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Abstract

Background: The large-scale analysis of phenomic data (i.e., full phenotypic traits of an organism, such as shape,
metabolic substrates, and growth conditions) in microbial bioinformatics has been hampered by the lack of tools to
rapidly and accurately extract phenotypic data from existing legacy text in the field of microbiology. To quickly
obtain knowledge on the distribution and evolution of microbial traits, an information extraction system needed to
be developed to extract phenotypic characters from large numbers of taxonomic descriptions so they can be used
as input to existing phylogenetic analysis software packages.

Results: We report the development and evaluation of Microbial Phenomics Information Extractor (MicroPIE,
version 0.1.0). MicroPIE is a natural language processing application that uses a robust supervised classification
algorithm (Support Vector Machine) to identify characters from sentences in prokaryotic taxonomic descriptions,
followed by a combination of algorithms applying linguistic rules with groups of known terms to extract characters
as well as character states. The input to MicroPIE is a set of taxonomic descriptions (clean text). The output is a
taxon-by-character matrix—with taxa in the rows and a set of 42 pre-defined characters (e.g., optimum growth
temperature) in the columns. The performance of MicroPIE was evaluated against a gold standard matrix and
another student-made matrix. Results show that, compared to the gold standard, MicroPIE extracted 21 characters
(50%) with a Relaxed F1 score > 0.80 and 16 characters (38%) with Relaxed F1 scores ranging between 0.50 and 0.80.
Inclusion of a character prediction component (SVM) improved the overall performance of MicroPIE, notably the
precision. Evaluated against the same gold standard, MicroPIE performed significantly better than the undergraduate
students.

Conclusion: MicroPIE is a promising new tool for the rapid and efficient extraction of phenotypic character
information from prokaryotic taxonomic descriptions. However, further development, including incorporation of
ontologies, will be necessary to improve the performance of the extraction for some character types.
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Background
In the biological sciences, describing species has long been
a basic and essential component to studies of biodiversity,
systematics, and evolution. Scientists have published de-
tailed descriptions of organisms for centuries, amassing a
rich legacy of taxonomic literature that includes descrip-
tions of phenotypic characters (i.e., the traits of an organ-
ism, such as shape, metabolic substrates, and growth
conditions) for millions of species, written in natural lan-
guage. Microbial descriptions of prokaryotes, in particular,
also contain rich phenotypic information relating to me-
tabolism and environmental niche space. With the gen-
omic revolution, molecular (sequence) data is often
relatively easy to obtain, and integrating molecular and
phenotypic information has proven to be an important ap-
proach to study the evolution of microbial traits on a
broad scale (e.g., [1–3]). However, the majority of pheno-
typic information is currently locked in natural language
descriptions and not readily usable for bioinformatic
comparative analyses.
In order to study the evolution of phenotypic traits on a

large scale, i.e., covering the phenome [4]—the full set of
phenotypic characters—of an organism, character informa-
tion needs to be in a standard structured format (i.e.,
taxon-by-character matrices, which are tables with rows
for taxa and columns for characters) that can be used by
existing phylogenetic comparative analysis software pack-
ages, such as Mesquite [5] and MacClade [6]. Traditionally,
taxon-by-character matrices (hereafter “character matrices”
for short) are created manually by experts through reading
and selecting phenotypic data in published taxonomic de-
scriptions. This process is time-consuming and tedious.
Hence, most studies have focused on a small number of
taxa, or a small number of characters [3, 7–11]. Clearly,
more efficient means of obtaining large amounts of pheno-
typic information for large numbers of taxa are required in
order to develop a comprehensive synthesis of the distribu-
tion and evolution of diverse prokaryotic traits in the fields
of microbial systematics and evolutionary biology. Informa-
tion extraction techniques from text mining can provide
solutions to this problem by (semi-) automatically extract-
ing character states (i.e., character values, referred to here
as “values”) from natural language text.
Text mining has been used to find patterns from plain

text within the biological and biomedical domains [12]. Ex-
amples include the extraction of text to annotate protein-
protein interaction networks [13, 14], metabolic pathways
[15], gene regulatory networks [16], and signaling networks
[17]. Within a text mining system, information extraction is
an important task to extract knowledge elements from
texts. The extraction targets are typically entities (objects of
interests in the domain, such as protein names), the rela-
tionships among entities (e.g. protein-protein interactions),
and biological events (e.g. regulatory events) [18].

The techniques used to recognize the extraction tar-
gets may be categorized as employing 1) an existing
knowledge base (e.g. term dictionaries or ontologies), 2)
machine learning or computational statistics methods,
and/or 3) Natural Language Processing (NLP) methods.
These techniques are typically used in combination to
achieve the best performance. The discovery of domain
entities is often achieved using an existing knowledge
base and enhanced with machine learning mechanisms.
Machine learning algorithms use statistical methods to
model the problem of interest and make predictions
based on the model [19]. For example, Support Vector
Machine (SVM) is a general-purpose, robust, supervised
classifier based on mathematical theory of hyperplane
arrangements [20] that can be trained with tagged exam-
ples, then used to classify new examples. Because of its
robustness and wide applicability, SVM is used in text
mining for document classification [21], sentence classi-
fication [22], named entity recognition [23–25], and be-
yond (e.g., [26, 27]). Extensively used in information
extraction, NLP techniques combine language theories
and statistical methods to analyze syntactic structure of
plain text [28], entity roles, and their relationships. To
capture a variety of phenotypic characters from micro-
bial descriptions, we applied multiple techniques, includ-
ing SVMs and syntactic analyses.
In biodiversity domains, significant strides have been

made recently in the development of automated text min-
ing and natural language processing approaches to extract
morphological data from the taxonomic literature of plants
and animals. One such example is CharaParser [29] devel-
oped for extracting morphological characters from semi-
structured taxonomic descriptions written in a telegraphic
style [30, 31]. Initial tests (not shown), however, showed
that CharaParser performed poorly at extracting data from
prokaryotic taxonomic descriptions because these descrip-
tions contain little morphological data, but rather focus on
physiological and ecological traits (Table 1).
Domain-independent information extraction systems

have been reported, which include Open Information Ex-
traction (OIE) [32] and DeepDive [33]. OIE extracts entity
pairs connected through verbs so that some kinds of char-
acter values could be extracted; for example, “bacteria”
will be returned as an appropriate answer for the question
“what produces methane?” by OIE from the sentence
“These bacteria eat through practically anything and pro-
duce methane gas in the process.” However, although OIE
relies on textual context to extract information, it was not
adequate for our task, which required substantial domain
knowledge. DeepDive provides statistical machine learning
and inference support for building domain-specific, infor-
mation extraction systems for knowledge base construc-
tion from texts [33]. DeepDive has been used successfully
to build information extraction systems for specific
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Table 1 High-level categories (indicated by stars) and characters implemented in MicroPIE

Categories*/characters Example source sentences

G + C Content*

%G + C DNA G + C content is 33.1–34.4 mol%.

Cell Morphology*

Cell Shape Cells are slender, cylindrical, sometimes crooked rods that are 0.35–0.5 μm wide and 2.5 μm
long and occur singly or in pairs, or in longer chains.

Cell Diameter Cells are 0.3–0.5 μm in diameter.

Cell Length In glucose broth, the bacilli are longer, up to 4 μm long, and often occur in pairs.

Cell Width In addition, cells have an outer diameter of 1.5–3.0 μm and width of 0.5–0.9 μm.

Cell Relationship & Aggregations A few strains grow in chains of 3 to 6 elements in glucose broth.

Gram Stain Type The cells are Gram-negative, long, slender rods or sometimes filaments, motile by gliding.

External features Cells are frequently occurring in chains and producing appendages in older cultures.

Internal features No spores are observed.

Motility Cells are non-motile, extremely pleomorphic

Pigment Compounds Pigmented red due to carotenoids.

Growth Condition*

NaCl Minimum Growth requires at least 1.7 M NaCl, optimally 3.0–4.3 M NaCl.

NaCl Optimum

NaCl Maximum

pH Minimum Growth occurs at temperatures in the range 38–68 °C (optimum, 60 °C) and at pH 1.8–4.0
(optimum, pH 3.0).

pH Optimum

pH Maximum

Temperature Minimum

Temperature Optimum

Temperature Maximum

Salinity Requirement for Growth Requires sea salts for growth.

Aerophilicity Strictly anaerobic. Obligately anaerobic.

Magnesium Requirement for Growth Mg2+ and Ca2+ enhance growth.

Vitamins and Cofactors Used For Growth Vitamin K1 and haemin are required for growth.

Antibiotic Physiology*

Antibiotic Sensitivity Sensitive to (μg per disc) tetracycline (30), rifampicin (25) and vancomycin (30), but resistant
to ampicillin (25), erythromycin (15), streptomycin (10) and gentamicin (10).

Antibiotic Resistant The type strain is resistant to erythromycin.

Colony Morphology*

Colony Shape On MA, colonies are convex, translucent, shiny and smooth.

Colony Margin Colonies are golden-yellow, circular and convex, with an entire edge on MA.

Colony Texture On MA, colonies are convex, translucent, shiny and smooth.

Colony Color Colonies are golden-yellow, circular and convex, with an entire edge and a butyrous consistency on
MA.

Metabolic End Products and Secondary Metabolites*

Fermentation Products Acid is produced from glucose and fructose.

Other Metabolic Products Acetoin is produced.

Microbe-Host Interaction*

Pathogenic Pathogenic for humans, causing wound infections.

Disease Caused Pathogenic for honeybees in natural and experimental oral infections.

Pathogen Target Organ Nodosus is infected hooves of sheep and goats.
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domains, for example, Pharmacogenomics [34]. However,
it is essentially an interactive system and requires consid-
erable user-developer interactions and input from domain
experts.
Algorithms/programs specifically designed to extract

microbial-related characters also exist. Humphreys et al.
[35] designed the EMPathIE system based on domain
concepts and various NLP techniques to extract enzyme
and metabolic pathways. Their system was evaluated on
a small corpus with seven journal articles, and the per-
formance was less optimal (recall = 23%, precision =
43%) [36]. Czarnecki et al. [37] proposed a text-mining
system for extracting three types of metabolic reactions.
The task was accomplished through two steps: entity
recognition by existing text mining tools (OSCAR3 [38]
and BANNER [39]) and reaction extraction by scoring
the permutations of the recognized entities in sentences
selected via heuristic/syntactic rules. The performance
for these methods was poor to high, having recall scores
ranging from 20 to 82% and precision scores ranging
from 40 to 88% [37]. These existing text mining systems
could provide part of the solutions to phenotypic charac-
ter extraction but were insufficient for extracting exten-
sive, comprehensive microbial phenotypic traits needed
to generate character matrices.
Ontologies are used not only as a source of knowledge

in information extraction systems, they are also used as
a way to standardize the results of information extrac-
tion. Matching natural language phrases to ontology
terms is often treated as a separate step/task after the
task of extracting character information from text. For
example, Bacteria Biotope Task of the BioNLP Shared
Task [40] includes a task of extracting bacteria and their
habitat information, and a separate task of matching ex-
tracted entities to an ontology.
This paper reports the development and evaluation of a

software application, MicroPIE (Microbial Phenomics

Information Extractor) which extracts 42 microbial
phenotypic characters from prokaryote descriptions and
generates a character matrix. Examples of characters (and
their values) include Cell Diameter (0.5 μm), Cell Length
(1.5–4 μm), Motility (non-motile), and G + C Content
(28–30 mol%). The input to MicroPIE is a set of prokary-
otic taxonomic descriptions (natural language text; e.g.
Fig. 1). An example output matrix is shown in Fig. 2. In
this paper we focus on character extraction from natural
language descriptions. The standardization of the ex-
tracted characters using ontologies to facilitate data shar-
ing and integration (e.g. [41]) is discussed in future work.
Here, we describe the process of defining the extrac-

tion targets for MicroPIE, its system architecture and
character extraction methods, as well as its performance
evaluation metrics. We then report the performance re-
sults of MicroPIE with and without its character predic-
tion component, and compare its performance to the
performance of a group of undergraduate microbiology
students. After discussions on system performance and
algorithm refinements, we conclude the paper with a
future development plan for MicroPIE.

Methods
Extraction target identification and selection
Exploratory studies were first conducted to identify the
characters that needed to be extracted. To broadly rep-
resent the diversity of text and traits in prokaryotic taxo-
nomic descriptions, a corpus of 625 descriptions was
initially sampled from three evolutionarily distant groups
(Cyanobacteria, 98 descriptions; Archaea, 422; and Mol-
licutes, 105). Published taxonomic descriptions were ob-
tained as PDF files from a variety of journals, including
International Journal of Systematic and Evolutionary
Microbiology [42], Proceedings of the National Academy
of Sciences of the United States of America [43], etc.
Each taxonomic description was semi-automatically

Table 1 High-level categories (indicated by stars) and characters implemented in MicroPIE (Continued)

Haemolytic/Haemadsorption Properties No hemolysis occurs on rabbit blood agar.

Metabolic Substrate*

Organic Compounds Used Or Hydrolyzed Utilize carbohydrates for growth.

Organic Compounds Not Used Or Not
Hydrolyzed

Arabinose, mannose, N-acetylglucosamine, maltose are used as sole carbon and energy
source but not mannitol, gluconate, caprate, adipate, citrate and malate.

Inorganic Substances Used Does not require yeast extract for growth, and can use inorganic nitrogen sources such
as sodium nitrate and ammonium chloride.

Inorganic Substances Not Used Does not require yeast extract for growth, and can use inorganic nitrogen sources such
as sodium nitrate and ammonium chloride.

Fermentation Substrates Used Ferments proteinaceous compounds.

Fermentation Substrates Not Used And no acid is produced from glycerol, erythritol, L-arabinose, D-ribose, or potassium 5-
ketogluconate.

Example source sentences for each character within each category are provided. Bolded text in the source sentences indicates the values that MicroPIE
should extract
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transferred into a text file. PDF-to-text conversion and/
or formatting errors were manually corrected so that the
extracted text matched the original.
The collected microbial taxonomic descriptions were

then segmented to 8536 sentences using the Stanford
CoreNLP Toolkit [44]. Two R packages implementing
LSA (Latent Semantic Analysis) [45] and topic models
[46] were used to analyze the content of microbial taxo-
nomic descriptions. This analysis identified 72 topics as
raw categories, such as G + C content, growth
temperature, and cell size. These topics were then com-
bined, resulting in a set of 8 high-level categories that
cover general traits of prokaryotes. Consulting the taxo-
nomic description corpus, the characters were specified
under each category and a set of 42 characters were de-
fined as the extraction targets for MicroPIE (Table 1).

MicroPIE system architecture
Figure 3 shows the system architecture of MicroPIE.
Text input is first converted into a simple XML format
where publication metadata (author, title, and date),
taxon names and description paragraphs are wrapped in
separate elements. Next, the XML files are analyzed by
MicroPIE Preprocessor, Character Predictor, Character
Extractor, and Matrix Generator in sequence to produce
a taxon-by-character matrix. MicroPIE does not auto-
matically detect/remove descriptions that are potentially
repetitive or highly similar, because they could represent

different taxon concepts [47], the subject of research for
some potential users of MicroPIE.
The MicroPIE Preprocessor component has two main

steps: Sentence Splitting and Sentence Cleaning. In the
Sentence Splitting step, the description paragraphs are
split into sentences using Stanford CoreNLP [44]. In the
Sentence Cleaning step, sentences are normalized by re-
placing predefined XML entities (e.g., “&lt;” is replaced
by “<”) and characters that are not compatible with the
UTF-8 charset, and by removing non-alphanumeric
characters (e.g., “⇑”). MicroPIE Preprocessor supplies
the subsequent components with clean, normalized sen-
tences to reduce potential syntactic parsing errors.
The Character Predictor consists of a set of trained SVM

classifiers (LibSVM [48]), one for each character. The func-
tion of the Character Predictor is to predict the characters
a sentence describes by classifying the sentence into one or
more of the 42 character classes (each character in Table 1
is a class). The SVM classifier had been trained with the
8481 sentences from the 625 descriptions mentioned be-
fore, then semi-manually labelled with appropriate charac-
ters (classes). For characters with fewer than ten training
sentences, more sentences were added by searching Google
Scholar. In total, 17,147 training instances (one training in-
stance = one sentence + one character label) were gener-
ated. The number of training sentences per character
ranged from tens to more than 1000. When training the
SVMs for a character, training sentences labeled with the
character were used as its positive training examples, and

Fig. 1 An example input description to MicroPIE, simplified from [61], used with permission

Fig. 2 Part of a hypothetical output matrix. The row in bold corresponds to the description in Fig. 1
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the same number of negative training examples were ran-
domly selected from the remaining sentences. This is done
to keep the positive and negative training examples bal-
anced as SVMs are sensitive to unbalanced training exam-
ples [49]. The trained SVMs achieved an average 98.6%
precision and 99.5% recall in character prediction as evalu-
ated via a 10-fold cross validation.
The Character Predictor uses each of the 42 trained

LibSVM classifiers to classify a sentence. For example, the
sentence, “Cells are 0.3–0.5 μm wide and 8.0–15.0 μm
long”, may be classified to both Cell Width and Cell
Length characters. After character prediction, sentences
are passed to the appropriate Character Extractors to
extract the target values.
A variety of character extractor algorithms have been

implemented in the Character Extractor component; and
they can be categorized into two main groups: linguistic
rules and term matching (details in the section below).
Since one sentence may be classified into multiple char-
acters by the Character Predictor component, the sen-
tences may be processed by multiple extractors. On the
other hand, one extractor may be used for several char-
acter classes of similar nature. For example, Cell Diam-
eter, Cell Width, and Cell Length are processed by the
same extractor that is based on linguistic rules shown in
Fig. 4. The target values for the three characters share a
similar linguistic pattern: the keywords that indicate the
character follow the candidate numeric values within a
3-word window.

The results from these extractors are then post-
processed using predefined heuristic rules to generate
the final results. For example, the Cell Length value
“1.2–2.4 microns” in Fig. 4 was standardized as “1.2–
2.4 μm” in the post-processing step. The last component
of MicroPIE, Matrix Generator, creates a taxon-by-
character matrix with the values extracted for the char-
acters. Multiple values for a character are separated by
number signs (#).

MicroPIE character extraction methods
Linguistic rules
The linguistic rules for a character were identified
from its SVM training examples when developing
MicroPIE. Text segments are extracted as candidate
character values if the text segments satisfy relevant
linguistic rules. Linguistic rules used in MicroPIE in-
clude regular expressions, Part-Of-Speech (POS) tag
patterns and syntactic patterns [50]. In some cases,
multiple linguistic rules are often integrated in one
character extractor to deal with varied textual expres-
sions of a character.
Regular expressions are used to extract character

values with clear lexical clues; for example, a mini-
mum and maximum for the range of pH values (i.e.,
6–8) at which a bacteria could grow can be extracted
from “Grows at pH 6–8”. Regular expressions only
exploit lexical patterns of the sentences. POS tag pat-
terns, in contrast, also take the POS tags of the

Fig. 3 System architecture of MicroPIE
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words into consideration. POS tag patterns often con-
sist of POS tags and specific words. For example, one
simple pattern “<CD >mol%” is used to extract the
number with the POS tag “CD” (i.e., a cardinal num-
ber) followed by “mol%” as the value of G + C
Content.
Syntactic patterns used in MicroPIE are the character-

indicating syntactic dependencies [44] identified from
microbial descriptions. For example, if a sentence classi-
fied as Fermentation Substrate Used contains the phrase
“is produced from”, then this verb phrase often indicates
fermentation related characters (Fig. 5): Noun Phrase 1
(NP1), or the subject (nsubjpass dependency) of the verb
phrase, is often a fermentation product, while Noun
Phrase 2 (NP2), or the object (nmod dependency), is a
fermentation substrate.

Term matching
The term matching approach references the knowledge
base which consists of lists of terms (2563 terms) that
were created manually for 29 of the 42 characters, as
well as terms from other ontologies such as the Plant
Ontology [51] (3136 terms) and the Human Disease
Ontology [52] (27,651 terms). The knowledge base pro-
vides the domain knowledge MicroPIE cannot gather
from the text descriptions alone. For example, if it is
known that “chains” is associated with the character Cell
Relationships & Aggregations, a value (“short chains”)
may be extracted from the sentence “some cells are ar-
ranged in short chains”.
Noun phrases of sentences are first obtained by

applying heuristic rules with POS tag information.
Each term in the term list is used to formulate a
regular expression. Then, the regular expressions for
a character are applied to a noun phrase to deter-
mine whether this phrase is a candidate value of the

character. For some characters whose character
states appear as in the term list without extra varia-
tions, the character values are extracted by checking
whether the terms exist in the sentences. In
addition, syntactic rules can be combined with term
matching to disambiguate the characters of the
phrases through restricting the dependency roles of
the matched phrases in the sentence. For example, if
the NP2 in Fig. 5 matches with a term in the term
list of Fermentation Substrate Used, the confidence
in this phrase being the character value is further
improved.
It is important to note that use of term matching

alone is not sufficient for the character extraction
task, because (1) these terms could occur in descrip-
tions outside of the designated character classes, and
(2) extraction targets are often more complex than a
single phrase. To overcome the insufficient coverage
of the term lists for some characters, coordinated
noun phrases e.g., “chloramphenicol, streptomycin
and kanamycin”, are identified. If one phrase in the
coordinated noun phrases is recognized as a character
value, all phrases in the coordination are assumed to
be the values for the character.

MicroPIE performance evaluation
The performance of MicroPIE was evaluated against a
gold standard character matrix (referred to here as the
gold standard matrix, or GSM) prepared by microbiolo-
gists on our team, and also compared to the perform-
ance of undergraduate microbiology students who
manually extracted a subset of microbial phenotypic
characters.

Development of the gold standard matrix
Taxonomic descriptions (133) from International Journal
of Systematic and Evolutionary Microbiology [42] were
used to create a gold standard matrix (GSM). The GSM
contains the ground truth of the characters for each
taxon. GSM creation was time-consuming due to the
ambiguities in some taxonomic descriptions or the com-
plexity of the characters and syntax. To accelerate the
manual process, the trained SVM classifiers were used

Fig. 4 A shared extractor based on linguistic rules for the characters Cell Diameter, Cell Width, and Cell Length

Fig. 5 An example of a syntactic pattern used in MicroPIE
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to predict the characters in the sentences. Any missed or
incorrect predictions of the SVM classifiers were manu-
ally identified and corrected. Despite the use of the SVM
classifiers, the generation of the GSM took well over 180
person-hours.
In order to compare the character values in the

GSM to machine-generated values from MicroPIE,
the values were formulated in a structured way.
String-based values were formatted as “negation │
modifier │ main value” with the main value as the
only required field. Modifiers are phrases that refine
the main value in terms of degree, extent, or fre-
quently. For example, “not strictly anaerobic” is for-
matted as “not │ strictly │ anaerobic”. The format
for characters with numerical values had additional
fields, “negation │ modifier │ main value │ unit │
sub-character”, with the main value being the re-
quired field which could hold a single or range nu-
meric value. The field sub-character is only used to
indicate the kind of salt (NaCl, sea salts, MgSO4,
etc.), for the characters of NaCl Minimum, NaCl
Optimum or NaCl Maximum. For example, “2–3%
NaCl” is formatted as “2–3 │ % │ NaCl” (negation
and modifier fields are absent in this example).
Of the 133 taxonomic descriptions in the GSM, 22

were used to optimize/test the character extractors, and
the remaining 111 were used for the evaluation of the
system.

MicroPIE performance evaluation metrics
MicroPIE performance metrics were calculated by
comparing the character matrix produced by Micro-
PIE against the GSM. Precision (P), Recall (R), and
F1-measure (F1) scores were adopted to evaluate
MicroPIE performance for each character. For each
value within a character, a hit score was assigned de-
noting how well the extracted value matches the
GSM value on a scale of 0–1, with 1 being a perfect
match, 0 being no match and 0.5 being a partial

match. From these hit scores, P, R and F1 were calcu-
lated as follows:

P ¼ sum of hit scores
# of all extracted values

R ¼ sum of hit scores
# of values in GSM

F1 ¼ 2PR
Pþ R

There were various scenarios to consider in scoring the
match between an extracted and a GSM value. Thus, we
designed both a rigid method and a relaxed method to cal-
culate hit scores which in turn produces rigid and relaxed
P, R, and F1 scores. If all formatted fields of the two values
matched exactly, both the rigid and the relaxed hit scores
were 1 (Example 1 in Table 2). A score of 0 was given if
the main value was not extracted (empty value), a wrong
value was extracted, or the negations did not match (Ex-
ample 2 in Table 2). If the main values and negations
matched, but the other fields did not, the rigid hit score
was 0.5 and the relaxed hit score was 1 (Example 3 in
Table 2). If the negations matched, and main values par-
tially matched, both the rigid and relaxed hit scores were
set to 0.5 (Example 4 in Table 2). For characters with mul-
tiple values, each of the values was compared individually
with the values in GSM and the sum of the individual
scores was the final hit score (Example 5 in Table 2).
Hit scores were computed using string matching. For

imperfect matches, we carried out additional manual re-
view using a designed user interface through Amazon
Mechanical Turk [53]. This method allowed for the
manual adjustment of relaxed scores, if warranted, since
the automatic scoring algorithm biased the extracted
values because it often assigned 0 to partial matches. It
also allowed, in some cases, for the correction of GSM
values that were initially coded incorrectly, and for the
rescoring of these values. Additionally, we compared the
sum of the relaxed hit scores to the sum of the total

Table 2 Examples of how performance evaluation metrics were calculated

Example # Character GSM value # GSM
values

Extracted value # extracted
values

Rigid hit
score

Relaxed
hit score

1 %G + C 55.2 │ mol% 1 55.2 │ mol% 1 1 1

2 Organic Compounds NOT
Used or NOT Hydrolyzed

esculin 1 Neither lactate nor pyruvate 1 0 0

3 Cell Shape short plump │ rods 1 plump │ rods # short 2 0.5 1

4 Motility not │ motile by gliding 1 not │ motile 1 0.5 0.5

5 Fermentation Substrates
Used

arbutin # salicin # D-raffinose
# D-mannose # sucrose
# melibiose

6 melibiose # sucrose # D-mannose
# D-raffinose # salicin # Most strains
ferment arbutin

6 5.5 6

Total 10 11 7.5 8.5

Rigid and relaxed hit scores measuring the match between extracted values and gold standard matrix (GSM) values, illustrated with examples
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value occurrences in the GSM to calculate the % of
values that MicroPIE extracted successfully.

Comparison to a student-generated character matrix
Undergraduate microbiology students at University of
Southern Maine and Kenyon College created a matrix in
their guided class projects for 12 of the 42 prokaryotic
characters from a subset (46) of the 111 taxonomic de-
scriptions in 2014. The relaxed evaluation scores for
characters in the student-generated matrix compared to
the GSM were calculated manually because the values in
the student-generated matrix were formatted differently
from the GSM. The statistical significance of the per-
formance differences between the student-generated
matrix and the MicroPIE output was evaluated by using
Student's t-Test comparing description-based Relaxed_P,
Relaxed_R, and Relaxed_F1 scores.

Impact of character predictor on MicroPIE performance
In MicroPIE, the Character Predicator triages sentences
into different Character Extractors (Fig. 3). To assess the
effects of the Character Predictor component on charac-
ter extraction results, the same matrix generation task
was run with and without Character Predictor. In the
latter case, sentences were passed into Character Ex-
tractor from Preprocessor directly. The performance dif-
ferences in the evaluation metrics between MicroPIE
with/without Character Predictor were compared.

Results
The performance of MicroPIE with character predictor
It took 47 min and 45 s for MicroPIE to process the 111
taxonomic descriptions used as evaluation dataset col-
lected from International Journal of Systematic and Evo-
lutionary Microbiology [42] (total words: 24,334) and
output a matrix, running on a standard PC laptop (OS:
Windows 10; CPU: Intel Core i5-3210 M; RAM: 8GB)
running Java (version 1.8.0_45). In contrast, it took over
180 person-hours to create the gold standard matrix.
Table 3 shows the performance scores of MicroPIE

with the Character Predictor (i.e., SVM) enabled. The
number of values in the GSM and MicroPIE matrix is
shown for each character as well. MicroPIE extracted
4049 total values, resulting in a total relaxed hit score of
3198.5, out of the maximum total values of 4098 from
the GSM (Table 3). In other words, MicroPIE extracted
79.0% of character values successfully. Half of the 42
characters had Relaxed_F1 scores greater than 0.80.
Among those, the Relaxed_F1 score for 11 characters
was greater than 0.90, the Relaxed_F1 score for 16 char-
acters was between 0.50 and 0.80, while the Relaxed_F1
score for only 5 characters was equal to or below 0.50.
Of all the characters, 13 had the same rigid and relaxed
scores, while the other 29 characters had greater relaxed

scores. Thus, MicroPIE extracted at least partially cor-
rect values for most characters.

The performance of MicroPIE without character predictor
The performance scores for MicroPIE with the Charac-
ter Predictor (SVM) component disabled were also cal-
culated. Without Character Predictor component
choosing the appropriate character extractor, MicroPIE
applied all the character extractors to each sentence and
extracted a total of 5969 values, 45.7% more than what
was in GSM (4098). Compared to MicroPIE with SVM,
the total relaxed hit score was increased by 61.5 (from
3198.5 to 3260). At the same time, about 2000 incorrect
values were also extracted, resulting in a decreased ac-
curacy of 54.6% (3260/5969), 30.8% lower than the ac-
curacy of MicroPIE with SVM (79.0%). The performance
differences in Relaxed_P, Relaxed_R and Relaxed_F1
scores with and without Character Predictor are pre-
sented in Fig. 6. MicroPIE with SVM achieved higher
Relaxed_P scores for 34 characters and resulted in a
slightly lower score for only 1 character (Other Meta-
bolic Product; Fig. 6a). MicroPIE without SVM achieved
higher Relaxed_R scores for 22 characters (Fig. 6b). Note
that the differences in recall (Relaxed_R) were smaller
than they were in precision (Relaxed_P). The combined
effect on MicroPIE performance can be seen in Fig. 6c
in terms of Relaxed_F1 scores: MicroPIE with SVM per-
formed better for 32 of the characters but performed
worse for 2 characters (Gram Stain Type and Inorganic
Substances Not Used), albeit by a small margin (Relax-
ed_F1 score of 0.008 and 0.010, respectively).

Comparison between MicroPIE and student performance
The performance scores of the student-generated matrix
were compared to those of the MicroPIE-generated
matrix. MicroPIE performed significantly better than
undergraduate microbiology students (Table 4). The total
relaxed hit score of the MicroPIE matrix (445) was 123%
higher than that of student-generated matrix (200). In
addition, MicroPIE consistently performed better than
students on all the compared characters and in all metrics
(Table 4). Student's t-Tests on the description-based
Relaxed_P, Relaxed_R and Relaxed_F1 scores indicate
statistically significant differences between MicroPIE and
student performances (p-value < 0.01).

Discussion
MicroPIE performance analysis
Characters with more than 14 character values in the
GSM produced Relaxed_F1 scores greater than 0.60
(Fig. 7), indicating that MicroPIE performed better when
character values appeared more frequently in the GSM.
These same characters also appeared more frequently in
the corpus of 625 taxonomic descriptions, providing
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Table 3 Performance of MicroPIE with Character Predictor

Character Extraction methods # of GSM
Values

# of MicroPIE
Output Values

P R F1 Relaxed_P Relaxed_R Relaxed_F1

%G+ C linguistic rules N 90 96 0.91 0.97 0.94 0.91 0.97 0.94

Cell Shape term matching S 125 166 0.49 0.65 0.56 0.64 0.84 0.73

Cell Diameter linguistic rules N 14 18 0.67 0.86 0.75 0.72 0.93 0.81

Cell Length linguistic rules N 68 68 0.89 0.89 0.89 0.93 0.93 0.93

Cell Width linguistic rules N 56 58 0.91 0.95 0.93 0.93 0.96 0.95

Cell Relationships & Aggregations term matching S 25 27 0.72 0.78 0.75 0.82 0.88 0.85

Gram Stain Type term matching S 64 62 1.00 0.97 0.98 1.00 0.97 0.98

External Features term matching S 23 21 0.55 0.50 0.52 0.62 0.57 0.59

Internal Features term matching S 63 56 0.78 0.69 0.73 0.91 0.81 0.86

Motility term matching S 76 77 0.71 0.72 0.71 0.84 0.86 0.85

Pigment Compounds term matching S 58 51 0.90 0.79 0.84 0.97 0.85 0.91

NaCl Minimum linguistic rules N 44 46 0.74 0.77 0.76 0.80 0.84 0.82

NaCl Optimum linguistic rules N 33 30 0.92 0.83 0.87 1.00 0.91 0.95

NaCl Maximum linguistic rules N 44 46 0.75 0.78 0.77 0.83 0.86 0.84

pH Minimum linguistic rules N 24 24 0.92 0.92 0.92 0.92 0.92 0.92

pH Optimum linguistic rules N 26 27 0.96 1.00 0.98 0.96 1.00 0.98

pH Maximum linguistic rules N 23 24 0.92 0.96 0.94 0.92 0.96 0.94

Temperature Minimum linguistic rules N 58 44 0.89 0.67 0.77 0.89 0.67 0.77

Temperature Optimum linguistic rules N 62 40 1.00 0.65 0.78 1.00 0.65 0.78

Temperature Maximum linguistic rules N 58 44 0.91 0.69 0.78 0.91 0.69 0.78

Aerophilicity term matching S 83 89 0.63 0.68 0.65 0.69 0.74 0.72

Magnesium Requirement for Growth term matching S 4 2 0.50 0.25 0.33 1.00 0.50 0.67

Vitamins and Cofactors Used For
Growth

term matching S 14 26 0.39 0.71 0.50 0.39 0.71 0.50

Salinity Requirement for Growth linguistic rule + term
matching S

42 65 0.58 0.89 0.70 0.60 0.93 0.73

Antibiotic Sensitivity linguistic rule + term
matching S

96 84 0.91 0.80 0.85 0.93 0.81 0.87

Antibiotic Resistant linguistic rule + term
matching S

64 49 0.96 0.73 0.83 0.96 0.73 0.83

Colony Shape term matching S 102 98 0.97 0.94 0.96 0.98 0.94 0.96

Colony Margin term matching S 43 44 0.89 0.91 0.90 0.96 0.98 0.97

Colony Texture term matching S 69 75 0.85 0.92 0.88 0.86 0.94 0.90

Colony Color term matching S 80 127 0.53 0.84 0.65 0.59 0.93 0.72

Fermentation Products linguistic rules + term
matching S

127 141 0.59 0.66 0.62 0.64 0.71 0.67

Other Metabolic Product term matching S 13 56 0.07 0.31 0.12 0.07 0.31 0.12

Pathogenic term matching S 3 3 0.50 0.50 0.50 0.67 0.67 0.67

Disease Caused term matching S 7 11 0.27 0.43 0.33 0.36 0.57 0.44

Pathogen Target Organ term matching S 4 9 0.22 0.50 0.31 0.22 0.50 0.31

Haemolytic & Haemadsorption
Properties

term matching S 10 7 0.57 0.40 0.47 0.57 0.40 0.47

Organic Compounds Used Or
Hydrolyzed

term matching S 620 480 0.85 0.66 0.74 0.89 0.69 0.77

Organic Compounds Not Used Or
Not Hydrolyzed

term matching S 733 468 0.92 0.58 0.71 0.92 0.59 0.72
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abundant domain terms and robust linguistics rules dur-
ing the development of MicroPIE and hence resulting in
a final algorithm that can more reliably extract the ap-
propriate target values.
The higher performance (Relaxed_F1 score > 0.70) for the

13 numerical characters (superscript N in Table 3) reflects
the effectiveness of various linguistic rules. Linguistic rules,
specifically syntactic patterns, also resulted in higher per-
formance for some string-valued characters (superscript S
in Table 3) when useful patterns about the character values
were well captured by the extractors; for example, Anti-
biotic Sensitivity and Antibiotic Resistant achieved high
Relax_F1 scores of 0.87 and 0.83 respectively.
The term matching method achieved high extraction

performance for some characters as well, such as Gram
Stain Type and Colony Shape (Table 3). However, multiple
factors could contribute to the failure of term matching
method (e.g., External Features, Disease Caused, and
Pathogen Target Organ). The coverage of the term lists
may be limited (particularly for character values with low
frequencies of occurrence), terms may be included in the
lists of multiple characters making it difficult to determine
the correct character in a specific sentence, or terms may
be only part of a value to be extracted (for example, the
term “brown” in the term list for Colony Color is part of
the value “slightly brown”). In addition, MicroPIE at-
tempts to extract a complete phrase as opposed to a single
word, but this does not solve the cases where one phrase
contains multiple values (e.g., Gram Strain Type and Cell
Shape expressed in one phrase “Gram-negative rods”) or
where one value is expressed across phrase boundaries
(e.g., Cell Shape: “rod-shaped with slightly irregular sides
and pointed ends”). Learning the relationships within and
between phrases will help address these problems.
During the development of the GSM and evaluation of

MicroPIE, we experienced a fair amount of tension be-
tween the need to extract as much information as possible
and the need to fit the values in the matrix meaningfully
so the values of each character were comparable between
taxa. This largely stemmed from the variations in descrip-
tion content, and sometimes the vagueness of the
language, in taxonomic descriptions. For example, the
following sentence,

“Growth occurs at −2 °C in marine broth. Good
growth occurs on MA at 1–25 °C. No growth occurs
at 30 °C or higher”,

is ambiguous with respect to the optimal growth
temperature. Although experts could judge “1–25 °C” as
the optimal growth temperature (Temperature
Optimum, as done in the GSM), MicroPIE identified
“1–25 °C” as a temperature related growth condition,
but did not output the value as the optimal. Such ambi-
guity presents a challenge for MicroPIE. Thus, we de-
signed MicroPIE to adhere to the principle of “stay true
to the original descriptions” and to not attempt to make
a judgement that needs much expert knowledge.

The effects of character predictor
MicroPIE with the SVM Character Predictor showed sig-
nificantly higher precision than MicroPIE without Charac-
ter Predictor (Fig. 6a). With highly accurate character
prediction, sentences containing specific characters were
triaged to their specific character extractors, rather than
to all character extractors non-discriminatorily. The triage
alleviated issues in term matching caused by terms that
are shared by multiple characters. For example, the term
“filamentous” appears in term lists of both Cell Shape and
Colony Shape. Thus, MicroPIE without Character
Predictor extracted this term as values of both char-
acters, while Character Predictor utilized the informa-
tion in the complete sentence to predict the correct
character so that the correct term list was used. Our
results show that using SVM resulted in increased
Relaxed_P scores for five characters with shared terms
in the term lists: Cell Shape improved by 0.04, Exter-
nal Features 0.48, Internal Features 0.58, Colony
Shape 0.17, and Colony Texture 0.15.
Precision and recall scores are known to have an

inverse relationship [54]—higher precision often
means lower recall—which is also manifested in this
case with the slightly lower recalls for MicroPIE with
Character Predictor (Fig. 6b). Characters showing the
larger decreases in recall scores were the characters
with values having low frequencies of occurrence (i.e.,
Vitamins and Cofactors Used For Growth, Disease

Table 3 Performance of MicroPIE with Character Predictor (Continued)

Inorganic Substances Used term matching S 36 45 0.59 0.74 0.65 0.61 0.76 0.68

Inorganic Substances Not Used term matching S 61 41 0.81 0.54 0.65 0.81 0.54 0.65

Fermentation Substrates Used linguistic rules + term
matching S

411 629 0.57 0.88 0.69 0.59 0.91 0.72

Fermentation Substrates Not Used linguistic rules + term
matching S

442 475 0.85 0.91 0.88 0.86 0.93 0.89

In total 4098 4049 Total relaxed hit
scores

3198.5

Abbreviations: Superscript N numerical character, S string-based/categorical character. The characters with > = 0.8 in Relaxed_F1 score are shown in bold
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Caused, and Haemolytic & Haemadsorption Proper-
ties) and hence a few missed values resulted in much
lower recall scores. For these characters, the insuffi-
cient training examples (<50) affected the SVMs abil-
ity to make correct predictions for new data (i.e., the
test taxonomic descriptions). Although more training
examples were available for NaCl Minimum, Aerophi-
licity, and Inorganic Substances Not Used, the

Character Predictor predicted more than 10% of rele-
vant sentences as irrelevant, resulting in decreased re-
call performance for these characters. This suggests
that the training examples of these characters were
not very good representatives of the test descriptions.
Despite the lower recall scores, the extraction accur-
acy and F1 scores suggest that SVMs contributed
positively to MicroPIE performance.

Fig. 6 The performance comparison between MicroPIE with and without Character Predictor. a Relaxed_P, b Relaxed_R, and c Relaxed_F1 scores
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Comparison between MicroPIE and student performance
A detailed analysis of student’s matrix showed that their ex-
traction errors may be attributed to students’ inability to
understand the descriptions completely. Their lower per-
formance suggests that, lacking sufficient domain know-
ledge, novices with only some background knowledge are
not capable of extracting microbial characters with high ac-
curacy. The performance comparison between MicroPIE
and students highlights the challenges in this task and the
need for high quality domain knowledge for computer algo-
rithms to perform well and further improve.

Differentiating MicroPIE with entity annotators
Many annotation tools (e.g., BioPortal Annotator [55])
match individual phrases in textual descriptions to
ontology terms. Such systems are “Entity Recognition”
systems, where individual entities (represented by

ontology terms) are recognized, but relationships among
these entities are not identified. In contrast, a key func-
tion of MicroPIE is to relate character values to appro-
priate characters. Once the character values are
extracted and related to their characters, they can then
be matched to terms in ontologies using algorithms such
as BioPortal Annotator algorithm (see Future Work).

Future work
Although the performance of current MicroPIE is promis-
ing, we have identified several areas it can be further im-
proved. New methods for detecting extraction boundaries
and for constructing linguistic rules automatically need to
be explored. One such candidate is Unsupervised Semantic
Parsing (USP), which combines Markov network and first-
order logic to cluster terms with similar semantic roles
based on their syntactic dependencies with surrounding
text [56]. With this technique, instead of handcrafting a
rule to extract anything following the verb “hydrolyze”, the
cluster of terms, “hydrolyse”, “hydrolyze” and “degrade”, will
enable MicroPIE to generate a more robust rule of extract-
ing anything following any of the terms in the cluster.
Another way in which MicroPIE could be improved

would be to replace simple term lists with an ontology.
The term lists in this study formed the foundation for a
new microbial ontology, MicrO [57]. MicrO contains
classes of phenotypic and metabolic characters, assays,
and culture media of prokaryotes, connecting terms to
19 other ontologies using logical axioms. It also includes
a large number of synonyms and alternate spellings for
terms found in the corpus of taxonomic descriptions
used in this study. MicrO would provide a richer know-
ledge base for MicroPIE, and would assist in the disam-
biguation of competing characters. It would also provide
a controlled vocabulary for characters and character

Table 4 The performance comparison between the students and MicroPIE on 12 characters in 46 taxonomic descriptions

Character Student Output MicroPIE Output

Relaxed_P Relaxed_R Relaxed_F1 Relaxed_P Relaxed_R Relaxed_F1

Motility 0.35 0.25 0.29 0.89 0.86 0.87

Pigment Compounds 0.07 0.13 0.09 1.00 0.96 0.98

pH Minimum 0.58 0.75 0.65 0.91 0.91 0.91

pH Optimum 0.72 0.59 0.65 0.96 1.00 0.98

pH Maximum 0.60 0.79 0.68 0.91 0.95 0.93

Temperature Minimum 0.67 0.35 0.46 0.92 0.87 0.90

Temperature Optimum 0.63 0.21 0.31 1.00 0.88 0.94

Temperature Maximum 0.75 0.34 0.47 0.95 0.88 0.91

Aerophilicity 0.52 0.55 0.53 0.71 0.77 0.74

Antibiotic Sensitivity 0.57 0.37 0.45 0.94 0.87 0.90

Antibiotic Resistant 0.91 0.70 0.79 0.98 0.80 0.88

Fermentation Products 0.47 0.28 0.35 0.69 0.69 0.69

Fig. 7 Scatter plot showing the relationship between Relaxed_F1
scores and frequency of character value occurrence in GSM for each
of the 42 characters. The axis of the number of GSM values
is log-transformed
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states, and identify synonymous phrases that frequently
occur in prokaryotic taxonomic descriptions. In addition,
the logical axioms in the ontology would make it pos-
sible for higher-order knowledge to be automatically in-
ferred from extracted characters (e.g., a particular
species is a heterotroph if it metabolizes an organic
compound, such as glucose). Future versions of Micro-
PIE will utilize MicrO and a few other ontologies such
as the Cell Ontology (CL [58]) and the Ontology of
Units of Measure (OM [59]) to improve extraction per-
formance and also standardize character output with
ontology terms. In addition to a lot of new microbial
phenotypic terms, MicrO has imported many terms rele-
vant to our task from other ontologies (and at the same
time filtered out irrelevant terms), using it in MicroPIE
is the most logical way forward.
A larger number of training sentences and expanded

knowledge resources (e.g., disease name ontologies, organ
name ontologies) will also improve the performance of
character extraction methods, especially for those charac-
ters with fewer occurrences in the current training sen-
tences and the GSM (Fig. 7). MicroPIE could also be
improved by expanding the variety of target characters for
extraction. The current version of MicroPIE does not ex-
tract characters such as microbial filterability, habitats,
physiological tests, lipids, and hosts. MicroPIE also could
be enhanced by giving it the capability of discovering new
characters from taxonomic descriptions, and by process-
ing descriptions from different microbial taxa, e.g., cyano-
bacteria and eukaryotic phototrophs which follow the
Botanical Code rather than the Bacteriological Code [60].
Although MicroPIE was designed to extract data from

semi-structured taxonomic descriptions, in future experi-
ments, we intent to evaluate its performance on other de-
scription texts, such as less structured descriptions of
prokaryotic taxa in PubMed or in online databases (such
as http://www.omicsdi.org/), and to research and expand
its capability and robustness. The combination of data ex-
tracted from semi-structured descriptions and incorpor-
ation of the rich MicrO ontology will certainly be useful
for MicroPIE to tackle different description styles/formats.

Conclusion
We report the development and evaluation of MicroPIE, a
phenotypic information extraction system for prokaryotic
taxonomic descriptions. We show that MicroPIE greatly
increases the speed by which phenotypic character infor-
mation can be extracted from published taxonomic de-
scriptions. Evaluation against a hand-generated gold
standard matrix showed that MicroPIE performed well
(Relaxed_F1 score > 0.80) on over half of designated char-
acters and achieved an overall accuracy of 79.0% and over-
all performance that was significantly better than the
performance of undergraduate microbiology students. It

was also shown that inclusion of the Character Predictor
component using SVM (Support Vector Machine) im-
proved the overall performance of MicroPIE. We there-
fore conclude that MicroPIE has the potential to
significantly accelerate the construction of phenotypic
character matrices for prokaryotic taxa, removing a funda-
mental roadblock for the study of large-scale character
evolution in microorganisms. We expect future improve-
ments will make it more robust and effective.
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