
Research Article
MicroRNAs as Potential Biomarkers for Chemoresistance in
Adenocarcinomas of the Esophagogastric Junction

Christina Just,1 Juliana Knief ,2 Pamela Lazar-Karsten,1 Ekaterina Petrova,3
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Concerning adenocarcinomas of the esophagogastric junction, neoadjuvant chemotherapy is regularly implemented, but
patients’ response varies greatly, with some cases showing no therapeutic effect, being deemed as chemoresistant. Small,
noncoding RNAs (miRNAs) have evolved as key players in biological processes, including malignant diseases, often promoting
tumor growth and expansion. In addition, specific miRNAs have been implicated in the development of chemoresistance
through evasion of apoptosis, cell cycle alterations, and drug target modification. We performed a retrospective study of 33
patients receiving neoadjuvant chemotherapy by measuring their miRNA expression profiles. Histologic tumor regression was
evaluated using resection specimens, while miRNA profiles were prepared using preoperative biopsies without prior therapy. A
preselected panel of 96 miRNAs, known to be of importance in various malignancies, was used to test for significant differences
between responsive (chemosensitive) and nonresponsive (chemoresistant) cases.*e cohort consisted of 12 nonresponsive and
21 responsive cases with the following 4 miRNAs differentially expressed between both the groups: hsa-let-7f-5p, hsa-miRNA-
221-3p, hsa-miRNA-31-5p, and hsa-miRNA-191-5p. *e former 3 showed upregulation in chemoresistant cases, while the
latter showed upregulation in chemosensitive cases. In addition, significant correlation between high expression of hsa-
miRNA-194-5p and prolonged survival could be demonstrated (p value <0.0001). In conclusion, we identified a panel of 3
miRNAs predicting chemoresistance and a single miRNA contributing to chemosensitivity. *ese miRNAs might function as
prognostic biomarkers and enable clinicians to better predict the effect of one or more reliably select patients benefitting from
(neoadjuvant) chemotherapy.

1. Introduction

Since the discovery of microRNAs (miRNAs), which are
small, noncoding RNAs with a length of 19–22 nucleotides
[1], multiple studies have focused on the importance of their
function and participation in human diseases ranging from
inflammatory disorders and autoimmune diseases to ma-
lignant tumors including melanoma, various epithelial
cancers, and hematological malignancies [2]. miRNAs have

increasingly been used not only as diagnostic but also as
prognostic biomarkers, and several studies have suggested
the existence of tissue-specific miRNA signatures which
might be used to classify different cancer types [3–5].

Regarding human cancer in general, miRNAs have been
found to act not only as oncogenes, promoting tumor
growth and dissemination, but also as tumor suppressors,
inhibiting tumor cell proliferation and migration and in-
ducing apoptosis [6]. Sometimes, their function varies in a
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single organ, showing divergent behavior in specific histo-
logic tumor types (for example, adenocarcinoma vs. squa-
mous cell carcinoma of the esophagus) [7].

Concerning carcinomas of the upper gastrointestinal
tract, especially gastric cancer and adenocarcinoma of the
esophagogastric junction, a multitude of miRNAs have been
identified as useful biomarkers: for example, upregulation of
miRNA-17-5p, miRNA-20a, miRNA-106b, miRNA-150,
andmiRNA-93 has been reported to inhibit apoptosis and to
promote cell cycle progression, whereas downregulation of
miRNA-29 and miRNA-375 has been shown to increase cell
growth and migration [4, 8]. Other commonly dysregulated
miRNAs include miRNA-21 and miRNA-19a/b which both
promote lymph node and distant metastases as well as in-
vasion of blood vessels when overexpressed [4]. In addition,
a seven-miRNA panel consisting of miRNA-10b, miRNA-
21, miRNA-223, miRNA-338, let-7a, miRNA-30a-5p, and
miRNA-126 has been found to reliably predict survival in
gastric cancer patients and is related not only to overall but
also relapse free survival [9]. Besides, various miRNAs have
been found to be associated with poor survival in both
gastric carcinomas and adenocarcinomas of the esoph-
agogastric junction, including miRNA-16, miRNA-21,
miRNA-29, miRNA-125b, miRNA-130a, miRNA-141,
miRNA-203a, miRNA-222, miRNA-302c, and miRNA-451
[8, 10–15].

Complementing their diagnostic and prognostic sig-
nificance, miRNAs have also been found to contribute to
chemoresistance and/or chemosensitivity via regulation of
apoptosis, DNA damage, and repair mechanisms, and ep-
ithelial-mesenchymal transition and modulation of drug
targets, drug-metabolizing enzymes, and drug efflux
transporters [16, 17]. Especially in gastric cancer, the fol-
lowing miRNAs (amongst others) have been found to
substantially contribute to chemoresistance: let-7b, miRNA-
106a, miRNA-142, miRNA-143, miRNA-21, miRNA-338,
miRNA-340, miRNA-497, miRNA-503, and miRNA-
582—their target genes including PTEN (phosphatase and
tension homolog), BCL2 (B-cell lymphoma 2), and IGF1R
(insulin-like growth factor 1 receptor) [18–25]. For esoph-
ageal (adeno-) carcinoma, miRNA-141, miRNA-148a,
miRNA-200c, miRNA-221, miRNA-27a, and miRNA-296
are said to contribute to chemoresistance [26]. *is miR-
mediated chemoresistance is mainly directed against com-
monly used therapeutic agents such as cisplatin, 5-fluoro-
uracil, and vincristine [27].

Following these observations and taking into account
that data concerning chemoresistance in carcinomas of the
esophagogastric junction are still scarce and many studies
have focused on cell lines rather than tissue specimen, our
study aimed to further contribute to the knowledge for this
entity by comparing miRNA profiles in chemoresistant and
chemosensitive cancer tissue.

2. Materials and Methods

2.1. Selection of Cases. Samples from formalin-fixed, par-
affin-embedded (FFPE) tissue containing adenocarcinomas
of the esophagogastric junction were included in the present

study. All patients received neoadjuvant chemotherapy.
Only tumor-containing samples of preoperative biopsies
(without prior therapy) were used for miRNA analysis, while
whole-resection specimens (postchemotherapeutic) were
taken to determine the degree of histological regression and
thereby treatment response. All cases were collected as part
of routine clinical care at the University Hospital of
Schleswig-Holstein, Campus Luebeck, during 1997–2013.
All analyses performed were in accordance with the Dec-
laration of Helsinki and had been approved by the local
Ethics Committee beforehand (reference number 14-242A).

2.2. Histologic Examination. Samples were carefully exam-
ined by two researchers (CJ and JK) with a light microscope
(Axioskop, Zeiss, Jena, Germany), and histologic tumor
types were determined using the current WHO standard
[28]. Regression after chemotherapy was determined using
haematoxylin- and eosin-(H&E-) stained slides and rated
according to the system devised by Becker et al. [29]. Re-
gression grades 1a and 1b were considered as having
responded to therapy (responder group), while regression
grade 3 was considered nonresponsive (nonresponder
group). Cases with regression grade 2 were not included in
the study as an assignment to either group could not reliably
be undertaken (partial response).

2.3. RNA Isolation and miRNA Profiling. RNA for profiling
of miRNA was isolated from FFPE tissue using the
RecoverAll™ total nucleic acid isolation kit (Applied Bio-
systems, Carlsbad, California, USA). RNA concentrations
were quantified using the NanoDrop Spectrophotometer
(Nanodrop Technologies, Montchanin, New Castle, Dela-
ware, USA). Afterwards, reverse transcription (RT) using
amounts of 20 ng of total RNA by applying the miRCURY
LNA™ Universal cDNA Synthesis Kit II (Exiqon, Vedbaek,
Denmark), containing synthetic RNA Spike Ins, was per-
formed. 5 μl of the RT products was combined with the
PCR master mix and nuclease-free water from the miR-
CURY LNA™ ExiLENT SYBR® Green master mix (Exiqon,
Vedbaek, Denmark). After that, 10 μl of the PCR Master
mix-cDNA mix was added to each 384-well plate of the
miRCURY LNA™ Universal RT miR Ready-to-Use PCR,
Cancer focus panel, V4 (Exiqon, Vedbaek, Denmark). Fi-
nally, qPCR was performed by using the LightCycler® 480
instrument (Roche molecular systems Inc., Mannheim,
Germany). All reactions were carried out according to the
manufacturer’s instructions. Initial data analysis was exe-
cuted by using the LightCycler® 480 Software (Roche mo-
lecular systems Inc., Mannheim, Germany) to obtain raw Ct
values. Ct values were used to determine the amount of
miRNA in a sample (both parameters showing an inverse
correlation).

2.4. Preprocessing of Data. In order to compensate for
variations in quality of extracted RNA, extraction yield, and
efficiency of reverse transcription, normalization of data was
carried out using GenEx Software Version 6.1 (Trial Version;
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MultiD Analyses AB, Munich). *e first normalization
method used was the Normfinder algorithm which has been
described in detail earlier [30]. In our analysis, a panel of 38
miRs from the data set and a single miR (hsa-miRNA-103a-
3p) were selected for preprocessing as hsa-miRNA-103a-3p
was stably expressed throughout the cohort and has been
reported as being highly reliable for normalization of data
[31]. Secondly, external controls (so-called Spike
Ins—preformulated, commercially available RNAs with
defined lengths and binding capacities), which were in-
cluded in the beginning as potential references, were used to
normalize the data [32].*e last normalization method used
was the global mean algorithm which—in three step-
s—reduces nonspecific background noise, calculates the
arithmetic mean value for all samples, and then subtracts
this value from each individual value [33]. *e global mean
method is usually applied in cases where large numbers of
miRNAs are tested and has been reported to be superior to
other normalization methods in this particular setting [34].

2.5. Analysis of Subgroups. To test for significant differences
in miRNA expression profiles between responder and
nonresponder groups, the Mann–Whitney-U test for un-
paired samples was applied using SPSS Statistics Version 22
(IBM, Ehringen, Germany). Because exploratory data
analysis was performed, adjusting for multiple testing was
not required. Afterwards, overlaps of differentially expressed
miRNAs between the applied normalization procedures
described above were compared.

2.6. Correlation with Clinical Characteristics. To estimate
differences in clinical features (age, gender, differentiation
grade, nodal status, depth of infiltration, perineural invasion,
lymphovascular invasion, and presence of distant metasta-
ses) between both groups and between clinical features and
miRNA expression levels, the χ2 test was applied and a p

value <0.05 was considered statistically significant.

2.7. Correlation with Overall Survival. To assess the prog-
nostic value of miRNA expression, the median for each
analyzed miRNA was calculated. Cases were then di-
chotomized, either showing an expression level above or
below the median as described previously [35]. Overall
survival curves were visualized via Kaplan–Meier estimates
using SPSS Statistics Version 22 (IBM, Ehringen, Germany).
In addition, Cox regression analysis was used to test for
independence, taking into consideration gender, depth of
infiltration, differentiation grade, nodal status, and presence
or absence of distant metastases.

Data were adjusted for multiple testing using the Bon-
ferroni procedure; after that, a p value <0.00052 was con-
sidered statistically significant for this test.

3. Results

3.1. Histology. Overall, 24 cases were classified as tubular
adenocarcinoma, 3 cases as poorly cohesive carcinoma, 2

cases as mucinous adenocarcinoma, and 4 cases as un-
differentiated/unclassifiable according to the current WHO
standard [36]. After thorough histologic examination of
whole-resection specimens, the cohort consisted of 12
nonresponders (regression grade 3) and 21 responders
(regression grades 1a and 1b). Tumor regression was de-
termined as mentioned above; representative examples of
regression grading are shown in Figure 1. Further charac-
teristic features of the study cohort are summarized in
Table 1.

3.2. Correlation with Clinical Characteristics. Correlation
between both groups showed that undifferentiated carci-
nomas and poorly differentiated carcinomas (differentiation
grade 3) were more common in the nonresponder group,
while responders showed a higher proportion of tubular
adenocarcinomas (p values 0.034 and 0.043, respectively).
No differences could be detected concerning gender, depth
of infiltration, lymphovascular/perineural invasion, nodal
status, or presence of distant metastases (p values between
0.087 and 0.443, as shown in Table 1).

3.3. ;erapy Regimen. Neoadjuvant chemotherapy was ad-
ministered in all cases, and 3 patients received radiation
therapy in addition (both belonging to the responder group
with irradiation doses of 45Gy, 59Gy, and 66Gy,
respectively).

Concerning the nonresponder group, neoadjuvant
chemotherapy consisted in most cases of 5-fluorouracil
combined with leucovorin, oxaliplatin, and docetaxel (so-
called FLOT regimen; 8/12 patients). *e remaining
patients received either 5-fluorouracil in combination with
cisplatin (2 cases) or epirubicin combined with oxaliplatin (2
cases).

In the responder group, a combination of cisplatin and
5-fluorouracil was administered in most cases (12/21 pa-
tients). Only 4 patients received treatment using the FLOT
regimen, and 2 were treated with 5-fluorouracil in combi-
nation with leucovorin and etoposide. *e remaining three
patients received chemotherapy without 5-fluorouracil
containing oxaliplatin, etoposide, and irinotecan.

3.4.miRNAAnalysis. Overall, the following 4 miRNAs were
differentially expressed between responder and non-
responder groups: hsa-let-7f-5p, hsa-miRNA-191-5p, hsa-
miRNA-221-3p, and hsa-miRNA-31-5p.

Concerning the different normalisation methods, only
minor variations were detected: applying the Normfinder
algorithm, hsa-let-7f-5p, hsa-miRNA-191-5p, and hsa-
miRNA-31-5p were differentially expressed (p values 0.03,
0.005, and 0.047). For normalisation with Spike Ins, dif-
ferences in expression of hsa-miRNA-221-3p and hsa-
miRNA-31-5p could be observed (p values 0.022 and 0.02).
For normalisation with global mean, hsa-let-7f-5p, hsa-
miRNA-191-5p, hsa-miRNA-221-3p, and hsa-miRNA-31-
5p were differentially expressed (p values 0.025, 0.014, 0.04,
and 0.033, respectively). Finally, for normalisation using
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hsa-miRNA-103a-3p, hsa-let-7f-5p and hsa-miRNA-31-5p
showed differences in expression (p values 0.038 and 0.036).

*roughout all normalization methods, there was higher
expression of hsa-let-7f-5p, hsa-miRNA-221-3p, and hsa-
miRNA-31-5p in the nonresponder group, while hsa-
miRNA-191-5p showed higher expression in the responder
group. *e respective miRNA expression patterns (Ct
values) are depicted in Figure 2.

3.5. miRNAs and Tumor Differentiation Grade. Correlation
between miRNA expression profiles and tumor differenti-
ation grade found that poorer differentiation (G3) was
significantly associated with decreased levels of hsa-miRNA-
200a-3p and elevated levels of hsa-miRNA-21-5p, hsa-
miRNA-222-3p, hsa-miRNA-25-3p, and hsa-let-7d-5p (p
values 0.03–0.031).

3.6.miRNAs and Patients’ Prognosis. Complete survival data
were available for 29 patients with a mean follow-up period
of 44.52months (range 1–100months). During follow-up,
12 patients (41.38%) died. After adjusting for multiple

testing, significant differences in survival according to high
or low expression of miRNAs were detected only for hsa-
miRNA-194-5p with a p value <0.0001. Survival times in
patients with higher expression were nearly three times
longer than in those with low expression (97.67months vs.
32.69months). Cox regression analysis, however, could not
show independence for prediction of patients’ survival after
taking into consideration gender, depth of infiltration,
differentiation grade, nodal status, and presence or absence
of distant metastases (p � 0.462; hazard ratio 1.469; 95%
confidence interval 0.527–4.096). In addition, there was no
correlation between expression levels of hsa-miRNA-194-5p
and drug response (p � 0.456).

Appropriate survival curves and mean survival times
including 95% confidence interval are shown in Figure 3 and
Table 2.

4. Discussion

*emechanisms underlying chemotherapy and multidrug
resistance in human cancer are polymorphic [37]. In this
context, miRNAs have been found to regulate apoptosis,
DNA repair, and epithelial-mesenchymal transition and

(a) (b)

(c)

Figure 1: Pictures of histologic tumor regression: (a) regression grade 1a (no vital tumor); (b) regression grade 1b (<10% vital tumor cells);
(c) regression grade 3 (>50% vital tumor cells). H&E staining, magnification 200x.
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to modulate drug targets, drug-metabolizing enzymes, or
drug efflux transporters [16, 17]. In our study, analyzing
adenocarcinomas of the esophagogastric junction, we
identified a panel of four miRNAs which were differen-
tially expressed between patients responding or not
responding to neoadjuvant chemotherapy. We found
higher expression of hsa-let-7f-5p, hsa-miRNA-221-3p,
and hsa-miRNA-31-5p in the nonresponder group, while
hsa-miRNA-191-5p showed higher expression in the re-
sponder group. *e molecular mechanisms contributing
to chemoresistance or chemosensitivity concerning these
four miRNAs are—up to date—not fully understood.
Nevertheless, the function and effects of these miRNAs as
stated in the literature might give some clues as to what
the underlying mechanisms might be: for hsa-let-7f-5p, a
proangiogenic effect has been reported; thus, over-
expression might contribute to tumor progression via
tumor neoangiogenesis [38–40]. For hsa-miRNA-221-3p,

cell cycle regulation has been reported as a key mechanism
in tumor progression; in addition, in cervical cancer,
increased expression levels are associated with epithelial-
mesenchymal transition, migration, and invasion by
targeting TWIST2 [41, 42]. For human glioblastomas,
cervical and colon carcinoma cells downregulation of
PTEN and activation of Akt and STAT3—mediated by
increased levels of hsa-miRNA-221-3p—have been shown
as key players in tumor cell survival and radio- and
chemoresistance [43–46]. In addition, in hepatocellular
carcinoma, upregulation of hsa-miRNA-221-3p decreases
the expression of HDAC6, a tumor suppressor, and
promotes tumorigenesis [47]. One study focusing solely
on esophageal adenocarcinomas showed that the che-
moresistance was conveyed through alteration of the
Wnt/β-catenin pathway and DKK2, CDH1, CD44, MYC,
and ABCG2 expression [26]. Concerning hsa-miRNA-31-
5p, only few studies have addressed how increased ex-
pression contributes to chemoresistance: in malignant
pleural mesothelioma and hepatocellular carcinoma, it
promotes chemoresistance by targeting OCT1 and ABCB9
[48, 49]. In ovarian cancer, chemoresistance is increased
by modulation of specific calcium-regulated potassium
channels [50]. Conversely, an opposite effect has also been
reported: overexpression of hsa-miRNA-31-5p decreases
levels of stathmin 1, a microtubule-depolymerizing
molecule that leads to reduced chemosensitivity in
ovarian cancer [51]. In addition, in osteosarcoma, upre-
gulation of hsa-miRNA-31-5p inhibits tumor cell mi-
gration and invasion by targeting PI3K3C2A [52].
Regarding hsa-miRNA-191-5p, the few studies conducted
so far show that overexpression promotes chemo-
resistance by modulating p53 and TET1 in chol-
angiocarcinomas [53]. Furthermore, an association with
various estrogen-dependent genes such as ANXA1,
PIWIL2, CASP4, ESR1/ESR2, PLAC1, and SOCS2, has
been shown in breast cancer—however, up to date, no
such data concerning adenocarcinomas of the esoph-
agogastric junction have been published [54].

*e miRNA signature we discovered seems to differ
from previously published data; other studies found that
especially in esophageal carcinoma—in addition to miRNA-
221—miRNA-141, miRNA-200c, miRNA-148a, miRNA-
296, miRNA-23, miRNA-223, and miRNA-27a are sub-
stantially contributing to chemoresistance [26, 55]. Never-
theless, as some studies focus on plasma-circulatingmiRNAs
or cell lines and not exclusively on expression in tumor
tissue, results are comparable only to a limited degree [13].
Ours is—to our knowledge—the first study focusing on
miRNA expression profiles in adenocarcinomas of the
esophagogastric junction and their meaning for therapeutic
response based on tissue specimens.

Hsa-let-7f-5p is located on the long arm of chromosome 9
(9q22.3) and shows involvement in immune cell differenti-
ation, angiogenesis, and cellular growth arrest [56–58]. It is
commonly affected in multiple human cancers, including
melanoma, lung, and head/neck cancer, with downregulation
in the majority of cases [59–61]. Nevertheless, upregulation is
also encountered, for instance, in papillary, follicular, and

Table 1: Characteristics of adenocarcinoma of the esophagogastric
junction according to the responder or nonresponder status.

Characteristics Responders Nonresponders p value
Total n 21 12
Gender
Male 18 8 0.198Female 3 4

WHO classification
Tubular 17 7

0.034
Poorly cohesive 2 1
Mucinous 2 0
Undifferentiated 0 4
Others

Differentiation grade
Well (G1) 0 0

0.043Moderately (G2) 19 7
Poor (G3) 2 5

pT (low)
pT0 2 0

0.136pT1a 2 0
pT1b 5 0
pT2 3 1

pT (high)
pT3 8 10
pT4a 1 1
pT4b 0 0

pN
pN0 12 6

0.203pN1 3 4
pN2 6 1
pN3 0 1

LVSI
Present 6 5 0.443Absent 15 7

Perineural invasion
Present 1 3 0.087Absent 20 9

Distant metastases
Present 4 1 0.409Absent 17 11

LVSI: lymphovascular space invasion; bold lettering in p values indicates a
statistically significant difference.
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anaplastic thyroid cancer as well as breast cancer and ovarian
cancer [62–64]. It has been associated not only with che-
mosensitivity and treatment response in gastric cancer [65]
but also with chemotherapy resistance in breast cancer [37].
In our study, increased expression of hsa-let-7f-5p showed a
distinctive association with chemoresistance which seems to
be in contrast to previously published data concerning car-
cinomas of the upper gastrointestinal tract [65]. Still, as data
concerning the association of miR expression levels and
chemotherapy response are still often controversial and
sometimes different functions (either as a tumor suppressor
or as an oncogene) have been reported for different histologic
tumor types (adenocarcinoma vs. squamous cell carcinoma)
in a single organ, our data might only mirror a specific effect
for a defined subset of patients [7].

Hsa-miRNA-221-3p is well characterized, and its
function and involvement in human cancer has been ex-
tensively described. It is commonly known as an onco-
miRNA, promoting tumor proliferation, invasion, dissem-
ination, and metastasis [66, 67]. Multiple analyses have
focused on cell lines where overexpression is commonly
associated with chemoresistance and knockdown restores

chemo- and/or radio sensitivity and induces tumor cell
apoptosis [26, 68, 69]. In addition, in tissue experiments,
hsa-miRNA-221-3p has been shown to promote resistance
to a variety of regularly used therapeutic agents including 5-
fluorouracil, tyrosine kinase inhibitors, and antiandrogens
[37, 70–73].

*ese findings are difficult to compare with our study
population as both responders and nonresponders had been
treated using a combination chemotherapy containing 5-
fluorouracil in most cases (28/33 cases).

Downregulation of hsa-miRNA-31-5p has been de-
scribed in a variety of human cancers, for instance, triple-
negative breast carcinoma [67] and indicates shortened
overall survival in gastric cancer [74] as well as the presence
of locally advanced tumor stages, implicating the function as
a miRNA with tumor suppressor properties.

Data concerning its association with therapy response
are more controversial: while some studies report that
overexpression promotes chemoresistance in gastric and
ovarian cancer [50, 75] and breast carcinomas [76], others
could demonstrate that upregulation in gallbladder car-
cinomas leads to increased chemosensitivity [77]. In
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Figure 2: Boxplots and Ct values according to differentially expressed miRNAs in responder and nonresponder groups: (a) Ct values for
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addition, hsa-miRNA-31-5p expression levels seem to
influence the therapy response not only in general but also
according to different chemotherapeutic agents: in cell
line experiments, it has been demonstrated that down-
regulation can promote resistance to platinum-based
therapies and paclitaxel [78], while upregulation corre-
lates with resistance against 5-fluorouracil [79]. Our study
adds to the current understanding as we could demon-
strate increased chemotherapy resistance in cases with
higher hsa-miRNA-31-5p expression levels. It seems as if
the therapeutic response might not only depend on the
tumor subtype analyzed but also on the therapy applied
and that hsa-miRNA-31-5p might exhibit both oncogenic
and tumor suppressive functions according to a specific
context.

*roughout the literature, hsa-miRNA-191-5p is de-
scribed as having oncogenic properties, leading to increased
tumor cell proliferation, invasion, and inhibition of apo-
ptosis [80].*is holds true for various epithelial cancer types
such as breast, pancreatic, and hepatocellular carcinomas
[81] or cholangiocarcinoma. Here, overexpression is addi-
tionally associated with decreased overall survival [53].

Concerning its association with chemotherapy outcome,
single studies have found hsa-miRNA-191-5p to promote
chemoresistance [54], while others could show no influence
on chemosensitivity or chemoresistance at all [82]. Overall,
literature addressing this particular issue is still very sparse.
In contrast to the data described above, in our study, high
levels of hsa-miRNA-191-5p showed a clear-cut association
with chemosensitive cases responding to neoadjuvant
chemotherapy.

It remains to be seen whether these results can be
reproduced in larger studies or if a similar effect can be
shown in other cancer entities. It may be conceivable that
our findings reflect—as it is possibly the case with both hsa-
let-7f-5p and hsa-miRNA-31-5p—an effect which is only
discernible in a defined subset of tumors or specific tumor
entities.

Due to the small case number in our study and the often
limited availability of both pretherapeutic biopsies and re-
section specimen in a single institution, we additionally con-
sulted a web database (GEO database) to supplement our data.
Here, we could find only one additional study analyzing
chemotherapy response in a very small cohort (8 cases) of
upper gastrointestinal carcinomas, namely, stomach cancer,
proposing a miRNA signature used for predicting chemo-
therapy outcome [65]. *is signature, however, differed from
our findings, showing an association of chemoresistance and
high expression of let-7g, miR-342, miR-16, miR-181, miR-1,
and miR-34. Whether this might be due to small case numbers
in both studies or whether this reflects differences between two
cancer entities with a fundamentally different pathophysiology
remains to be seen. Another study analyzed esophageal ade-
nocarcinomas (14 cases) and reported that miRNA-221 con-
tributes to chemoresistance via the Wnt/β-catenin pathway,
supporting our findings [26].

In addition, we correlated the miRNA expression with
patients’ overall survival and could demonstrate that overall
survival was significantly correlated with expression levels of
hsa-miRNA-194-5p (p value <0.0001) although in-
dependence could not be demonstrated applying Cox re-
gression analysis (p � 0.462; hazard ratio 1.469; 95%
confidence interval 0.527–4.096). In accordance with our
results, where higher levels of hsa-miRNA-194-5p corre-
sponded to prolonged survival (97.67months vs.
32.69months), overexpression has been reported to inhibit
cell proliferation and to act as a tumor suppressor in la-
ryngeal SCC, prostate cancer, melanoma, bladder cancer,
NSCLC, and clear cell renal carcinoma [83–87]. In addition,
overexpression has been found to inhibit growth and pro-
liferation in gastric cancer cell lines and esophageal squa-
mous cell carcinoma [88, 89]. Other miRNAs which are
commonly linked to prolonged or shortened overall survival
in gastric or esophageal carcinomas—for instance, miRNA-
16, miRNA-21, miRNA-29, miRNA-125b, miRNA-130a,
miRNA-141, miRNA-203a, miRNA-222, miRNA-302c, and
miRNA-451—could not be reproduced in our study
[4, 8, 9, 11, 14].*ismight well be due to a smaller number of
patients included in our study which limits the statistical
reliability as well as the fact that, after adjusting for multiple
testing, only a p value <0.00052 was considered statistically
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Figure 3: Kaplan–Meier curve showing survival differences
according to high or low expression of hsa-miRNA-194-5p with a p

value <0.0001. Survival times are given in months.

Table 2: Average survival times according to high or low ex-
pression of hsa-miRNA-194-5p.

Average survival (months) SD 95% CI p value
hsa-miRNA-194-5p
High 97.67 1.91 93.93–101.4 <0.0001
Low 32.69 7.89 17.22–48.16
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significant which excluded a few otherwise statistically
significant miRNAs.

5. Conclusion

Our results imply that miRNAsmight play an important role
in the evolution of chemoresistance and/or chemosensitivity
in adenocarcinomas of the esophagogastric junction. Nev-
ertheless, as—due to the restricted availability of both pre-
and posttherapeutic tissue samples in a single institu-
tion—the number of patients in our study was limited,
statistical results should be interpreted with caution. In
addition, only tumor tissue was compared without estab-
lishing baseline levels of miRNA expression in nonneo-
plastic mucosa.

Regardless of the abovementioned limitations, our re-
sults contribute to other studies postulating that miRNAs
might be a pretherapeutic means to predict therapy response
in the future and better stratify patients who benefit from
neoadjuvant therapy or who might not benefit at all and
therefore could be spared of adverse effects of noneffective
treatment strategies.

It remains to be seen if the miRNA signature we
established for adenocarcinomas of the esophagogastric
junction can be reproduced in future studies or for different
tumor entities.
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