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Acute anaphylaxis to small molecule drugs is largely considered to be antibody-mediated
with immunogloblin E (IgE) and mast cell activation being key. More recently, a role for
drug-reactive immunoglobulin G (IgG) with neutrophil activation has also been suggested,
at least in reactions to neuromuscular blocking agents (NMBAs). However, the mast cell
receptor MRGPRX2 has also been highlighted as a possible triggering mechanism in
acute anaphylaxis to many clinically used drugs. Significantly, MRGPRX2 activation is not
dependent upon the presence of drug-recognising antibody. Given the reasonable
assumption that MRGPRX2 is expressed in all individuals, the corollary of this is that in
theory, anybody could respond detrimentally to triggering drugs (recently suggested to be
around 20% of a drug-like compound library). But this clearly is not the case, as the
incidence of acute drug-induced anaphylaxis is very low. In this mini-review we consider
antibody-dependent and -independent mechanisms of mast cell activation by small
molecule drugs with a focus on the MRGPRX2 pathway. Moreover, as a juxtaposition
to these adverse drug actions, we consider how increased understanding of the role of
MRGPRX2 in anaphylaxis is important for future drug development and can complement
exploration of this receptor as a drug target in broader clinical settings.

Keywords: anaphylaxis, mast cells, drug hypersensitivity, MRGPRX2, IgE (immunoglobulin E)
INTRODUCTION, OVERVIEW AND SIGNIFICANCE

The risk of adverse drug reactions such as anaphylaxis, whilst rare, remains a serious concern. In
susceptible individuals, specific drug exposure may trigger a sudden life-threatening reaction, and
unless a history of previous hypersensitivity exists, this response is mostly unpredictable. Even
within the perioperative setting, where facilities for resuscitation are optimal, drug-induced
anaphylaxis still causes a significant incidence of patient injury and mortality (1–3). Here we
examine recent mechanistic advances in the understanding of drug-induced anaphylaxis in humans,
with a focus on the critical role played by mast cell activation and the role of the Mas-related G
protein-coupled receptor X2 (MRGPRX2). It is noteworthy that there have been several recent
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excellent and comprehensive reviews of drug hypersensitivity
and MRGPRX2 involvement in human disease that complement
the present article (4–7).

Commonly, mechanisms of drug-induced acute anaphylaxis
are classified as either being ‘antibody (IgE)-dependent’ or ‘other’
depending upon the clinical diagnostic workup. With the
identification of MRGPRX2, the activation of this receptor has
emerged as a viable explanation to classify these previously
mechanistically uncertain cases (reported to be around 30% of
events). Studies in mice clearly support the involvement of
MrgprB2 (the murine homologue of MRGPRX2) in drug-
induced anaphylaxis to polybasic compounds such as NMBAs
(8). However, unsurprisingly, this is more challenging to prove in
humans. Whilst skin injection site reactions are observed very
commonly to certain knownMRGPRX2 activators (e.g. icatibant),
consistent with the high expression of MRGPRX2 in mast cells in
this location (discussed later), systemic anaphylactic responses to
such compounds have not been reported (9, 10). To date, there is
no means of unambiguously attributing a clinical event of drug-
induced acute anaphylaxis to MRGPRX2 activation.

From a patient perspective, defining the role of MRGPRX2 is
important as if confirmed, it may provide predictive, preventative
and therapeutic strategies for drug-induced anaphylaxis. Moreover,
the pharmaceutical industry is increasingly examining drug agonism
at MRGPRX2 in their pre-clinical drug candidate evaluations (11,
12). In one such study, around 20% of a drug-screening chemical
library was shown to be MRGPRX2-activating (11). Presumably,
such pre-clinical screening could be used to discard, or at least de-
prioritise, drug candidates/leads. Whilst this might be seen as
improving drug safety, using icatibant as an example, it may result
in future life-saving therapeutics being discarded unnecessarily. As
such, defining the true clinical role of MRGPRX2 in drug-induced
anaphylaxis has wide-sweeping importance.

Lost in Translation: Discriminating
Antibody-Dependent and MRGPRX2-
Dependent Drug-Induced Anaphylaxis
Conclusive evidence that MRGPRX2 activation is a primary
mechanism in drug-induced anaphylaxis continues to be a
clinical challenge. Here we largely compare IgE-dependent with
MRGPRX2-dependent reactions although we acknowledge that
this is oversimplistic and IgE and mast cell-centric. For instance,
IgG-dependent reactions involving neutrophils have been
reported, initially in mice, but more recently suggested to be
important to drug-induced anaphylaxis in humans, at least with
NMBAs (4, 13, 14). Involvement of the mast cell activating
complement anaphylatoxins (C3a/C5a) in immune-mediated
anaphylaxis has also been reported (13, 15).

Whilst it is well established that IgE is responsible for the
majority of drug-induced acute anaphylaxis, new information on
this pathway is also arising. A recent study has shown a role for a
subset of T follicular helper cells in the production of high-
affinity IgE to allergens (16). Whilst it is unclear if this extends to
small molecule drugs acting as haptens, it nonetheless suggests
that ‘quality over quantity’ might be important for IgE-
dependent anaphylaxis, which has implications for the
Frontiers in Immunology | www.frontiersin.org 2
identification of culprit pathways. For instance, it is possible
that the inability to attribute drug anaphylaxis to IgE is a result of
an inability to detect it rather than the lack of its presence. Drug-
‘specific’ serum IgE testing is however commonly incorporated
into diagnostic algorithms. For this, prototypic drugs that display
chemical structural features of common culprit agents (e.g.
morphine, penicilloyl conjugates) are often used in testing.
This approach not only lacks sensitivity (17) but also
specificity as it might ignore IgE that recognises diverse drug
epitopes. Whilst some clinical centres use a wider range of
potential culprit drugs in screening, this is relatively
uncommon and thus assays to detect true drug-specific IgE (or
indeed IgG) are needed.

Whilst it was originally thought that changes to serum levels
of tryptase could be used to discriminate between IgE and
MRGPRX2-dependent reactions, recent work has suggested
against this (18, 19) which supports in vitro studies that report
non-IgE-dependent secretion of tryptase (20, 21).

The use of the skin prick and intra-dermal tests are common
in clinical investigations to identify culprit anaphylaxis-inducing
drugs. Indeed, morphine/codeine have such predictable general
reactivity in intradermal testing that they are often used as a
positive control stimuli. This approach is thus clearly not a
discriminatory tool between IgE- and MRGPRX2-dependent
pathways as both could be active in skin mast cells.

More recently, addition of the basophil activation test (BAT) has
been suggested as a discriminatory assay in mechanistic attribution
of drug-induced anaphylaxis (22). The discriminatory utility of this
ex vivo assay is based on the observation that basophils, in general,
are not thought to have functional expression of MRGPRX2.
Basophil activation by NMBAs therefore would strongly suggest
an IgE-dependent mechanism. However, a recent study has
suggested functional expression of MRGPRX2 on basophils (23),
although this has been suggested to relate to basal activation of the
cells and consequent expression of a normally intracellular pool of
receptor (24). A broader discussion of the potential utility of the
BAT approach in identifying non-IgE-dependent pathways in drug-
induced anaphylaxis has been recently published (22).

The possibility of using the known differences in the FceRI
and MRGPRX2 signaling pathways (25) also has potential to
resolve the IgE vs MRGPRX2 conundrum. Bruton’s tyrosine
kinase (Btk) inhibitors, clinically used to treat leukemia, have
been shown to be powerful inhibitors of IgE-dependent human
mast cell activation (26). Importantly, based on the receptor’s
signalling cascade, these approved drugs would not be predicted
to affect the MRGPRX2 pathway. In theory, Btk inhibitors could
be used locally during skin challenge testing, and thereby provide
mechanistic evidence for the pathway underpinning anaphylaxis.
The feasibility and safety of this approach has already been
partially established using the Btk-inhibitor ibrutinib (27). Other
approved compounds such as fostamatinib, a spleen tyrosine
kinase (Syk) inhibitor, could be used in a similar way. Whilst
speculative, such extension of skin-prick testing is clinically
feasible although, from an ethical and safety perspective, would
be easier to incorporate into existing ex vivo approaches such as
in BAT analysis and/or in studies using skin biopsies.
November 2021 | Volume 12 | Article 688930
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Accurate clinical differentiation of a likely MRGPRX2-
dependent subgroup of patients at risk of severe reactions to a
given medication would enhance prospects of developing
predictive biomarkers (Figure 1). What such a biomarker
might be remains elusive, but we consider some of the
possibilities and gaps in understanding below.

Elevated and/or Expanded Expression or
Function of MRGPRX2 in Mast Cells
Mast cells mature into their characteristic highly granular form
within tissues. However, variation in the type and levels of soluble
factors and extracellular matrix proteins results in differential mast
cell gene expression patterns and consequent functional
heterogeneity to drug stimulation (28–30). More recently,
antibody tools and transcriptomic and proteomic approaches
have characterised this heterogeneity more comprehensively at
the molecular level and provided alternative approaches for
quantifying mast cells and MRGPRX2 expression in tissues (31–
33). However, responses to compounds/agents now known to be
direct activators of MRGPRX2 (e.g. compound 48/80) can also be
used as a surrogate marker of the functional expression of
MRGPRX2. Using these combined approaches, MRGPRX2
expression is particularly pronounced and consistently found in
primary humanmast cells isolated from the skin and fat with more
variable expression in the gut and lung (32) that reflects the well-
reported heterogeneity of mast cells in the latter organs (29). There
is also evidence of MRGPRX2 functional expression in the heart
and synovial tissue (20, 34). Thus, while skin mast cells are
Frontiers in Immunology | www.frontiersin.org 3
undoubtedly a focal point, as observed with the common
injection reactions seen to some MRGPRX2 activating drugs,
mast cells in other locations also have the potential to be
triggered by the same compounds and may therefore contribute
to systemic adverse responses to drugs.

Given the strong expression of MRGPRX2 in skin mast cells,
it might be expected that cutaneous symptoms would be overt in
putative MRGPRX2-dependent anaphylaxis. However, this has
to our knowledge not been formally reported and might be
complicated by core hypotension and the rapid administration of
a variety of life-sustaining drugs upon signs of anaphylaxis.

It is possible that an elevated or more diverse tissue
expression of MRGPRX2, perhaps associated with disease, may
enhance an individual’s susceptibility to drug-induced
anaphylaxis. To our knowledge there are no published studies
that examine mast cell MRGPRX2 expression in the context of
acute drug-induced anaphylaxis. These studies are challenging as
given the highly selective expression of MRGPRX2 to mature,
tissue-resident mast cells, blood cell transcriptomics approaches
will likely not be optimal. Skin biopsies would be much more
useful in this regard especially with the increasing use of single
cell genomic approaches. Furthermore, whilst transcriptomic
approaches would seem the best approach to resolve this,
studies have shown that MRGPRX2 mRNA levels are not a
good measure of surface expression of the receptor (24, 35). This
suggests non-transcriptional factors may also dynamically
regulate MRGPRX2 surface levels, although the regulators of
this process are unclear.
FIGURE 1 | Proposed approaches to overcome the current deficiencies in clinical discrimination of patients who suffer MRGPRX2-dependent anaphylaxis and their
prospective value. Better defining patients who likely suffered MRGPRX2 dependent anaphylaxis enables more focused, powerful and feasible research that can be
used prospectively in predictive testing. The acute and commonly severe nature of drug-induced anaphylaxis means that discrimination between the pathways would
likely have little consequence to the present-day management of patient symptoms. However, further comparative insights might highlight approaches that could
perhaps provide more discrete benefit. (BAT- basophil activation test).
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Regulators of MRGPRX2 expression, at the transcriptional
and/or post-transcription levels remain unclear. Chronic IL-6
treatment during the generation of blood-derived mast cells only
modestly enhanced MRGPRX2 surface levels and function (36).
Thymic stromal lymphopoetin (TSLP) was recently shown to
selectively enhance MRGPRX2-mediated degranulation of skin
mast cells (37). This effect was mediated at the functional level
which again emphasises the possibility of MRGPRX2 pathway
enhancement beyond simple receptor expression level. Echoing
the importance of the microenvironment to mast cell
differentiation and functional responses, the culture of
normally unresponsive mast cells in fibronectin or with
fibroblasts has been shown to induce sensitivity to polybasic
stimuli (38). Development of complex, yet more physiologically
relevant mast cell culture systems (39), as well as proteomic (32)
and transcriptomic (31, 33) characterisation from patient tissue
samples will assist with better understanding the regulation of
mast cell MRGPRX2 expression in vivo.

There is evidence in some disease states, including severe
chronic urticaria (CSU) (35) and asthma (40), that MRGPRX2
levels on mast cells are elevated. A recent study has also provided
functional evidence for enhanced MRGPRX2 activation in
lesional biopsies taken from patients with ulcerative colitis
compared to matched non-lesional controls (41). However,
these conditions are not known to be strongly associated with
increased susceptibility to drug-induced anaphylaxis.

A clearer understanding of patients with diagnosed mast cell
disorders might also help clarify mechanisms leading to drug-
induced, IgE-independent anaphylaxis. Whilst mastocytosis has
been identified as a risk factor for a largely IgE-dependent
anaphylaxis to Hymenoptera stings (42), evidence for enhanced
drug-induced sensitivity is not as clear. A systematic review of
reactions to invasive procedures in patients with mastocytosis,
did indeed find an increased rate of reaction to drug exposure.
Compared to the general population this varied from 5% in some
studies, to 1% in larger studies (43), but significantly this rate was
lower than anticipated for this population. However, in the
surgical setting, patients with mast cells disorders are routinely
given prophylactic drugs, including antihistamines and
glucocorticoids, to protect from presumed reactions. This may
then account for the relatively low incidence of drug-induced
anaphylaxis recorded. Intriguingly, Deepak et al. have recently
demonstrated enhanced MRGPRX2 expression in patients with
maculopapular cutaneous mastocytosis (44). However, another
study has shown that a lower burden of skin mast cells is a risk
factor for anaphylaxis in systemic mastocytosis (45). This again
reinforces the lack of clarity in the role that MRGPRX2
expression plays clinically in drug-induced anaphylaxis even in
mast cell disease.

Mast cell models derived from patients who suffered acute
drug-induced anaphylaxis would be a highly valuable tool to
identify if elevated MRGPRX2 expression or function underpin
the drug hypersensitivity. In such studies, CD34+ blood
progenitor cells could be cultured into mature mast cells.
Numerous methods exist, and these have been recently
compared (36). A recent study has compared blood-derived
Frontiers in Immunology | www.frontiersin.org 4
mast cells from patients who had likely IgE-dependent with a
possible MRGPRX2-dependent drug-induced anaphylaxis (46).
Whilst the study was small in terms of patient numbers,
interestingly, they could show no difference in reactivity to
MRGPPRX2 agonists between the cohorts. Further work is
needed to extend and confirm these findings. Whilst blood
volumes might be a limitation to this targeted, patient-specific
approach, single cell analytical methods, including analysis of
mast cell function (47), increasingly make such limitations
less challenging.

Recently, a new approach has been described where mast cells
derived from human induced pluripotent stem cells (iPSCs)
exhibit responsiveness to MRGPRX2 agonists (48). Previous
studies using iPSC-derived mast cells have been reported, but
these did not examine MRGPRX2 activation (49, 50). Whilst
these studies used existing iPSC lines, they support the
generation of patient-specific mast cells from those who
experienced possible MRGPRX2-dependent, acute-drug-
induced anaphylaxis. The extensive time and costs associated
with this approach, again highlights the need to accurately
characterize drug-responsive patients to ensure the utility of
this endeavor.

Polymorphisms in MRGPRX2 and/or Other
Pathways That Might Heighten Mast Cell
Responses to Drugs
Perhaps the most straightforward explanation behind the rare,
proposed heightened sensitivity of some individuals to
MRGPRX2-dependent anaphylaxis is receptor polymorphism.
Given the incidence of drug-induced anaphylaxis, this
polymorphism would have likely low penetrance. The GPCR
database (GPCRdb.org) identifies numerous natural missense
mutations in the MRGPRX2 protein coding region with
predicted disruptive effects. Several studies have investigated
these polymorphisms on MRGPRX2 activity. One study,
examining some of the most common variants, revealed that
all had neutral activity or demonstrated a loss of function to
MRGPRX2 agonists (51). Importantly, the authors examined a
range of agonists as studies have demonstrated evidence for
biased agonism in MRGPRX2 activation (52, 53). Further studies
have examined MRGPRX2 mutants where indeed some gain-of-
function polymorphisms in the receptor C-terminal region were
identified with modest enhancement of degranulation (54, 55).
The clinical significance of these variants is however as
yet unclear.

It is also possible that gene variants in mast cell signaling
pathways underpin heightened sensitivity to MRGPRX2
agonists, increasing susceptibility to anaphylaxis. A precedent
for this possibility is a rare PLCG2 variant that is associated with
cold-induced mast cell activation and urticaria (56). Moreover, a
recent study has identified diminished levels of PGE2 as a
contributing factor to anaphylaxis (57). Whilst this study
focused exclusively on clinical samples from likely IgE-
dependent Hymenoptera sting-induced anaphylaxis, a
deficiency in PGE2 levels would also be predicted to potentiate
MRGPRX2 agonist-induced mast cell activation.
November 2021 | Volume 12 | Article 688930
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Clearly, more expansive genetic analyses are needed to
correlate MRGPRX2 receptor or pathway polymorphism with
clinical episodes of drug-induced acute anaphylaxis. Again, this
connection will be greatly facilitated by improved clinical
classification of presenting patients, and if shown, could be
extraordinarily beneficial, given the potential rapid translation
to predictive testing.

Targeting MRGPRX2 for Therapeutic
Benefit: Iterative Learning From Drug-
Induced Anaphylaxis
To this point, we have focused attention towards considering if
and how MRGPRX2 contributes to drug-induced acute
anaphylaxis. As proposed in Figure 1, further research is
needed to establish this connection to an extent where it has
clinically predictive value. This improved understanding will
importantly also help inform the actual clinical risk of
MRGPRX2 activation by novel drug candidates across the
therapeutic spectrum and more clearly direct the proposed
modulation of MRGPRX2 in a number of clinical settings.
Whilst based on the discussion above, MRGPRX2 antagonists
would seem of most clinical utility, the potential value of agonist
drugs has also been examined. This makes clarification of the
role of MRGPRX2 in drug-induced anaphylaxis of particular
importance. Below, we summarise a number of current
approaches to regulating MRGPRX2 activity (Figure 2), which
has also been reviewed recently by others (5).
Frontiers in Immunology | www.frontiersin.org 5
Chemical antagonism of NMBAs such as rocuronium by the
reversal agent sugammadex has been proposed as a means of
managing acute drug-induced anaphylaxis, although a consensus
statement recommends against it (58). A recent study by our
group has however shown inhibitory activity of sugammadex on
some, but not all, endogenous activators of MRGPRX2 (59).
Whilst speculative, this raises the possibility of using
sugammadex, outside of the drugs conventional rocuronium-
reversal role, to selectively modulate MRGPRX2 activation by
endogenous agonists in certain disease states.

The selective expression of MRGPRX2 on mast cells has been
recently harnessed for mast cell ablation. Utilising an anti-
MRGPRX2 antibody conjugated to the compound IR700DX,
which is activated by near infrared light exposure, Plum et al.
demonstrated the depletion of dermal mast cells in a human skin
explant model (32). This work exemplifies the innovative
research that targets MRGPRX2 which could lead to new
therapeutic approaches for mast cell-mediated disease.

A number of small molecule MRGPRX2 antagonists have
been proposed/identified with many having relatively low
potency and uncertain mechanism of antagonism (60–62).
Recent compound screening efforts have identified some more
potent and diverse agents however (63–65). As evidence
continues to be established on the role of MRGPRX2 in
inflammatory diseases of the skin and airways, it is likely that
further momentum in this area will lead to compounds that
could be envisaged to enter clinical development. Assuming an
A

C

D

B

FIGURE 2 | Modulating MRGPRX2 for putative therapeutic benefit. Four major strategies have been advanced for modulating the activity of mast cells through
MRGPRX2 (labeled a-d). Antagonism at MRGPRX2 can be harnessed at both the ligand (A) and receptor (B) levels whilst complete or signaling-biased MRGPRX2
agonists (C) could be used in a number of settings to modulate immunity. Considerations around the safety of this later approach would be clarified through better
understanding if/how MRGPRX2 contributes to acute drug-induced anaphylaxis. The relatively unique and high-expression levels of MRGPRX2 in skin mast cells has
also been proposed as a strategy for antibody-targeted selective mast cell ablation (D). (CSU- chronic spontaneous urticaria).
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appropriate evidence-base, and predictive test, such compounds
could in theory also serve as prophylactic agents to minimize
MRGPRX2-dependent anaphylaxis risk, particularly in the
perioperative setting.

MRGPRX2 agonists have shown potential as both vaccine
adjuvants (66) and anti-microbial agents, both directly and
through enhancing adaptive immunity (67, 68). Several new
humanized mast cell mouse models have been developed that
will better facilitate the predictive value of such studies to the
human system (26, 69). Desensitisation of MRGPRX2 by
agonists biased towards receptor internalization has also been
proposed as a therapeutic option, particularly in cutaneous
disorders where mast cells can be targeted topically (53). The
broad safety of such an approach would benefit from a much
clearer appreciation of MRGPRX2 gained through investigation
of drug-induced anaphylaxis. It is plausible, for instance, that
polymorphisms in MRGPRX2 and/or its downstream signaling
might skew the nature of the biased agonism rendering this
approach inappropriate at least in some.

Summary and Conclusions
The number of clinically used drugs now known to act as
MRGPRX2 agonists, at least in a laboratory setting, continues
to expand. This reinforces the necessity of better understanding
the role of MRGPRX2 in drug-induced anaphylaxis to determine
if this receptor plausibly explains events where a clear connection
to IgE sensitization cannot be made. In this review, we have
Frontiers in Immunology | www.frontiersin.org 6
discussed potential patient-specific factors that might account for
rare and detrimental sensitivity. Throughout, the key value in
developing better clinical stratification of patients experiencing
drug-induced anaphylaxis, to highlight those likely to have a
MRGPRX2 basis, has also been emphasised. This improved
stratification, accompanied by more comprehensive cell,
genomic and proteomic approaches are needed to firstly
establish and secondly understand the basis of heightened
patient MRGPRX2 responses. This knowledge could be key to
predicting and hence avoiding these potentially devasting
anaphylactic reactions. This insight will moreover better
inform new drug development, establishing the real-world
implications of MRGPRX2 agonism and moreover assisting in
realising the full therapeutic potential of MRGPRX2 as a
drug target.
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