fig. 2 Subject disposition.
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Pharmacokinetic assessments
As reported in our previous publication, mean (SD) TAK-653
plasma levels for the 0.5 mg dose were 0.99 (0.94) ng/ml at 0.5 h
post-dose and 4.19 (0.83) ng/ml at 2.5 h post-dose [22]. Plasma
levels for the 6mg dose were 2.57 (3.29) ng/ml at 0.5 h post-dose
and 45.99 (8.84) ng/ml at 2.5 h post-dose [22].

Functional pharmacodynamic NeuroCart assessments
All NeuroCart parameters were normally distributed, except body
sway measurements, which were log-normal distributed and
therefore natural log transformation was applied for their analysis.
For interpretation back transformation was applied. To calculate
summary scores for VAS Bowdle, log transformation was
performed as well as described in previous publications [46].
Results are summarised in Table 3. On smooth pursuit eye
movements (%), a clear statistically significant improvement was
observed with the TAK-653 6mg dose (Fig. 3). At the same dose
level, a similar improvement was observed for adaptive tracking
(%) (Fig. 4). Both doses of TAK-653 increased SPV (deg/s) to a
similar extent (Fig. 5).
The VAS Bowdle subscale ‘feeling high’ remained stable under

TAK-653 0.5 mg and 6 mg; however, average VAS-high increased
with placebo, resulting in a statistically significant reduction with
TAK-653 6 mg. A review of the raw data revealed that this effect
was caused by one subject who indicated a 20 mm (large)
increase in VAS-high after placebo. This entry was judged to be
an artefact, given ‘feeling high’ does not occur spontaneously or
under placebo and the subject did not have AEs indicating
subjective drug effects such as ‘feeling abnormal’, ‘feeling drunk’
or ‘feeling high’.
On the Stroop coloured word test TAK-653 0.5 mg increased the

difference in reaction time between correct congruent and correct
incongruent answers and decreased the number of correct
responses in incongruent trials compared to placebo whereas
TAK-653 6mg did not affect any parameter of the Stroop coloured
word test.
No significant effects were observed on body sway (%), other

VAS Bowdle subscales (mm) or any of the Bond and Lader VAS
subscales (mm) (Table 2).

Safety and tolerability
For details on TAK-653's safety and tolerability in this study, please
refer to previous reported results [22]. In summary, TAK-653 was
well tolerated, no serious AEs were observed and there were no

withdrawals related to an AE. The most frequently reported AEs
after administration of TAK-653 were somnolence (TAK-653
0.5 mg: 3 of 24 subjects [12.5%], TAK-653 6mg: 3 of 24 subjects
[12.5%]), headache (TAK-653 0.5 mg: 1 of 24 subjects [4.2%], TAK-
653 6mg: 4 of 24 subjects [16.7%]) and nasopharyngitis (TAK-653
0.5 mg: 3 of 24 subjects [12.5%], TAK-653 6mg 1 of 24 subjects
[4.2%]). Of these AEs, somnolence and headache were reported
after administration of placebo as well (2 of 24 subjects [8.3%]
each). No clinically significant effects on vital signs, ECGs or
laboratory measurements were observed. Of note is that no AEs of
seizure, dissociative effects or euphoria were observed.

DISCUSSION
Similar to CNS stimulant compounds TAK-653 increased SPV, SP
and adaptive tracking at the time maximum plasma concentration
was reached. These effects were more pronounced with 6 mg than
with 0.5 mg TAK-653. TAK-653 increased SPV at both 0.5 mg and
6mg, while smooth pursuit eye movements and adaptive tracking
increased at 6 mg but not at 0.5 mg. The effects of TAK-653 on the
NeuroCart tests contrasted with the effects of CNS-depressant
compounds such as benzodiazepines, which have been shown to
decrease smooth pursuit eye movements [32], SPV [44], and
adaptive tracking [14]. The absence of an effect of TAK-653 on any
of the VAS subscales supports the finding that TAK-653 is devoid
of subjective mood-related derangements observed with other
CNS-stimulant compounds such as dexamphetamine [15]. When
comparing the acute pharmacodynamic NeuroCart profile of TAK-
653 to known profiles of CNS stimulant and CNS depressant
compounds, TAK-653's profile is suggestive of stimulatory CNS
effects. This is consistent with the TMS-EMG (electromyography)
findings demonstrating increased cortical excitability with the
6mg dose [22]. While one could argue that the observed effects
on the NeuroCart tests are due to TMS itself, this can be ruled out
for this study as a placebo arm was included and the effects of the
different doses of TAK-653 on the NeuroCart were observed
compared to placebo.
Compared to clinical doses of psychostimulants previously

characterised using Neurocart test, TAK-653's stimulatory CNS
effects appear more limited. TAK-653 increased SPV by 15.5 to
19.5 deg/s, which is larger than caffeine 60mg (11.6 deg/s) [34]
and dexamphetamine 20mg (12.7 deg/s) [15], but smaller than
modafinil 200 mg (24.6 deg/s) [29]. Increases in smooth pursuit
eye movements represented only roughly one-third of those

Fig. 3 Smooth pursuit eye movements. Smooth pursuit eye movements: change from baseline time effect profile of the least square (LS)
mean (90%CI).
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induced by methylphenidate [30]. The increase in adaptive
tracking of 1.6% with TAK-653 6mg was comparable to modafinil
(1.8%) [29], caffeine (1.6%) [34], and methylphenidate (2.2%) [30],
but smaller than dexamphetamine (4.2%) [15]. Next to that,
decreases in BS have been observed for other CNS stimulant
compounds, but no effect of both dose levels TAK-653 on BS was
observed. Although direct comparisons should be made for an
unequivocal interpretation of our findings, TAK-653 seems to have
a novel stimulatory CNS profile that is generally more subtle than
clinical doses of known psychostimulants, and distinguishes itself
by a relatively large stimulatory effect on saccadic peak velocity
but devoid of any subjective mood-related derangement such as
dysphoria, anxiety or feeling high.
Although TAK-653 demonstrated psychostimulant effects, its

impact on different aspects of cognition was less consistent. The
Stroop test was included as it can be helpful in understanding
complex attention, perception and elements of executive function
[47]. TAK-653 0.5mg but not 6mg increased the difference in
reaction time between correct congruent and correct incongruent
answers. Similarly, TAK-653 0.5mg but not 6mg decreased the
number of correct responses in incongruent trials. It cannot be

excluded that the lower dose may affect aspects of cognitive
functioning, which are obscured at a higher dose. The overall
pharmacodynamic profile, however, provides no reason to assume a
bell-shaped dose-response curve. Therefore, the Stroop results are
currently best considered as a potential type I error of a less robust
test with multiple complex endpoints.
The PK results of this study were in line with results from initial

healthy volunteer studies, as mean maximal plasma concentra-
tions for 0.5 and 6mg TAK-653 were comparable to those
observed at similar dose levels [11]. Therefore, although the area
under the curve from time 0 to infinity (AUC∞) was not
determined in the current study, this was expected to correspond
to the AUC∞ observed in initial healthy volunteer studies with
406 h*ng/ml and 3167 h*ng/ml for TAK-653 0.5 and 6mg,
respectively. These data support dose and concentration depen-
dence since more pronounced effects were observed with the
6mg dose compared to the 0.5 mg dose.
A limitation of this study is that full dose/concentration-

response characterisation was precluded by safety concerns.
Given both AMPA receptor PAMs and TMS are associated with an
increased albeit very limited risk of convulsions [10], 6 mg was

Fig. 4 Adaptive tracking. Adaptive tracking: change from baseline time effect profile of the least square (LS) mean (90%CI).

Fig. 5 Saccadic peak velocity. Saccadic peak velocity: change from baseline time effect profile of the least square (LS) mean (90%CI).
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selected as the highest dose as it was expected to yield a mean
maximum plasma concentration well below those at which partial
seizures were observed in primates (Takeda internal data).
Taken together, the PD profile of TAK-653 was characterised in

this study according to recommendations by the “QBDD” frame-
work [12]. As hypothesised based on its mechanism of action of
AMPA receptor PAM, TAK-653 demonstrated an acute functional
PD profile of CNS stimulatory effects on the NeuroCart. This
confirms BBB penetration and, moreover, target engagement that
is consistent with the previously reported TMS results of increased
cortical excitability [22]. No undesired pharmacological effects
associated with AMPA receptor stimulation, such as seizures or
euphoria, off-target effects or unexpected AEs, were observed in
this acute dosing study. The insights obtained in this study, can be
used to design future studies in both healthy individuals and
selected patient populations that are hypothesised to benefit from
AMPA receptor-mediated stimulatory CNS effects.
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