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a b s t r a c t

The human genome is regulated in a multi-dimensional way. While biophysical factors like Non-specific
Transcription factor Binding Affinity (nTBA) act at DNA sequence level, other factors act above sequence
levels such as histonemodifications and 3-D chromosomal interactions. This multidimensionality of regu-
lation requires many of these factors for a proper understanding of the regulatory landscape of the human
genome. Here, we propose a new biophysical model for estimating nTBA. Integration of nTBA with chro-
matin modifications and chromosomal interactions, using a new Integrative Genome Analysis Pipeline
(IGAP), reveals additive effects of nTBA to regulatory DNA sequences and identifies three types of genomic
zones in thehumangenome (InactiveGenomic Zones, PoisedGenomic Zones, andActiveGenomic Zones). It
also unveils a novel long distance gene regulatory model: chromosomal interactions reduce the physical
distance between the high occupancy target (HOT) regions that results in high nTBA to DNA in the area,
which in turn attract TFs to such regionswith higher binding potential. These findingswill help to elucidate
the three-dimensional diffusion process that TFs use during their search for the right targets.
� 2020 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Unraveling the regulatory complexity of the genome is a chal-
lenging task. With ever-improving high throughput technologies,
there is a multitude of data sets at our disposal, such as gene
expression profiles, genetic variants and epigenetic profiles. Fur-
thermore, the spatial organization of chromatin has been deter-
mined in many cell lines and conditions [1–4]. Nonspecific
protein-DNA interactions [5] and chromatin modifications (e.g.,
histone modifications, nucleosome occupancy, and chromosome
interactions) are not sparsely distributed in the genome, they in
fact, participate in gene regulation [5,6]. However, the relationship
between the various chromatin features remains to be investi-
gated. In order to obtain a comprehensive view, a variety of avail-
able information needs to be combined as no single approach is
sufficient to elucidate the regulatory landscape of the genome.

Genome regulation is a multileveled phenomenon initiated by
specific and non-specific biophysical interactions between tran-
scription factors (TF) andDNA [7,8]. For instance, Transcription Start
Sites (TSS) serve as assembly points for transcription initiation com-
plexes which are vital elements of transcription regulation. Enhan-
cers serve as a platform for recruiting sequence-specific TFs and
co-activators, thereby regulating the assembly of the active tran-
scription machinery. Notably, several studies [9,10] show that TF
binding sites alone arenot sufficient for TF binding to occur, suggest-
ing that other factors like non-specific TF binding affinity (nTBA)
might play an important role. Conventionally, low-affinity and
non-specific genomic binding events, though frequent,were consid-
ered functionally irrelevant. However, recent studies have shown
that low affinity TF binding is functional [11].

Apart from TSS, enhancers, and super-enhancers (SE) or clus-
tered enhancers [12], high occupancy target (HOT) regions exhibit
an exceptionally high frequency of TF-DNA binding events.
Although HOT regions attract hundreds of different TFs [13], these
regions do not contain an equal number of canonical motifs [14].
There are different assumptions regarding their role in genome
regulation [15]. For instance, it is assumed that HOT regions play
a role in combinatorial interaction of TF, where only a few of them
bind to HOT regions [16]. However, the stability of a protein
complex comprising hundreds of TFs and co-factors supported by
a few canonical binding sites seems questionable. Hence, the inter-
play between HOT regions and TFs merits further investigations.
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Epigenetic modifications and chromatin structure are important
layers of genome regulation. For instance, histone modifications
modulate DNA accessibility for TFs [17]. Likewise, many studies
have demonstrated a significant role of chromosomal interactions
in genome regulation [18,19]. Techniques like Chromosome Con-
formation Capture (3C) assays and imaging studies have proved
that distal regulatory regions like enhancers come into physical
proximity of target promoters by looping out intermediate
sequences [17,20–22]. The mechanism and dynamics behind these
long-range interactions remain unknown. Similarly, high-
resolution Hi-C studies have suggested that chromosome topology
exerts a significant impact on enhancer-promoter communication
and resulting gene expression [21]. Intermixing regions of chromo-
somes are enriched for TF binding sites and other genomic markers
[18]. It is believed, integrating other genomic data can identify key
regulatory zones in genomes, which can be useful in searching for
functional genomic elements and interactions.

There is a long history of applying the biophysical theory of
protein-DNA interactions on computational gene regulation stud-
ies. The field is being developed rapidly from the pioneer theoret-
ical work of von Hippel P and Berg OG [23] to more recent works of
TF binding sites discovery [24,25], predicting TF binding affinity to
DNA [26,27], and inferring conditional dependent TF binding ener-
gies [28,29]. In our previous studies, we have developed biophysi-
cal models [1,29,30] to distinguish direct versus indirect protein-
DNA interactions from ChIP-seq experiments [31], to rank regula-
tory mutations in disease by using TF differential binding affinity
(dbA) [32], and to find functional regulatory effects of mutations
in cancer patient cohorts [33], by integrating genome-wide
sequencing data with diverse information (e.g. the shifted differen-
tial binding affinity (ddbA) and the gene expression profiles).
Inspired by a work [34] of Berg OG et al., where models and theo-
ries for how TFs localize to the DNA target sites were proposed, we
recently became interested in three-dimensional diffusion pro-
cesses of regulatory proteins for the search of the true target sites.
These processes may be simplified into a two-step binding mech-
anism: target searching and target binding. First, TFs are sliding
nonspecifically on DNA sequences searching for the targets, and
then hopping/sliding to specific (target) sites for target binding
when certain conditions are triggered. There is experimental evi-
dence of TFs pausing at sites resembling their recognition sites
and in some cases, binding nonspecifically to generic DNA
sequences [35,36]. Thus, it can be inferred that every regulatory
protein (or TF) has some affinity for nonspecific DNA in addition
to the specific target site. Hence, it is tempting to study the rela-
tionship between the nTBA to DNA and the other genomic features
(e.g., histone modifications and nucleosome occupancy) at Tran-
scription Start Site (TSS), gene centers (±500 bp to the center of
gene transcribed region), enhancers and High Occupancy Target
(HOT) regions. Thus, a new biophysical model for computing nTBA
on DNA sequences, and a pipeline to integrate such new sequence
features with a variety of genomic information, are implemented
in Python. The integrated data analysis pipeline is biologically
motivated and statistically justified, which can be used to classify
genomes into activity based zones and reveal the regulatory role
of otherwise blur genomic elements e.g., HOT regions.
2. Material and methods

2.1. Data collection

2.1.1. Human genome annotation
Gene and transcription start site (TSS) positions are obtained

from UCSC human genome hg19 RefSeq database. Predicted
human enhancer regions are acquired from EnhancerAtlas data-
base [37], where we selected � 465399 enhancers from thirty tis-
sues for the current study. In silico predicted super-enhancers
(SE) and hub-enhancers (HE) in K562 (�843 SE, �444 HE) and
GM12878 (�834 SE, �606 HE) cell lines are obtained from a previ-
ous publication [12]. Predicted HOT (High-occupancy TF target)
regions in human genome (e.g., �71583 HOT in any of the human
contexts) are downloaded from earlier work [1] of the ENCODE
project. A combined segmentation of the human genome, gener-
ated by two machine-learning-based methods ChromHMM [38]
and Segway [39], are obtained from a previous publication [40].
These chromatin state segmentations were produced on basis of
chromatin features in the two cell lines (e.g., histone modification
and nucleosome occupancy in K562 and GM12878, respectively).
The combined segmentation from the two methods uses only
seven chromatin states to segment the genome in functional
regions.

2.1.2. Human TF ChIP-seq data
Two input datasets for human TF ChIP-seq were used. The first

set of called peaks of ChIP-seq experiments from human CTCF,
NRSF, STAT1, ERa (ER1), and SPIB were downloaded from previous
publications [31,41–43]. These ChIP-seq experiments were con-
ducted on various cell lines; CD4+ T (helper cells cell line), Jurkat
T lymphoblast (acute lymphoblastic leukemia cell line), Hela S3
(cervical cancer cell line), MCF-7 (breast cancer cell line), and
HBL1 (B cell lymphoma cell line). To investigate reproducibility
of results, another input data set was collected from ENCODE
(GEO accession numbers in Supplementary Table 1). For the second
input dataset, called peaks were downloaded for two different cell
lines for each of the five TFs. For both ERa and SPIB, the predicted
direct and indirect TF targets were obtained from previous work
[31], where a biophysical model was used to distinguish type I (di-
rect) versus type II (indirect) TF binding sites using ChIP-seq exper-
iments and the partial predictions were verified by Electrophoretic
mobility shift assay (EMSA).

2.1.3. Human histone modification and expression data
Histone modification marks (H3K27ac, H3K4me1, H3K4me3,

H3K27me3, H3K9me3), RNA Polymerase II, CTCF, and DNase-seq
data sets in basal MCF-7, K562 (myelogenous leukemia cell line),
and GM12878 (lymphoblastoid cell line) cell lines were obtained
from the ENCODE Project [3]. The majority of cell lines lacked data
set for one or more of the genomic marks of interest for this pro-
ject. Hence, three cell lines that were most established and had
data available for all the selected genomic marks: one normal cell
line (GM12878) and two cancer cell lines (MCF-7, K562) were cho-
sen. The aligned (hg19) BAM files were downloaded from the
University of California at Santa Cruz (UCSC) genome browser
database [44].

2.1.4. Hi-C data
Intra-chromosomal interaction contact matrix for basal MCF-7,

K562, and GM12878 cells, were obtained from earlier publications
[45,46]. The GEO accession numbers of the datasets are GSE66733
and GSE63525 [47].

2.2. Data processing

Gene, TSS, enhancer, super-enhancer, hub-enhancer, seven
merged chromatin states, and HOT region data was subjected to
preprocessing for the sake of introducing uniformity in data. All
elements shorter than 100 bp were removed. For sake of unanimity
of nTBA calculation, a 1000 bp window centered on the median of
each element was extracted. Any duplicate windows were deleted.
For each BAM file of human histone modification and expression
data, BEDTools [48] were first used to estimate the read counts
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in a 100 bp window size. Then, the raw read counts were normal-
ized across all markers. The normalization method is similar to a
previous publication [49]. If multiple ChIP-seq experiments repre-
sent the same marker in the same cell line, then an average of their
normalized read counts was used. All normalized reads counts
were log-transformed and converted to Z-scores before performing
further data analysis. Hi-C interaction data were transformed to Z-
scores [50] before studying the intra-chromosomal interactions.
Generation of an intra-chromosomal interaction contact matrix
has been described earlier [31,51]. Briefly, binned data were first
subjected to normalization and transformation to Z-scores, the dis-
tributions of intra-chromosomal interaction frequencies for the
three cell lines were then examined at 250 kb resolution, respec-
tively. More specifically, for every 250 kb of chromosome regions,
the number of interactions between each chromosome region
and the rest of the chromosome regions were counted. The count
matrix of intra-chromosomal interactions was normalized by
either the KR matrix balance method (K562 and GM12878 cells)
[52] or the iterative correction and eigenvector decomposition
(ICE) [53] method (MCF7 cell) in the original work [45,46]. Then
Z-scores of normalized intra-chromosomal interaction matrices
were generated, from which the chromosome-specific intra-
chromosomal contact heat maps and the intra-chromosomal inter-
action frequency in the binned regions were obtained.
2.2.1. A new biophysical model to estimate nonspecific TF binding
affinity to DNA

By considering both the work of Berg OG et al., [34] and our pre-
vious studies of TF binding affinity calculations [31,32], we have
developed a new biophysical model to calculate non-specific TF
Binding Affinity (nTBA) to DNA. In this calculation, a sliding win-
dow analysis is adopted to compute nTBA on DNA sequences. Here
the number of TFs and the number of target sites are represented
by the number of available position weight matrices (PWM) in a
Fig. 1. Illustration of calculations of non-specific TF binding affinity on DNA sequences
estimating non-specific TF binding affinity (nTBA) on DNA sequences.
collection and the number of windows sliding on the DNA
sequences, respectively. Briefly, a window (or a non-specific target
site Si) with size L (i.e. 50 bp) and step size 5 bp is sliding on the
DNA sequences. For each sliding window, a computation of nTBA
at Si is illustrated by Fig. 1, where we assume n TFs (i.e. n = 1772
PWMS from earlier work [32]) slide one-by-one on DNA sequences
non-specifically. For every TF, the number of non-specific target
sites is the total number of windows that are sliding on a DNA
sequence with length N. If the window size is L and the step size
is st, then the total number of windows/target sites are

k ¼ N � L
2

� �� L=2
st

Here, the estimated nTBA is assigned to the center of a window
bin. There are many TFs (n) which can walk randomly and interact
with many different non-specific target sites (i.e. k sliding win-
dows on DNA sequences) in a nucleus, before reaching the true tar-
get site. This is a many-body problem where many TFs interact
with many putative target sites and is difficult to solve. Neverthe-
less, such a many-body system can be simplified to a one-body sys-
tem by applying Mean Field Theory (MFT) from statistical physics
[54]. In the one body system, an effective dbA (or expected nTBA) is
computed at each arbitrary target binding site (or a sliding window
Si) to DNA.

There are two hypotheses in the calculation of nTBA: First, all
TFs (n) are assumed to bind with equal prior probability to all
available target sites (k) on DNA sequences; Second, both the adja-
cent sliding windows (adjacent target sites) on DNA sequences and
the TFs in a nucleus are independent of each other, implicating that
they do not affect each other when a TF is sliding on a DNA
sequence. These assumptions are borrowed from MFT and the the-
oretical foundation is similar to a previous work [55], which allow
us to replace the interactions of many TFs (e.g., n TFs) to a target
binding site (i.e. a sliding window Si in Fig. 1) with an average/ef-
fective interaction [56]. Thus, the complex many-body system is
. A cartoon diagram is used to illustrate the proposed new biophysical model for
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reduced to an effective one-body system, where an effective dbA
for a sliding window Si (or an average of dbAs from many TFs at
a target Si) is obtained. This effective dbA can be seen as an
expected nTBA to the target sequence Si. In this way, a new DNA
sequence feature (expected nTBA) is computed in a whole chromo-
some by sliding a window on the DNA sequences.

In Fig. 1, there is an illustration of the computation of nTBA in a
sliding window Si. A more detailed description is provided here.
Based on a biophysical theory of protein-DNA interactions
[29,57], a Femi-Dirac form of protein binding probability is used
to estimate protein-DNA binding affinity that depends on the
chemical potential (or the protein concentration),
P Sð Þ ¼ 1

1þexpðE�S�lÞ, where E represents PWM or a protein binding

energy matrix (PBEM), l is the chemical potential or the concen-
tration of proteins in a solution, and P is the probability of a DNA
sequence S to be bound by a TF. However, in cases where
protein-DNA interactions do not depend on the chemical potential
(l = 0), or the protein concentration is very low, we use a Maxwell-
Boltzmann protein binding function PðSÞ � expð�E � SÞ [25] to cal-
culate the TF binding affinity. The binding affinity of a TF on a slid-

ing window is computed by function Ai ¼ p
PL�mþ1

l¼1 Pi;lðSiÞ,
i ¼ 1 � � �N � Lþ stepsize, where Si represents DNA sequences in
the sliding window, L is the window size (i.e. L = 50 bp), N is the
length of DNA sequences, m is the length of TF binding site (e.g.,
the length of a PWM), p is a prior probability of a TF binds to target
sequence Si. In this study, we assume all Si have equal probability
of being bound by a TF (p ¼ 1). In the calculation, Pi,l(Si) is a
protein-DNA binding probability function that depends on the
chemical potential, which uses either Femi-Dirac or Maxwell-
Boltzmann form of protein binding probability.

For a TF sliding nonspecifically on the target sequence Si, we
first compute its differential binding affinity dbAi;TðSiÞ at sequence
Si, as dbAi;T ¼ Ai � Ai;R.The calculation of Ai is defined in the previ-
ous section, Ai;R is the average of TF binding affinity for randomly

mutated DNA sequence Si;r , Ai;R ¼ 1
R

PR
r¼1p

PN�mþ1
l¼1 Pi;l Si;r

� �
, R is the

number of random shuffling of DNA sequence Si. In this way,
dbAi;T removes potential bias from the local DNA sequences that
allows us to compare the TF binding affinity genome-widely [32].
At the same target site or a sliding window Si, we repeat the
dbAi;T calculation for all available TFs (i.e. �1772 PWMs in the col-
lection). Later, an average of dbAi;T calculated for all available TFs is
used to represent the expected nTBA to DNA Si: for example,
nTBAðSiÞ ¼ 1

n

Pn
T¼1dbAi;T , where n is the number of TFs considered

in the calculation. Finally, the nTBA for all the target sites on
DNA sequences is estimated by using the sliding window approach,
where the estimated nTBAðSiÞ of each target site is assigned to the
center of a sliding window. In order to reduce the overall compu-
tational burden, the calculations of nTBAðSiÞ at target sequence Si
of multiple TFs are split to multiple computer processes and are
run in parallel. A simple diagram of the nTBA calculation in sliding
window analysis is shown in Fig. 1. Consequently, the new DNA
sequence feature – nTBA is computed genome-wide, which can
be integrated with other epigenomic modifications to investigate
the gene regulation.
2.2.2. Enrichment test of epigenomic modifications in pair-wise intra-
chromosomal interactions

For every genomic marker or an epigenomic modification (e.g.
histone modification, Pol II expression, CTCF binding, DNase occu-
pancy, or nonspecific TF binding affinity), we compared its enrich-
ment in a Hi-C detected pair-wise intra-chromosomal interaction
to that in an average of randomly selected (e.g., 100 times) pair-
wise intra-chromosomal interactions, by using Rank-Sum test. In
this work, the detected intra-chromosomal interaction (e.g., Z-
scores >0 in the interaction contact matrix) means the interaction
is more frequent than the average of genome-wide interactions
(e.g., red color in intra-chromosomal interaction heat-map).
Results of the enrichment tests are shown in a heat-map, where
the blue and yellow color represent the negative and positive Z-
values from the Rank-Sum test, respectively. For example, in every
250 Kb interaction region (a genomic window bin), only markers
located at ±500 bp from TSS/HOT center are considered. If there
are multiple TSS or HOT regions located in the same bin
(250 Kb), then an average of them will be used in the pair-wise
enrichment test. However, for nonspecific TF binding affinity, if
there are multiple TSS or HOT regions (e.g., ±500 bp from the
TSS/HOT center) in the same window bin, then the sum of their
nTBA will be used in the enrichment test. In this way, we are able
to study possible links between the additive effect of nTBA to HOT/
TSS regions and the enrichment of other epigenomic modifications
(e.g., H3K27ac, H3K4me1, H3K4me3, H3K27me3, H3K9me3, etc.)
in TSS and HOT regions of pair-wise intra-chromosomal
interactions.
2.2.3. A comparison between the frequency of intra-chromosomal
interactions and the frequency of highly enriched epigenomic
modifications in genomic window bins

The generation of intra-chromosomal interaction frequencies is
similar to a previous publication [31] which was examined using a
250 Kb resolution genomic window bin. Briefly, for each 250 Kb
bin of chromosome regions, the number (Nvi) of detected interac-
tions (i.e., Z-scores >0) between each chromosome region and the
rest of the regions in a chromosome was counted. Simultaneously,
the number ðNeiÞ of its high enrichment (e.g. Rank-Sum test Z-value
�3 [32]) in the detected intra-interactions was also recorded for
each marker (or epigenomic modification). The intra-
chromosomal interaction frequency Fi of the region was then cal-
culated as the counted number (Nvi) of interactions in the region
divided by the total number ðNtÞ of genomic window bins in a
chromosomeFi = Nvi=Nt . In a genomic window bin, the frequency
ðFheÞ of a highly enriched epigenomic modification in intra-
chromosomal interactions isFhe = Nei=Nt . With a 250 Kb resolution
genomic window bins, Nt equals 325 and 253 for human chromo-
somes 17 and 20, respectively. This study was conducted on
human chromosome 17 and 20 initially as a pilot study. After opti-
mization of the complete pipeline on chromosome 17 and 20, we
later expanded it to the whole human genome (except chromo-
some Y, because of the unavailability of data).

In order to estimate an optimal number of clusters in genomic
window bins in a chromosome (e.g. � 325 of 250 kb bins in chro-
mosome 17), a stress function [58] was used based on the frequen-
cies ðFheÞ of the highly enriched epigenomic modifications or

genomic markers (e.g. nTBA, nucleosome occupancy, Pol2 expres-
sion, enhancer/promoter histone markers, and CTCF binding) in
the bins. After determining the cluster size, a cluster number is
assigned to each chromosome. For this aim, initially, k-means
[59] algorithm is used to cluster Fhe in window bins, then an
inverse of Euclidean distance between each region and centroid
of each cluster is calculated. Scores of each region are divided by
their sum, which can be considered as a probability. Then, a Gaus-
sian mixture model [59] is fitted based on the same number of
components as that of clusters to the Fhein window bins, and a
set of probabilities for each region related to different components
are obtained. Finally, based on the weighted sum approach, the
highest probability of a cluster is assigned to the region. Subse-
quently, the Fhe of all epigenomic modifications are shown in the
heat maps, where the genomic window bins are classified by the
aforementioned method. The frequencies Fi of intra-
chromosomal interactions in genomic window bins are also plot-
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ted using scatter and box plot, where colors are labeled according
to the clusters. In this way, a glance at the clustering of Fhe heat-
map and the Fi plots may reveal a relationship of frequencies
between the intra-chromosomal interactions and the highly
enriched epigenomic modification in genomic window bins.
2.2.4. Generation of an integrative genome analysis pipeline (IGAP)
Aforementioned integrative data analysis is implemented in a

user-friendly python package (https://igap-pipeline.github.io/
igap/): Integrative Genome Analysis Pipeline (IGAP). There are
mainly five major functions in IGAP:

1. Compute nonspecific TF binding affinity (nTBA) for DNA
sequences.

2. Obtain nTBA values for predefined genomic regions (e.g., TSS
and enhancer).

3. Obtain epigenetic modification or other genomic marks (e.g.,
nucleosome occupancy) for the genomic regions.

4. Obtain chromosomal interaction frequency (e.g., Hi-C data) for
the genomic regions.

5. Clustering of regions based on generated feature vectors from
the previous four functions.

More detailed description of these functions and usage of IGAP
pipeline please refer to IGAP web supplementary, where there are
both user manual and sample demos for the package. An overview
of IGAP is illustrated in Fig. 2. IGAP first calculates nTBA for a given
Fig. 2. Detailed work flow of integrative genome analysis pipeline. The initial phase of p
given input sequence is divided into equal sized (250 kb) bins. Genomic features belongin
markers/features data is integrated to finally draw out Inactive (red), Poised (green) and
this figure legend, the reader is referred to the web version of this article.)
DNA sequence (e.g., chromosome 17). Then it considers other
genomic features from either experimental observations or com-
putational simulations. After all input datasets are ready, genomic
regions of interest are extracted (e.g. HOT and TSS). Here, the input
DNA sequence is divided into equal sized bins, where values of
genomic features from each bin are calculated. After integrating
Hi-C intra-interactions, the frequency of enrichment of features
in a bin is calculated (method Sections 2.2.2 and 2.2.3). In the
end, feature vectors of input genomic features are generated,
which can be used to classify input genomic window bins to differ-
ent regions such as type I/II/III bins (or Active/Poised/Inactive
Genomic Zones). IGAP can be a useful tool for multiple studies pro-
viding new insight about genome regulation.
2.3. Transcription factor binding site enrichment in gene promoter
region

For genes associated with our predicted three core types of win-
dow bins, TF binding sites enrichment test was performed on the
gene promoter regions, respectively. One is a default method from
DAVID tool [60], which utilizes conserved transcription factor
binding sites from three species human/mouse/rat (TFBS Con-
served Sites track in UCSC Genome Browser) to predict over-
represented TF binding sites in gene promoters. In addition, we
applied two other methods Pscan [61] and PASTAA [62] for the
same purpose. Pscan is similar to CLOVER algorithm [63], which
tries to find enriched TF binding sites in a cluster of DNA sequences
ipeline constitutes of the calculations of nTBA for any desired genomic region. The
g to each bin are mapped bin wise in the form of a frequency matrix. All the genomic
Active (blue) Zones of the genome. (For interpretation of the references to color in
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via statistical over-representation (e.g., Z-test). PASTAA computes
binding affinity of TF to gene promoters based on a biophysical
model and then applies hypergeometric test to evaluate TF-gene
cluster associations. Here, Pscan and PASTAA use motif matrix
from the JASPAR and TRANSFAC database, respectively, to scan
gene promoters (e.g., �200 bp to TSS).
3. Results

3.1. Non-specific TF binding affinity at selected genome regions

To study the contribution of non-specific TF binding affinity
(nTBA) to DNA in the human genome, �200 called peaks from five
human TF ChIP-seq experiments (e.g., CTCF, ER1, NRSF, SPIB and
STAT1) were randomly selected. Interestingly, the peak of total
nTBA from the 200 binding sites is always found near the center
of ChIP-seq called peaks for all TFs (Supplementary Fig. 1a), sug-
gesting that nTBA may have an impact on genome regulation in
addition to the direct recognition of TFs to regulatory DNA
sequences. Nevertheless, decreased nTBA to DNA is followed by
an increase in TF concentration and nTBA almost disappears at
high TF concentrations. For example, nTBA to DNA is almost zero
when the chemical potential approaches �13, �15, �18, and
�20, respectively. Thus, the effect of nTBA to DNA may only be sig-
nificant from low to median TF concentrations (e.g. m between 0
and �10). The same results were observed when two sets
of � 200 and 500 ChIP-seq called peaks (Supplementary Fig. 1b
and 1c respectively) were randomly selected for the same five
TFs in ENCODE, from two different cell lines for each TF (STable 1).

Subsequently, the same analysis is repeated in gene center and
other regulatory regions such as TSS (Fig. 3a) and enhancers (Sup-
plementary Fig. 2). These results also indicate that nTBA plays a
role in addition to specific TF-binding to regulatory DNA
sequences. For example, in the high chemical potential (e.g., m
equals �13, �15, �18, or �20), the pattern of nTBA is very similar
among the gene centers, TSS and enhancers (e.g., close to zero).
However, from low to median chemical potential (e.g., m equals 0
or �10), the distributions of nTBA are different in different regions.
For instance, the total nTBA of 200 randomly selected sites oscil-
lates between 0 and �0.1, has a clear narrow peak, and oscillates
towards a positive value 0.1 in genes (±500 bp to gene center),
TSS regions (±500 bp to TSS), and tissue-specific human enhancers
(e.g., ±500 bp to the enhancer center), respectively. Thus, it appears
that the additive effect of nTBA to DNA is enriched in gene regula-
tory regions (e.g., TF binding site, TSS, or enhancer), but nearly
absent in transcribed gene body or non-regulatory regions, conse-
quently, there is an anti-correlation between nTBA to DNA and the
TF concentration. Therefore, the nTBA estimated from low to med-
ian TF concentrations (e.g., m equals 0 and �10) are appropriate for
computational studies of gene regulation.
3.2. Non-specific TF binding affinity at direct/indirect TF target sites
and HOT regions

Since the effect of nTBA to DNA differs between gene regulatory
regions (e.g., TF binding sites, TSS, and enhancer) and the gene
transcribed regions (e.g., gene center), it would be interesting to
explore nTBA at direct/indirect TF binding target sites. Thus, five
sets of putative direct/indirect TF binding sites for ER1 and SPIB
(e.g. each has 200 randomly selected peaks with DNA sequences
±500 bp to the peak center) were evaluated, respectively. The puta-
tive direct/indirect binding sites were predicted in a previous pub-
lication [31] and were partially validated by wet-lab experiments.
The mean and the standard deviation of the nTBA in the five sets
are shown in Fig. 3b, which shows a clear difference of the nTBA
effect to DNA between the direct and the indirect TF binding target
sites. For low or median TF concentration (e.g., m equals 0 or �10),
there is a strong positive peak of nTBA at the center of the direct TF
binding targets (both ER1 and SPIB). However, at the correspond-
ing indirect TF binding targets (Fig. 3b), the effect of nTBA on
DNA is similar to that of enhancers (Supplementary Fig. 2). For high
TF concentrations (e.g., m equals �13, �15, �18, �20), there is no
effect of nTBA on DNA at both direct and indirect TF target sites
(Fig. 3b). Thus, the effect of nTBA to DNA is clearly different
between the direct TF-DNA interaction and the indirect TF-DNA
interaction.

HOT regions are highly occupied TF target sites in the human
genome, which were predicted by ENCODE project by considering
observations of many TF ChIP-seq experiments in various human
cell lines. To test the effect of nTBA on HOT regions, we randomly
selected five sets of 200 HOT regions in the human genome. The
mean and the standard deviation of the nTBA in five random selec-
tions are shown in Supplementary Fig. 2. Each selection contains
�200 HOT regions with DNA sequences ±500 bp to the center of
the HOT region. Here, only the nTBA estimated from low to median
TF concentrations (e.g., m equals 0 and �10) are considered because
the additive effect is negligible at high TF concentration (e.g.,
Fig. 3a and b; Supplementary Figs. 1 and 2). These results reveal
the effect of nTBA to DNA is stronger at HOT regions (Supplemen-
tary Fig. 2) than at the other regulatory regions (e.g., TSS, enhancer,
and TF binding sites; Fig. 3a, and Supplementary Figs. 1 and 2). For
example, there is a broader peak of the nTBA on HOT regions (e.g.,
±200 bp to the HOT center with nTBA > 0.1; Supplementary Fig. 2)
than that of TSS (e.g., from + 50 bp to �100 bp to the center of TSS
with nTBA > 0.1; Fig. 3a and Supplementary Fig. 2). In other words,
the effect of nTBA to DNA may contribute to gene regulation
because it has a great influence on both the HOT regions and the
gene regulatory regions (e.g. TF binding sites, TSS, and enhancer).

3.3. Non-specific TF binding affinity in human chromosomes

The total nTBA of � 200 randomly selected sites, in various gen-
ome regions (e.g., gene, TF binding sites, TSS, enhancer, and HOT
regions), indicates that there is an additive effect of nTBA to
DNA. Such effect is very different between the gene regulatory
region and the gene transcribed region (Fig. 3a and b; Supplemen-
tary Figs. 1 and 2). To further investigate this new DNA sequence
feature, we computed nTBA for the whole genome (Fig. 4 and
web Supplementary), at two TF concentrations (m = 0 and �10),
by using the proposed new biophysical model. Subsequently, the
total nTBA to DNA in genes/TSS enhancers (e.g., thirty tissue-
specific enhancers), and HOT regions on all human chromosomes
are calculated. For each genomic feature (e.g., gene center, TSS, or
enhancer), the pattern of the total nTBA from a chromosome
(Fig. 4) is similar to that of the randomly selected ones (Fig. 3; Sup-
plementary Figs. 1 and 2). Generally, the additive effect of nTBA to
DNA is minimized in gene transcribed regions (e.g., oscillated
around zero at gene center), has a narrow peak at TSS (e.g, >0.5
from �100 bp to 50 bp), fluctuates around a positive value at
enhancer (e.g., around 1 and 0.5 for Chr17 and Chr20, respectively),
and shows a strong and broad peak at HOT regions (e.g., >1 from
±200 bp to HOT center). These findings resemble the previous
results from randomly selected sites, which support the hypothesis
that there is an additive effect of nTBA to DNA in the regulatory
regions such as a promoter, enhancer, and HOT regions.

Finally, the distribution of nTBA for the whole genome (except
chromosome Y) at ±500 bp to the center of gene/TSS/enhancer/su
per-enhancer (SE)/hub-enhancer (HE)/HOT regions are illustrated
in Supplementary Fig. 3a and b, respectively. In SFig. 3a, an additive
effect of nTBA to DNA is observed in all regulatory regions. Here, SE
is a cluster of enhancers which work together to control the gene



Fig. 3. Distribution of nonspecific TF binding affinity at human genes, transcription start sites (TSS) and direct TF binding sites versus indirect TF binding sites. In panel a) For
genes and TSS, we plotted the distribution of nonspecific TF binding affinity at ±500 bp centered on either gene centers or TSS. The mean and the standard deviation of the
total nonspecific binding affinities from five times randomly selected genes or TSS (�200 in each) are shown in the figure, where 0 represents either the center of a gene or
TSS. In panel b), for two TFs (ESR1, and SPIB), we plotted the distribution of nonspecific TF binding affinity at ±500 bp centered in called peaks of either the direct TF binding
site or the indirect TF binding one. The mean and the standard deviation of total nonspecific binding affinities from five times randomly selected peaks (e.g., �200 peaks in
each selection) are shown in the figure, where 0 represents the center of called peaks. In both panels, predictions from different chemical potentials (or TF concentrations) are
shown on different colors, respectively.
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regulation, and HE is a subclass of SE that overlaps with a genomic
region having high chromatin interaction frequency [12]. Both SE
and HE are computationally predicted from two cell lines (K562
and GM12878), the number of predicted SE/HE (<1000) is far less
than the number of other genomic regions (e.g. enhancer > 40000
and HOT > 70000). Therefore, a comparison of mean nTBA between
the SE/HE and the other genomic regions is suited. In SFig. 3b, the
distribution of genome-wide mean nTBA in gene/TSS/enhancer/
HOT regions resembles the corresponding chromosome-specific
ones (Fig. 4 and web Supplementary). Though the pattern of
genome-wide mean nTBA at SE and HE are similar (multiple peaks
at ±500 to the centers), there is a clear difference between the SE/
HE and the other regulatory regions (enhancer/TSS/HOT). Thus, our
theoretically estimated nTBA on DNA sequences reflects the bio-
logical difference among various genomic regions.
3.4. A comparison between the non-specific TF binding affinity and the
other genomic markers or epigenomic modifications in TSS and HOT
regions

The current study reveals the effect of nTBA to regulatory DNA
sequences (e.g., TSS, enhancer, and HOT regions). Though the pat-
tern of total nTBA in various regulatory regions is similar, the mag-
nitude of the nTBA is always higher and broader at the HOT regions
than that at the other regulatory regions (e.g., TSS; Fig. 4). Usually,
there are more HOT than TSS regions in a chromosome (e.g., �4214
and �2404 HOT regions versus �1868 and �911 TSS ones in Chr17
and Chr20, respectively). Both the TSS and the HOT regions have a
higher propensity to be bound by other TFs [64] because of the low
nucleosome occupancy and presence of various TF binding sites at
these genomic elements. Therefore, it is useful to investigate the



Fig. 4. Distribution of nonspecific TF binding affinity at genes, transcription start sites (TSS), HOT regions, and enhancers in human chromosomes 17 and 20. For genes, TSS,
HOT regions and the five types of tissue-specific human enhancers that are located on human chromosomes 17 and 20 (panel a and b respectively), we plotted the
distribution of nonspecific TF binding affinity at ±500 bp centered on TSS or the center of gene/enhancer/HOT region, respectively. The first row (upper panel) for each
chromosome presents the total sum of nonspecific binding affinities of each genomic feature (e.g., gene, TSS, enhancer or HOT region) while the second row (lower panel)
represents the mean of nTBA, where 0 represents either the center of a gene, enhancer, HOT region or TSS. Predictions from different chemical potentials (or TF
concentrations) are shown in different colors, respectively.
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relationship between the total nTBA and the other genomic mark-
ers or epigenomic modifications in both TSS and HOT regions. This
may help us reveal a potential mechanism of HOT regions in the
human genome. In Fig. 5, results of the total nTBA to TSS and
HOT regions are shown for chromosome 17 and 20, where the
additive effect of nTBA to DNA is much higher and broader in
HOT regions than in TSS. At the same place, the distributions of
the three histone modifications (e.g., H3K27ac, H3K4me1, and
H3K4me3), Pol2 expression, and nucleosome occupancy Dnase
hypersensitive sites) are investigated in basal K562, GM12878,
and MCF7 cell lines, respectively.

In Fig. 5, an average of the Z-scores of each epigenomic modifi-
cation in either TSS or HOT regions of chromosome 17 and 20 is
displayed. It shows that the pattern of H3K4me3 is similar
between the TSS and the HOT regions (cyan color line). However,
for the other three modifications (e.g., pink, black, and green color
lines represent Pol2 expression, H3K27ac, and H3K4me1, respec-
Fig. 5. A comparison between the nonspecific TF-DNA binding affinity and the other gen
regions of chr17 and chr20 For all TSSs and HOT regions located in human chromosom
binding affinity, histone modifications (H3k27ac, H3k4me1, and H3k4me3), Pol2 express
lines are illustrated, respectively. HOT regions are obtained from ENCODE predictions (e.
and the total nonspecific TF-DNA binding affinities are plotted in different colors, where z
H3K27ac and H3K4me1 are enhancer markers, H3K4me3 is promoter marker, Pol2 repr
genome.
tively), their activity profiles are higher in the HOT regions as com-
pared to the TSS ones. Especially, the DNA sequences of the HOT
regions are more accessible (brown color line represents DNase)
than that of the TSS ones. To verify the findings from chromosome
17 and 20, the same analysis was repeated in all human chromo-
somes (e.g. web Supplementary figure for each chromosome)
where the distribution of each epigenomic modification in both
TSS and HOT regions (e.g. nTBA, H3K4me3, H3K27ac, H3K4m1,
Pol2 expression, and nucleosome occupancy) seems to follow sim-
ilar pattern. For example, both of the H3K4me3 and Pol2 expres-
sion levels are similar between the HOT and the TSS regions
across the three cell lines. However, the total nTBA, the two distal
regulatory marks (H3K27ac and H3K4me1), and the nucleosome
free regions (DNAse hypersensitive sites) are stronger in the HOT
regions (e.g., the average Z-scores of H3K4me1 > 1; Fig. 5) than in
the TSS regions (e.g., Z-scores of H3K4me1 close to 0). Thus, the
effect of nTBA in regulatory DNA sequences may participate in long
omic markers or epigenomic modifications at transcription start sites (TSS) and HOT
e 17 and 20 (panel a and b respectively), the distributions of nonspecific TF-DNA
ion, and nucleosome occupancy (Pol2 and Dnase) in K562, GM12878, and MCF7 cell
g. P < 0.05 in any conditions). The average Z-scores of aforementioned modifications
ero represents either TSS or the center of HOT regions (e.g., ±500 bp from the center).
esents gene expression activity and Dnase indicates nucleosome occupancy in the



Fig. 5 (continued)
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distance gene regulation (or enhancer-promoter interaction)
because there is a positive correlation between the total nTBA
and the distal regulatory marks.

3.5. A comparison between the frequency of intra-chromosomal
interactions and the frequency of highly enriched epigenomic
modifications in genomic window bins

An integrative data analysis in three cell lines (e.g., K562,
GM12878, and MCF7) for all human chromosomes was performed
to further investigate the role of nTBA in long distance gene regu-
lation, by combining our data on nTBA to DNA with both the intra-
chromosomal interactions (e.g., Hi-C experiment) and the other
genomic markers or epigenomic modifications (e.g., H3K27ac,
H3K4me1, H3K4me3, H3K27me3, H3K9me3, CTCF binding, Pol2
expression and DNase – nucleosome occupancy). Here, both the
frequency of intra-chromosomal interactions and the frequency
of highly enriched epigenomic modifications (e.g., Z-values �3)
were computed in every genomic window bin (e.g., with resolution
250 Kb) for all human chromosomes in three cell lines (web Sup-
plementary and SFigure 4). The frequency heat-maps of highly
enriched epigenomic modifications in pair-wise intra-
chromosomal interactions are shown in Fig. 6 for chromosome
17 and 20 only. Frequency heat-maps for the other chromosomes
are presented in the Supplementary website.

By applying our modified K-means clustering algorithm on the
frequencies of highly enriched epigenomic modifications in each
chromosome, we identified three types of genomic window bins.
The type I genomic window bins show no enrichment of active his-
tone modifications in TSS regions (e.g., H3K4me1, H3K4me3, and
H3K27ac) and very low frequencies of other highly enriched geno-
mic marks such as CTCF binding sites, Pol2 expression and open
nucleosomes. Furthermore, nTBA to HOT regions is not enriched
in the type I genomic window bins. Type II genomic window bins
show a low frequency of nTBA in HOT regions but a moderate fre-
quency of highly enriched histone modifications (e.g., active marks
- H3K4me1 and H3K27ac; repressive marks - H3K27me3 and
H3K9me3), CTCF binding sites, Pol2 expression and open nucleo-
some regions in TSS. Type III genomic window bins showmoderate
frequencies of highly enriched nTBA and repressive histone modi-
fications (H3K27me3 and H3K9me3) in both HOT and TSS regions,
but high frequencies of highly enriched active histone modifica-
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tions (H3K4me1, H3K4me3 and H3K27ac), Pol2 expression, CTCF
binding sites and open chromatin in TSS regions. Thus, the fre-
quency of intra-chromosomal interactions correlates with the fre-
quency of highly enriched epigenomic modifications in the three
genomic window bins; low, medium, and high frequency of
intra-chromosomal interactions for the type I, II, III genomic win-
dow bins, respectively (Fig. 6).
Fig. 6. A comparison between the frequency of intra-chromosomal interactions and the fr
lines, both the frequency of intra-chromosomal interactions (Z-score >0) and the freque
bins (250 kb resolution) are shown for human chromosomes 17 and 20 in panel a and
clustering methods on the frequencies of highly enriched epigenomic modifications in wi
III genomic window bins, respectively, in intra-chromosomal interactions which draw
classified as genomic window bins type I, II and III, respectively. (For interpretation of the
this article.)
3.6. A comparison between the three types of genomic bins and the
other segmentations in human genome

The idea of genome segmentation is not new. There are several
machine-learning-based methods (e.g., ChromHMM and Segway
[38,39]) available for segmentation of genome in functional
regions based on chromatin features (e.g., histone modification
equency of highly enriched epigenomic modifications in three cell lines. In three cell
ncy of highly enriched (Z-values �3) epigenomic modifications in genomic window
b, respectively. In the heat map, the three clusters are obtained by applying our

ndow bins, where the clusters 1 (red), 2 (green), and 3 (blue) represent types I, II, and
n in box and scatter plot. Low, medium and high chromosomal interactions were
references to color in this figure legend, the reader is referred to the web version of
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and nucleosome occupancy). An earlier publication combined the
human genome segmentations produced by ChromHMM and Seg-
way software into a consensus. In the combined segmentations,
seven chromatin states were used to segment human genome:
TSS – predicted promoter region including TSS; PF – predicted pro-
moter flanking region; E – predicted enhancer; WE – predicted
weak enhancer or open chromatin cis regulatory element; CTCF –
CTCF enriched element; T – predicted transcribed region; R – pre-
dicted repressed or low activity region. It is very interesting to
compare the three types of genomic bins obtained by IGAP with
the seven chromatin states produced using those machine-
learning-based methods. Thus, the seven chromatin states in
K562 and GM12878 cells are obtained from a previous publication
[40] and are intersected with the three types of genomic bins in
K562 and GM12878 cells, respectively, obtained using IGAP. First,
the number of regions overlapping with each type of genomic bins
is counted, then a percentage of each chromatin state that overlaps
with each type of genomic bins is calculated. In Fig. 7, the percent-
ages of chromatin states that are overlapping with the three types
of genomic bins in K562 and GM12878 cells are illustrated in two
heat maps, respectively. It suggests that the seven chromatin states
have very low (<8%), marginal (�30% to �40%), and high (�50% to
�65%) overlap with the type I, II, and III genomic bin, respectively.

Additionally, the distribution of nonspecific TF binding affinity
at seven chromatin states obtained using machine-learning-
based methods is also investigated in K562 and GM12878 cells
respectively. For each predicted chromatin state, the mean and
the standard deviation of the average nTBA from ten times ran-
domly selected regions (e.g., �1000 in each, the mean nTBA at
±500 bp to the center of regions) in the whole genome are shown
in supplementary Fig. 5. The mean nTBA profiles around the center
of regions are quite different among various chromatin states. For
example, there are often positive nTBA profiles in the regulatory
regions (e.g. E, WE, PF, TSS, and CTCF). Especially, at median chem-
ical potentials or TF concentrations (e.g. m = �10), there is a posi-
tive peak in the center of regions. However, for putative
transcribed region (T) and repressed or low activity region (R),
the nTBA profiles are frequently negative and oscillate towards
zero in low and median chemical potentials (SFig. 5), respectively.
These observations are in line with our previous findings shown in
Figs. 3 and 4. It indicates that nTBA profile can be integrated with
other chromatin features (e.g., histone modification and nucleo-
some occupancy) for the classification of the different chromatin
functional states by using machine-learning-based methods.
Fig. 7. A comparison between the three types of genomic bins obtained using IGAP and
heat maps illustrate the percentage of overlap between one type of genomic bins classifie
and C3 represent type I, II, and III genomic bins obtained using IGAP in K562 and GM128
including TSS; PF - predicted promoter flanking region; E – predicted enhancer; WE –
enriched element; T – predicted transcribed region; R – predicted repressed or low activit
one type of genomic bins. The darker cells the larger percentage.
3.7. An examination of the three types of genomic window bins

Based on the frequency of intra-chromosomal interactions and
the frequency of highly enriched epigenomic modifications (e.g.,
active/repressive histone modifications and nTBA in TSS/HOT
regions; Fig. 5), the genomic window bins (e.g., 250 kb in resolu-
tion) were classified into three groups, respectively (Fig. 6). The
results are consistent in three cell lines (MCF7, K562, and
GM12878). Venn diagram analysis (Fig. 8) demonstrates a strong
overlap of each type of genomic window bins in three cell lines;
1058 (62–69% of each cell line), 3101 (53–56% of each cell line)
and 2918 (57–60% of each cell line) overlap for the type I, II, and
III genomic window bins, respectively. These common bins are
defined as the core type I/II/III genomic window bins. Since the fre-
quencies of both the intra-chromosomal interactions and the
highly enriched epigenomic modifications are low and marginal
(Fig. 6) for the type I and the type II bins respectively, they may
be associated with the ‘‘Inactive Genomic Zones” and the ‘‘Poised
Genomic Zones”, respectively. For the type III genomic window
bins, due to the high frequencies of both the intra-chromosomal
interactions and the highly enriched epigenomic modifications,
they may participate in the majority of intra-chromosomal interac-
tions ‘‘Active Genomic Zones” and act similarly as the house-
keeping genes in gene regulation.

The core types I, II, and III genomic window bins (Fig. 8) exist in
all three cell lines and are less affected by either experimental bias
or other errors, which merits further examination. First, we used
GREAT tool [65] to find gene-region associations with the core type
I/II/III genomic window bins: about �55%, 9%, and 0% of the core
types I, II, and III bins are not associated with any genes respec-
tively, Supplementary files on website; however, �30%, �56%,
and �90% of the core types I, II, and III bins are associated with
two genes, respectively. In Fig. 9a, a bar plot of the number of asso-
ciated genes with a genomic window bin is displayed, which indi-
cates the core type I bin may be the least important region in intra-
chromosomal interactions. That is because more than half (55%) of
the core type I bins are not linked to any genes, but only �18% and
36% of them associated with one and two genes, respectively. On
the contrary, all of the core type II/III bins are linked to genes
and a majority (e.g., �56%/�90%) of them are associated with
two genes, which are more likely involved in functional intra-
chromosomal interactions. Interestingly, 84% of the housekeeping
genes overlap with the core type III bins substantiating a role of
this core type in gene regulation, while only 11% and 5% of house-
the seven chromatin states predicted using machine-learning-based methods. The
d by IGAP and a chromatin state predicted by both ChromHMM and Segway. C1, C2,
78 cells, respectively. Seven chromatin states are: TSS – predicted promoter region
predicted weak enhancer or open chromatin cis regulatory element; CTCF – CTCF
y region. The color shade represents percentage of chromatin state overlapping with



Fig. 8. Overlapping intra-chromosomal interactions between three different cell lines for three types of genomic windows bins. For each type of genomic window bin, an
intersection of windows in the three cell lines is shown.

Fig. 9. Number of genes and HOT regions associated with the three core types of genomic window bins. Here, the three core types of genomic window bins from all
chromosomes are combined together, respectively. The numbers of genes and HOT regions associated with the core type I, II, and III regions are illustrated by bar plot (panel
a) and empirical cumulative distribution function plot (panel b), respectively. The number of gene-core type associations is provided by the GREAT tool. HOT region-core type
association is obtained from ENCODE predictions.
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keeping genes overlap with core type II and I regions. Subse-
quently, an intersection between the three core types bins and
the ENCODE HOT regions (71436) were computed; �10%, �43%,
and 94% of the core type I, II, III bins are overlapping with the
HOT region, respectively. In Fig. 9b, an empirical cumulative distri-
bution of the number of HOT regions in every genomic window bin
is illustrated. Notably, �1%, �9%, and �43% of the HOT regions are
located in the core type I, II, and III bins respectively, which
strongly suggests the intra-chromosomal interactions of the core
type III bins may be very important in gene regulation because of
the highest number of genes and HOT regions.

Finally, DAVID tools [60] are applied to analyze genes associ-
ated with the core type I, II and III genomic window bins, respec-
tively. The enrichment of functional gene annotations (e.g., P-
value <0.001) in the three core types of bins are listed in the Sup-
plementary website. Gene ontology analysis of genes associated
with the core type I bins (red color bars) showed enrichment of
only three biological processes (e.g., cell/biological adhesion and
neurological system processes) and no enrichment of cellular
components and molecular functions (Supplementary Fig. 6). No
annotation for KEGG pathways were found among core type I
bins. Gene ontology analysis of core type II genomic window bins
showed enrichment of 13 cellular components (majority related
to membrane), 94 biological processes (i.e., regulation of nervous
system development, appendage and ear morphogenesis, cell–cell
signaling and adhesion), 16 molecular functions (i.e., sequence
specific DNA binding, multiple channel activities, hormone bind-
ing etc) (Supplementary Fig. 6). KEGG pathway analysis of core
type II associated genes showed only Neuroactive ligand-
receptor interaction. Gene ontology analysis of genes associated
with the core type III bins showed enrichment of 15 cellular com-
ponents (i.e., cytosol, Golgi apparatus, cell projection, extra cellu-
lar matrix), 49 biological processes (i.e., cell motion and motility,
regulation of processes like transcription, cell death and metabo-
lism in GO biological process) and 11 molecular functions (i.e.,
nucleotide and nucleoside bindings, ATP binding, magnesium
ion binding). KEGG pathway analysis of core type III bin genes
showed six pathways associated with cancer (i.e., basal cell carci-
noma, colorectal cancer) and Wnt signaling. Interestingly, more
than 54% of biological processes related to core type II are devel-
opment related suggesting that these genomic regions might
become active in a spatiotemporal manner at specific develop-
mental time points. The majority (34%) of biological processes
related to core type III are regulation related (e.g. positive regula-
tion of cellular biosynthetic process, regulation of transcription
etc; Supplementary Fig. 6). Notably, more transcription factors
binding sites are enriched in gene promoters associated with
the core type III genomic window bins as compared to the other
two core type bins. This result is supported by computational pre-
dictions from three tools (Supplementary Tables 2, 3, 4 and Sup-
plementary website). It is evident that genes associated with the
core type II/III bins are enriched in many molecular functions,
biological processes, and cancer pathways. The results support
our hypothesis that the type II and III bins (e.g., Poised/Active
Genomic Zones) may participate in the functional intra-
chromosomal interactions.
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4. Discussions

In the current study, we have developed a pipeline for the inte-
gration of a wide variety of genomic data to reveal new insight
about the regulatory landscape of the human genome. The Integra-
tive Genome Analysis Pipeline (IGAP) combines a new DNA
sequence feature nonspecific TF binding affinity (nTBA) with other
genomic marks (e.g., histone modifications and intra-chromosomal
interactions) to identify the genomic regions that are compara-
tively more robust in transcriptional activity. The theoretical foun-
dation of nTBA calculation is similar to previous works [34,55].
However, there are three major novelties in the current applica-
tion: 1) the new biophysical model considers both very low
(Maxwell-Boltzmann function) and general protein concentration
(Femi-Dirac function) when computing nTBA; 2) the new model
is implemented in the form of an efficient parallel computation
algorithm that allows calculation of the nTBA in the entire human
genome (over 3 billion bp), whereas the previous work [55] only
tested �1600 yeast promoters with each sequence 100 bp long;
3) Integration of nTBA with other epigenomic modifications (IGAP
pipeline) in the human genome, makes the first connection
between the biophysical property of DNA sequences (nTBA) and
the gene regulation in vivo, which not only contributes to under-
standing of the complicated 3-D diffusion process of TFs in search
of true target sites but also provides hints about role of HOT
regions in gene regulation.

Evaluation of the program on randomly selected sites from sev-
eral human genome regions reveals interesting new insight about
the impact of nTBA on DNA in these different regions. For instance,
the effect of nTBA on DNA in gene centers is always very low,
whereas the same effect in enhancer regions appears to be high
in all cases. Both observations are biologically justified since TFs
are not expected to bind in gene centers in most cases, whereas
enhancer regions are crucial for TF binding. Moreover, TF binding
sites are usually distributed uniformly and clustered multiple
times across enhancers and hub/super-enhancers, respectively,
which is in accordance with the uniform distribution and the mul-
timodal distribution of nTBA in enhancer and hub/super-enhancers
regions. Similarly, TF binding sites often reside upstream proxi-
mally to TSS, and the effect of nTBA increases as TSS approaches
and decreases drastically downstream of TSS. The effect of nTBA
in HOT regions is particularly interesting, where the cumulative
nTBA is highest near the centers. This observation suggests a key
role of nTBA in attracting a large number of TF to HOT regions in
lack of canonical binding sites. Another observation is that nTBA
to DNA is negligible at sites with high TF concentrations.

After revealing the different effects of nTBA to DNA in different
genomic regions, the relationships between nTBA and the other
genomic markers or epigenomic modifications were investigated
in both TSS and HOT regions for all chromosomes, in three cell
lines: 1) the additive effect of nTBA to DNA is higher in HOT regions
than TSS, 2) DNA sequences are more accessible in HOT regions
than TSS, 3) both H3K27ac and H3K4me1 levels are higher in
HOT regions than TSS. It is known [3] that H3K4me3 is frequently
enriched in active promoter regions, H3K27ac is an active enhancer
marker which is found in both proximal and distal regions of TSS,
and H3K4me1 is a histone marker linked to distal regulatory
regions but is present at both active and poised enhancers. Addi-
tionally, Pol2 and nucleosome occupancy represent gene expres-
sion activity and accessibility of DNA sequences to other factors
in the genome, respectively. Thus, the effect of nTBA to DNA in
HOT regions is not only broader and stronger (Fig. 4) than TSS
regions, but also associated with the enhancer like epigenomic
modifications (Fig. 5) such as H3K27ac, H3K4me1 and nucleosome
free regions. These findings point towards the potential role of
nTBA in long distance gene regulation such as in functional intra-
chromosomal interactions.

Subsequently, epigenomic modification enrichment tests in
pair-wise intra-chromosomal interactions were performed based
on the Hi-C experiments in the same three cell lines. In a pair of
interacting genomic window bins, both the effect of nTBA and
the other epigenomic modifications are considered in the TSS
and HOT regions. The results suggest that there is a similarity
between the enriched nTBA in HOT regions and the enriched epige-
nomic modifications in TSS with respect to intra-chromosomal
interactions Supplementary Fig. 4. This is in coherence with the
findings in Fig. 5, demonstrating a positive correlation between
the nTBA to DNA and the enhancer markers (e.g., H3K27ac and
H3K4me1). Thus, the effect of nTBA to regulatory DNA sequences
may facilitate the recruitment of other TFs such as chromatin
architecture proteins like CTCF to initiate correct histone modifica-
tions for controlling the long-distance gene regulation. It suggests
that the functional intra-chromosomal interactions are not only
related to epigenomic modifications (e.g., histone modifications,
nucleosome occupancy, and CTCF binding [66]) in TSS/HOT regions
but also are associated with the nTBA to DNA in TSS/HOT regions.
The former one was reported previously by several other works
[20–22,67,68], but the latter one – the contribution of nTBA to
DNA in intra-chromosomal interaction – is a new discovery from
the present study.

To further verify the findings, both the frequency of intra-
chromosomal interactions and the frequency of highly enriched
epigenomic modifications (e.g., Z-value of Rank-sum test �3) in
genomic window bins (250 kb resolutions) were investigated.
The classification of genomic window bins of chromosomes to
three clusters, is based on the frequencies of 12 highly enriched
features in pair-wise intra-chromosomal interactions: 1) four types
of nTBA (e.g., in TSS/HOT regions estimated by either m = 0 or
m = �10), and 2) eight types of epigenomic modifications. The latter
category includes five active marks (e.g., nucleosome occupancy,
RNA Pol2 expression, H3K4me3, H3K4me1, and H3K27ac), two
repressive marks (H3K27me3 and H3K9me3) and a chromatin
architecture protein CTCF that regulates 3D structure of chromatin.
The result is consistent for all human chromosomes in three cell
lines (Fig. 6 and Supplementary website). The frequencies of both
the highly enriched 12 features and the intra-chromosomal inter-
actions are low, marginal, and high in type I, II, and III genomic
window bins, respectively. Especially, the frequency of the highly
enriched nTBA to DNA is followed by the five highly enriched
active marks and CTCF binding. Thus, low nTBA to DNA in TSS/
HOT regions correlates with low active marks and intra-
chromosomal interactions in these regions (e.g., the type I versus
the type III genomic window bin in Fig. 6). Especially, in both
K562 and GM12878 cell lines, there is a low, marginal, and high
percentage of overlapping functional chromatin states (Fig. 7) with
the type I, II, and III genomic window bins, respectively.

In Fig. 8 �66%, �55% and �59% of type I, II and III bins (respec-
tively) of each cell line constitute the respective core types, which
are further examined in detail. Generally, a low percentage of the
core type I bins are associated with either gene (e.g., �26%;
Fig. 9) or HOT regions (e.g., �10%; Fig. 9), but almost all of the core
types II and III bins are associated with genes (e.g., �56% and 90%
are linked to two genes in type II and III, respectively) and HOT
regions (e.g., �43% and 92% in type II and III, respectively). Around
half (�43%) of the HOT regions in the human genome are located in
the core type III regions, which is almost four times more than that
in the other two core types (e.g., �1% and �9% for the core types I
and II, respectively). Particularly, the frequencies of both the intra-
chromosomal interactions and the highly enriched epigenomic
modifications are low and marginal in type I and the type II bins,



Fig. 10. Illustration of HOT regions guiding a Transcription factor to its target binding site. HOT regions (purple) and binding sites (red) for TF are dispersed across DNA
sequence. In a three-dimensional space, HOT regions come into proximity of the TF target binding site, generating higher TF binding potential in the region thus guiding the TF
(yellow ball) to the actual target binding site (marked with *). Transcription factor which is sliding along DNA non-specifically (dashed line) in search of target site, faces a
greater pull (large red arrow) towards the actual target binding site because of HOT regions gathered around it and has small attraction (small red arrows) for other binding
sites. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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respectively. Considering the lack of genomic marks and intra-
chromosomal interactions in core type I genomic window bins,
we term them as ‘‘Inactive Genomic Zones”. On the other hand,
core type II genomic window bins can be termed as ‘‘Poised Geno-
mic Zones”, since they are equipped with genomic marks and fea-
tures considerably higher than Inactive Genomic Zones, but they
are more suitable for condition based activity. For the core type
III genomic window bins, there are high frequencies of both the
intra-chromosomal interactions and the highly enriched epige-
nomic modifications, and the core type III bins are associated with
the highest number of genes (majority housekeeping) and HOT
regions (Supplementary Figs. 7 and 8). These observations match
earlier reports [67,68] about chromosome interaction hotspots in
human genomes, where the hotspots are associated with higher
chromatin activity and transcription across cell types. The core
type III bins may be the most active regions in intra-
chromosomal interactions that contribute to long-distance gene
regulation; here termed ‘‘Active Genomic Zones”. Functional anno-
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tation analysis of genes associated with the Inactive, Poised and
Active Genomic Zones (core type I, II and III genomic window bins)
was also performed (P-values <0.001, Supplementary Fig. 6). These
results suggest that the Inactive Genomic Zones have a modest role
in gene regulation, but both the Poised and Active Genomic Zones
are active in many biological processes and signaling pathways. It
implies that Active Genomic Zones may play a pivotal role in func-
tional intra-chromosomal interactions and in controlling the long
distance gene regulation.

On the basis of all these findings, a new gene regulation model
is proposed: 1) functional intra-chromosomal interactions reduce
the physical distance between the HOT regions which increases
the effect of nTBA to DNA; 2) the stronger effect of nTBA to DNA
from the multiple HOT regions generates higher TF binding poten-
tial in the region, which facilitates recruitment of the TF towards
the target binding site. This model is similar to a previous theory
[69], suggesting that most of the TF enrichment within HOT
regions may be caused by nonspecific DNA binding. Especially,
the observation, from our integrated analysis of nTBA with chro-
matin modifications and chromosome interactions, supports the
hypothesis in [69] that nonspecific TF-DNA interactions may guide
TFs to find their true targets in the genome. Thus, our proposed
new gene regulation model provides a new insight into the process
used by TFs in search of their true target sites: for example, in a
three-dimensional space of a nucleus, spatiotemporally specific
intra-chromosomal interactions position the HOT regions in the
vicinity of the true target sites and nTBA generated at these HOT
regions is guiding TF binding to the true target sites as illustrated
in Fig. 10. It is not unusual for HOT regions to mediate physical
interactions between distant loci in the genome, considering simi-
lar behavior for several TF rich loci [70,71]. HOT regions experience
high Transcription Factor binding despite lack of clear sequence
motifs [14]. Such non-motif binding of TFs at HOT regions can be
explained by combination of two reasons. First, combinatorial col-
laboration of TFs using protein–protein interactions where only a
few of the proteins are actually binding to the DNA [15,72]. Unfor-
tunately, only a handful such protein–protein interactions are
experimentally verified[16], thus we kept our focus towards the
second possibility which is existence of non-specific binding affin-
ity that allows weaker binding of TFs to non-canonical motifs. In
other words, given that HOT regions exhibit affinity for TFs despite
the lack of TF binding sites, it is possible that HOT regions might
play a role in recruiting the TFs to the target sites [15]. Therefore,
the effect of nTBA to DNAmay not only contribute to the functional
intra-chromosomal interactions (the long distance gene regula-
tion), but also can facilitate TF’s search for its true recognition sites
on chromosomes.
5. Conclusions

This study proposes an Integrative Genome Analysis Pipeline
(IGAP) based on a new biophysical model for estimating nTBA to
DNA. Applying this biophysical model on human genome
sequences unveils that nTBA to DNA has important regulatory
functions. The integration of nTBA with other epigenomic modifi-
cations using IGAP revealed a positive correlation between the
nTBA and the enhancer histone markers in intra-chromosomal
interactions. Furthermore, human genomes can be clustered into
three groups, by considering only the frequencies of highly
enriched epigenomic modifications and the effect of nTBA at
intra-chromosomal interactions.

Consequently, a new model of gene regulation based on the
effect of nTBA to DNA has proposed: functional chromosomal
interactions reduce the physical distance between the HOT regions
that result in high nTBA to DNA in the area, which in turn attract
TFs to such regions with higher binding potential. This phe-
nomenon assists the correct matching of TF with its true target
sites, reducing the search space for TFs. This new model reveals
insights about the three-dimensional diffusion process of TFs,
chromosomal interaction hotspots in a genome and the theory of
transcription factories [73] that controls long distance gene regula-
tion. Hence, IGAP provides a new and powerful tool to explore the
complexity of genome regulation by employing features like nTBA
and integrating multiple types of genomic data in a computational
pipeline.
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