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SpotLight Proteomics: uncovering 
the hidden blood proteome 
improves diagnostic power of 
proteomics
Susanna L. Lundström1, Bo Zhang1, Dorothea Rutishauser1, Dag Aarsland2,3,4 & 
Roman A. Zubarev1

The human blood proteome is frequently assessed by protein abundance profiling using a combination 
of liquid chromatography and tandem mass spectrometry (LC-MS/MS). In traditional sequence 
database search, many good-quality MS/MS data remain unassigned. Here we uncover the hidden part 
of the blood proteome via novel SpotLight approach. This method combines de novo MS/MS sequencing 
of enriched antibodies and co-extracted proteins with subsequent label-free quantification of new and 
known peptides in both enriched and unfractionated samples. In a pilot study on differentiating early 
stages of Alzheimer’s disease (AD) from Dementia with Lewy Bodies (DLB), on peptide level the hidden 
proteome contributed almost as much information to patient stratification as the apparent proteome. 
Intriguingly, many of the new peptide sequences are attributable to antibody variable regions, and are 
potentially indicative of disease etiology. When the hidden and apparent proteomes are combined, the 
accuracy of differentiating AD (n = 97) and DLB (n = 47) increased from ≈85% to ≈95%. The low added 
burden of SpotLight proteome analysis makes it attractive for use in clinical settings.

In recent years, quantitative proteomics has developed rapidly, offering clinical analyses of blood serum and 
plasma at relatively low cost and high throughput. Two approaches are generally used: one utilizes antibodies1,2, 
and the other method uses a combination of nano-flow liquid chromatography and tandem mass spectrometry 
(nLC-MS/MS)3,4. Both approaches make use of a priori known information: antibodies are developed against 
common proteins and/or their known posttranslational modifications (PTMs), while the LC-MS/MS approach 
for protein identification matches MS/MS spectra against a database of known sequences, taking only a few 
common PTMs into consideration. Even though these approaches have proved their utility in a large number of 
studies, they both miss unknown or unexpected sequences and PTMs. This missing information may be impor-
tant, or even crucial, for building proteome-based diagnostic and prognostic models and for understanding the 
disease origin and progression.

A decade ago, we have analyzed proteomics data obtained with at that time most advanced instrumentation 
available, featuring high-resolution MS combined with high-resolution MS/MS employing two complementary 
fragmentation techniques5. Despite the excellent data quality, it was found that 25–30% of the good quality MS/
MS-data still don’t match the database sequences6. The root of the problem was hypothesized to be the presence of 
unexpected PTMs, mutations and altogether new sequences. In order to address the issue of the wide and a priori 
unknown repertoire of PTMs present, the untargeted ModifiComb approach to PTM analysis was introduced7. 
Other groups have pursued similar approaches8. Note that, from the standpoint of an unbiased PTM analysis that 
deals with PTMs of both positive and negative mass shifts, there is no difference between a PTM and a mutation. 
Usually, approaches such as ModifiComb detect PTMs and mutations that do not alter the sequence too much. 
However, new sequences may also be present in the proteome due to carry-over between heterogeneous samples 
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or potentially from contaminations by virus, bacteria or mycoplasma9. In analysis of clinical samples, the de novo 
sequencing proteomics approach can provide information on disease-specific polymorphism in proteins. In par-
ticular, the de novo sequencing approach may identify disease-related differences due to the intrinsic sequence 
heterogeneity of native antibodies (Immunoglobulins, Igs) in patient blood. Theoretically, antibody recombina-
tion and point mutations can result in over 1015 different antigen-binding sites in humans10. However, human 
antigen response only exploits ∼ 1% (1013) of this sequence diversity11–13. Yet, this number is still 1010 times bigger 
than the number of proteins in the remaining blood proteome, and the a priori probability to detect by MS an 
antibody molecule with a given sequence is vanishingly small. However, recent studies have revealed that anti-
gen specific antibody homology is more frequent than would be expected by pure chance14–21. Indeed, when 
the immune system in different individuals is challenged by the same antigen, the antibodies raised against this 
challenge should bind to it efficiently, which puts restraint on sequence variability of these antigen-specific Igs. 
In a homogeneous group of patients, the abundance(s) of peptides from the homologous Ig variable region with 
binding affinities to disease-specific antigen(s) may even be high enough to be detected by MS and may correlate 
with the disease strongly enough to be useful as biomarker(s). Since the Ig sequences of interest are unlikely to 
be found in standard sequence databases, analysis of the hidden blood proteome requires de novo polypeptide 
sequencing.

Here, we introduce the SpotLight approach to the analysis of the hidden blood proteome. Given that a major-
ity of polymorphism within the blood proteome is derived from antibodies, the SpotLight approach includes a 
simple enrichment step for polyclonal Immunoglobulin G (IgGs) using Melon Gel (MG). MG enrichment is not 
based on Fc-region specificity and certain blood proteins (herein referred to as MG proteins) are also co-enriched.

To produce and annotate a database of IgG and other de novo sequences, SpotLight employs several impor-
tant steps prior to regular standardized label-free proteomics database search and quantitation (Fig. 1). The 
MG-enriched fraction is digested and analyzed by LC-MS/MS using two complementary fragmentation tech-
niques. Both MS and MS/MS data are acquired with high resolution, which is a pre-requisite for reliable de novo 
sequencing22. Newly derived sequences are analyzed by BLAST in terms of homology to either IgG or other 
proteins. In any case, their sequences are inserted in the sequence database, together with the tentative assign-
ment. Next, the LC-MS/MS datasets of both intact and MG-enriched proteomes are processed using our novel 
DeMix-Q label-free workflow for peptide identification and quantification as well as for protein inference23,24.

To test the SpotLight approach, we selected a cohort of early stage patients diagnosed with similar neurode-
generation disorders: Alzheimer’s disease (AD) and Dementia with Lewy Bodies (DLB). These disorders have 
similarities in pathology, and their differentiation is nontrivial25 but important due to the differences in prognosis 
and treatment response. Clinical criteria have good specificity but relatively low sensitivity, and there is a need for 
accurate, cheap, and easily available biomarkers. Due to overlap in pathology, CSF and MRI-based biomarkers are 
not sufficiently accurate25. The 144 patients (97 AD and 47 DLB; see Table 1) were separated into a homogeneous 
Group A (24 AD and 24 DLB) that was used for multivariate (MV) statistical analysis and model building, and a 
heterogeneous Group B (remaining patients) that was employed for model verification. Subsets of the generated 
data, (i.e. intact and MG-enriched proteomes; proteins and peptides, IgG and non-IgG peptides; known and new 
peptides) were tested according to the quality factor Q2 of the model, the p-value of AD/DLB separation and the 

Figure 1. Approach overview. Schematic overview of the SpotLight approach. In short, blood sample is 
digested and analyzed by LC-MS/MS. In parallel, the same sample is enriched using Melon Gel and digested, 
with de novo sequencing of the tryptic fragments. The novel sequence candidates are BLASTed and thus either 
assigned to known proteins or IgG, or discarded. The assigned sequences are added to the convention protein 
sequence database, and all MS/MS data are searched in this expanded database. The sequences with < 1 FDR are 
then quantified, and multivariate analysis is performed on both the peptide level as well as the protein level.
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area under the Receiver Operating Characteristic (ROC) curve, AUC. The results revealed the potential for dis-
ease diagnostics of the hidden proteome, manifested in its high predictive power.

Results
IgG-isolation. We searched for a simple and robust way to enrich human serum IgGs, eventually selecting 
Melon™  Gel IgG Spin Purification Kit (Thermo Fisher Scientific). Contrary to Protein G and Protein A IgG-
purification, MG enrichment is not based on Fc-region specificity, but instead on gel binding of non-IgG proteins, 
thereby allowing IgG recovery in the flow-through (non-bound) fraction. Certain blood proteins (i.e. MG pro-
teins) were found co-enriched with the IgGs. Their abundances did not correlate with those in intact serum (see 
below). Some MG proteins might be enriched because of the immune complex formation with IgG, or because of 
the similarities in their physico-chemical properties to IgG (pKα  values, etc.).

De novo sequencing and database expansion. The MG-enriched and intact serum samples were 
digested by trypsin and analyzed by LC-MS/MS. To obtain reliable de novo sequencing of tryptic peptides, both 
higher-energy collisional dissociation (HCD) and electron transfer dissociation (ETD) MS/MS were used, and 
the fragments were detected with high resolution. In parallel, intact blood serum digests were analyzed using 
high resolution HCD MS/MS only. Each HCD-ETD MS/MS spectral pair from the MG-enriched samples was 
submitted to PepNovo+  for de novo sequencing26. Up to nine best candidates representing full backbone coverage 
were accepted for every HCD-ETD MS/MS dataset. The candidate sequences were searched against the UniProt 
protein database using BLASTp (Protein BLAST). The sequence candidate with the highest BLAST score was 
reported as the final sequence for a given HCD-ETD MS/MS spectral pair. The identity was reported as “protein” 
or “IgG”. The UNIPROT protein sequence database was then expanded by adding the new sequences. The novel 
DeMix-Q workflow23,24 was used to perform peptide identification in the expanded database and quantification 
of the intact and MG-enriched proteomes. As protein abundance, the sum of the abundances of three most abun-
dant known peptides was taken.

Uncovering the hidden proteome. In the intact (unfractionated) serum proteome, 156 proteins were 
quantified, while 81 proteins were quantified via MG-enrichment. Of these, 23 proteins were new (not found in 
the intact proteome). On the peptide level, the intact proteome contained 2112 unique sequences (of which 467, 
or 18%, were related to IgG), while the MG-enrichment proteome contained 2077 peptides, of which 646 (31%) 
were homologous to IgG peptides. Note that only data from peptides (and proteins) that were robustly quantified 
in at least 50% of all AD or 50% of all DLB patients were considered. Overall, for both the total number of quanti-
fied peptides (n =  3019) and the filtered peptides (n =  2077) the sensitivity to de novo sequenced peptides was as 
good as for those obtained via conventional database search (Supplementary Fig. 1).

The contribution of de novo sequencing to the analysis was significant (Supplementary Fig. 2). Of the 2112 
non-IgG peptides quantified in the intact proteome, 435 (21%) were from novel sequences. Even bigger was 
the impact on the MG-proteins: 706 non-IgG peptides out of 1431 sequences (49%) were derived by de novo 
sequencing.

The abundances of the ∼ 40% (n =  610) of the non-IgG peptides that were quantified in both proteomes 
correlated only weakly between the proteomes (R2 =  0.2, Supplementary Fig. 2C), thus confirming that the two 
proteomes provide largely complementary information. On the other hand, the peptides homologous to the 
heavy variable (HV), kappa variable (KV) and lambda variable (LV) chain regions of IgG showed as expected 
an improved significant (p <  0.0001) correlation between the two proteomes (R2 =  0.6, Supplementary Fig. 2B). 
The majority of these peptides (280) were identified by de novo sequencing compared to 72 sequences obtained 
by database matching. This four-fold increase in characterized IgG sequences represents a dramatic expansion 
in information content, rendering the “IgGome” to be a separate subdomain of the total proteome. Altogether, 
almost 2000 IgG-related peptide sequences were identified, but most of them were not quantified in a majority of 
patients composing one group, and thus discarded from the analysis. It is likely that in some samples the peptides 
in question were actually present, and that the main reason for their non-detection was the limited dynamic range 
of MS. As the sensitivity of the MS instrumentation as well as the MS/MS efficiency improve with time, the rela-
tive importance of the IgGome in respect to the intact proteome is very likely to increase.

Of the quantified new sequences, 120 peptides originated from the complementary determining (CDR) 
regions (Supplementary Table 1). For annotation of the peptides to proteins, we used BLAST search, which 
incurred possible limitations. Thus, only four longer (> 5 AA residues) novel sequences were identified as homol-
ogous to the CDR3 region, which is the most diverse part of the IgG molecule. The CDR3 peptides sequenced 

Cohort Type nA Female AgeB MMSEC baseline Annual decline MMSE

GroupA 
DLBD 24 50% 76 ±  4 24 ±  3 3 ±  3

ADE 24 50% 76 ±  5 25 ±  2 3 ±  2

GroupB 
DLB 23 35% 76 ±  9 22 ±  4 3 ±  3

AD 73 79% 74 ±  9 23 ±  2 3 ±  2

PD-patients PD 9 45% 70 ±  7 26 ±  2 2 ±  2

Table 1. Patient characteristics and patient groups included in the study. For individual clinical information 
see Supplementary Table 6. ANumber, BYears, CMini Mental State Examination, DDementia with Lewy Bodies, 
EAlzheimer’s disease.
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de novo and showing little or no homology to known sequences were likely to be classified in our approach as 
non-IgG peptides.

Yet, the fact that ∼ 100 de novo sequenced CDR peptides were quantified in a majority of patients testifies to 
the validity of the hypothesis postulating high degree of homology in variable regions of abundant antibodies in 
homologous patient groups. The abundances of these peptides can be used for differentiating between the two 
diseases (see below).

Differentiating between AD and DLB. To evaluate the impact of the hidden proteome on the ability of 
proteomics data to differentiate between AD and DLB at the moment of diagnosis, MV-analysis of peptide and 
protein abundances was performed. In a conservative approach, patient samples were split into two groups. The 
homogeneous Group A contained 24 AD- and 24 DLB-patients, balanced in terms of gender and age (Table 1). 
The data from Group A were used in the Orthogonal Projections to Latent Structures-Discriminant Analysis 
(OPLS-DA) approach27,28 to build a model for AD/DLB differentiation. This model was then applied to the het-
erogeneous Group B encompassing the remaining patient samples (AD n =  73, DLB n =  23), and for additional 
testing, nine patients with Parkinson Disease (PD) (Table 1). Cross-validation was used to evaluate the model, 
and the area under the ROC-curve (AUC) assessed the predictive power of the underlying data.

Similar to our previous experience29, the model based on 156 proteins from the intact proteome gave an AUC 
of 85%, while the model based on the 81 MG-enriched proteins generated a low AUC of 66% (Fig. 2A). The 
combined model of both the intact and MG proteins also gave an AUC of 85%. Therefore, at the protein level the 
hidden proteome did not yield any noticeable improvement.

However, at the peptide level, the AUCs improved for all models (Figs 2A and 3A and Supplementary Table 2). 
The AUC for the 2579 intact proteome peptides was 88%, for the MG peptides (n =  2129) it was similar (84%), 
and for the combined model the AUC went up to 94%. Separately, 1431 MG-enriched non-IgG peptides gave an 
AUC of 84%, while the 646 IgGome peptides alone provided 82%.

Despite their lower number compared to the 2659 database-matched peptides, the 1997 de novo sequenced 
peptides demonstrated high predictive power, with an AUC of 90% (Fig. 2B and Supplementary Table 2). In 
general (and as expected) the prime factor determining the model accuracy is the number of molecules included 
in the model (Fig. 2). Hence, the combined peptide model was the most accurate, while the smallest model 
(52 Fc-glycans) was the least accurate. The largest deviations from this trend are the models for proteome pro-
teins (n =  156, AUC 85%) and the new de novo sequenced peptides of the intact proteome (n =  784, AUC 85%), 
MG-proteins (n =  706, AUC 84%) and the IgGome (n =  507, AUC 82%) (Fig. 2 and Supplementary Table 2). 
However, doubling the number of sequenced peptides via de novo sequencing would not be useful unless many of 
these molecules possess as much (or more) predictive power as traditionally sequenced peptides.

In a less conservative approach, Groups A and B data were merged, and unified OPLS-DA models of AD/DLB 
separation were built on the peptide and protein levels with subsequent cross-validation (Fig. 3). Generally, this 

Figure 2. AUC of AD/DLB disease discrimination of Group B patients (treated as unknown) against the 
logarithmic number of proteins/peptides included in respective MVA model based on Group A patients. 
(A) Based on proteins, peptides and Fc-glycans. (B) Based on known and new (de novo sequenced) peptides. 
Error bars represent 95% confidence intervals. Total: all variables, Plasma: Plasma extracted molecules, MG: 
Melon Gel extracted molecules.
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approach yields a slight overestimation of the predictive power of the model and the underlying data and thus a 
higher AUC value. Hence, for extra validation the PD patients were tested on the models as predictors.

For the all-patient model that included the data on both the intact and MG-enriched proteomes, an AUC of 
89% was obtained for proteins and of 96% for peptides (Fig. 3A). Taking the average between the conservative 
(Group A) and “all-patient” models, generates an estimated predictive power for peptides of 95%.

Figure 3B and C show which molecular entities contributed most to the predictive power of the models. For 
each entity, its relative importance for the model (y-axis, Variable Influence in Projection (VIP-CV)) is plotted 
against its correlation with the disease type (x-axis, p(corr))28. Both the proteome and MG entities are contrib-
uting to the DLB/AD-differentiation (dashed boxes in the plots). Among the 514 peptides that correlated with 
either DLB or AD with ≥ 99% confidence, there are three Fc-glycopeptides, 63 peptides from the IgGome (75% 
of them - de novo sequenced), 250 from MG (43% de novo sequenced) and 198 peptides from the intact proteome 
(33% de novo sequenced) (Supplementary Table 3). In the model based on proteins, eight MG proteins and three 
intact proteome proteins correlated with either patient group with ≥ 99% confidence (Supplementary Table 3).

Of notice, non-supervised Principle Component Analysis (PCA) also indicated separation between the two 
patient groups in particular components. In Supplementary Fig. 3 we show the PCA model scores of the model 
that was based on the complete data set and which included all patients (R2 =  0.51, Q2 =  0.21, 23 components). 
The figure shows component 3 and component 5 for which the best separation between the groups was observed.

Potential biomarkers of AD and DLB. Using the most conservative approach to statistical significance, we 
applied Bonferroni correction (BF, n =  4945) to the p-values. In the intact proteome, four proteins (transthyretin, 
serum amyloid P component, apolipoprotein D and multiple PDZ domain protein) and 47 peptides were found 
at significantly different levels in the two diseases, of which 13 molecules were identified via de novo sequencing 
(28%). Of the significant peptides, 18 (∼ 40%) originated from the proteins that also had significantly different 
abundances (with or without BF-correction) (Supplementary Table 4). Consistent with previous AD-biomarker 
studies30–32, transytherin had a lower abundance in AD-patients, while serum amyloid P component had a higher 
abundance (Table 2).

Figure 3. Multivariate combined models of the predictive scores of Group B and cross validated scores of 
Group A and Group B combined. (A) Left, Predicted scores (tPS) of the Group B- and PD-patients (all treated 
as unknowns) in the combined OPLS-DA models (peptides and proteins) based on the differences in the AD- 
and DLB Group A patients. Right, the cross validated scores (tCV) of the combined OPLS-DA models (peptides 
and proteins) based on all patients. The predictive scores of the PD patients (still treated as unknowns) are also 
included in the plot. The corresponding ROC-curves of each model are shown below the compared patients. 
(B) Biomarker selection from the combined patient protein model using Variable Influence in Projection (VIP) 
values plotted against the p(corr) values. (C) Biomarker selection from the combined patient peptide model 
using Variable Influence in Projection (VIP) values plotted against the p(corr) values. Loading plots for proteins 
and peptides that correlated with > 99% confidence with each sub-domain are given in Supplementary Table 3.
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Plasma kallikrein, properdin and complement C1q subcomponent subunit B (C1qb) were significantly 
elevated in the AD MG-enriched proteome (Table 2). The same phenomenon has previously been observed 
in AD-patient plasma and in the contact system in AD-mouse model/wild-type mice injected with Aβ 4233. 
Furthermore, an increased plasma kallikrein activity has been found in AD-brain parenchyma34. Noteworthy is 
the fact that properdin has been linked to brain disorders, via polymorphism35–37. The high abundance of both 
C1qb and properdin may also be linked to complement pathways upregulation.

Forty-nine MG peptides had significantly different abundances in AD vs DLB, with 23 peptides 
(47%) originating from proteins with significantly (with or without BF-correction) different abundances 
(Supplementary Table 4). Of the remaining significant peptides, five de novo sequenced molecules were of 
particular interest (Table 2). PGSVFPLADVGGK, which is overrepresented in the AD samples (p =  3.8E-6, 
BF-corrected p =  1.9E-2), is homologous to the peptide PDSVFPLEGASDADVG from the Protocadherin-α  
family which is involved in brain structure and function38,39. This novel peptide is also found to be significantly 
elevated in the AD cohort in the intact proteome (Table 2). Additionally, two pairs of AD-elevated peptides 
identified by de novo sequencing in the MG-enriched proteome showed close sequence homology in-between 
the pairs, but had low sequence homology to anything else, thus indicating that they may originate from the IgG 
CDR3-regions (Table 2).

In the intact proteome, no peptides from the variable IgG regions were significanty different in AD vs DLB, 
while MG-enrichment provided eight such peptides. Of the total 13 significant IgGome peptides (one HV-, six 
KV-, one LV- and five conserved-chain peptides, Supplementary Table 4), 10 (77%) were identified via de novo 
sequencing and one (SSQSVLYSSNNK) matched the database sequence of the CDR1 KV-region. Interestingly, 
the significant HV peptide (NTLYLQMGNSLR, Table 2), was significantly elevated in AD, while its nine homol-
ogous peptides were all elevated (significantly without BF-correction) in the DLB cohort (Supplementary Fig. 4).

Examples of AUC scores of potential biomarker candidates of AD/DLB differentiation are shown in 
Supplementary Fig. 5.

Impact of the ApoE genotype. The ApoE4 isoform has an arginine residue in the position 112 instead 
of the cysteine residue in that position in ApoE2 and ApoE3. The tryptic peptides LGADMEDVR (ApoE4) 
and LGADMEDVCGR (ApoE2, ApoE3) differentiating these two alleles were detected in our datasets but not 
reliably quantified. However, the p-values of the MV models built using only E4-gene carriers’ data are sev-
eral orders of magnitude lower than those of the models based on other patients (Fig. 4). This observation was 
consistent for all data domains. Thus, the confidence in distinguishing AD and DLB E4-genotype carriers were 
greater (p =  10−3–10−20) compared to distinguishing the AD and DLB non-E4 genotype carriers (p =  10−2–10−7) 
(Supplementary Table 5). Furthermore, for all new peptide sequence models of AD, the E4-gene carriers were 
significantly different in tCV scores (p <  2.5E-02) compared to non-carriers (Supplementary Table 5). Particularly 
different were the abundances of IgG peptides (both new and known sequences, as well as the Fc-glycans). Two 

Domain Protein/Peptide ID/origin Peptides
DLBA 

Mean ± STDC
ADB 

Mean ± STD p-value Corrected

Proteome 

Serum amyloid P-component SAMP_HUMAN 6 99 ±  56 167 ±  62 1.9E-09 9.5E-06

Transthyretin TTHY_HUMAN 8 8191 ±  1514 5603 ±  2649 9.9E-12 4.9E-08

Apolipoprotein D C9JF17_HUMAN 5 1358 ±  499 1793 ±  494 2.2E-06 1.1E-02

Multiple PDZ domain protein B7ZB24_HUMAN 2 545 ±  273 323 ±  239 2.4E-06 1.2E-02

Melon Gel 
proteins

Properdin PROP_HUMAN 6 983 ±  665 1629 ±  663 1.9E-07 9.4E-04

Plasma kallikrein KLKB1_HUMAN 27 5869 ±  2789 8043 ±  210 1.1E-05 5.2E-02D

Complement C1q subcomponent subunit B C1QB_HUMAN 2 461 ±  265 808 ±  558 1.3E-06 6.3E-03

De novo 
sequences 

QTGPTAGWNLPGPVSVGFK TGPTAGRDLLLPSPVS/F2Z3L0_
HUMAN 1 20 ±  21 43 ±  23 9.5E-08 4.7E-04

GTAGWNLDSPRLYGGK NLDSPKLY/SEM6D_HUMAN 1 73 ±  46 108 ±  37 4.0E-06 2.0E-02

GDGVAEQYADSYAQYCNPR AESYAQYVHNLCN/F5H702_
HUMAN 1 90 ±  81 196 ±  70 3.0E-13 1.5E-09

GDGVEAMNEQAHAQYCNPR GVGALEQEHAQY/F8W6 ×  8_
HUMAN 1 18 ±  21 53 ±  25 5.8E-14 2.9E-10

PGSVFPLADVGGK (MG) PDSVFPLEGASDADVG/
PCDA6_HUMAN 1 17 ±  29 50 ±  53 3.8E-06 1.9E-02

PGSVFPLADVGGK (proteome) PDSVFPLEGASDADVG/
PCDA6_HUMAN 1 2 ±  2 12 ±  13 6.4E-05 2.7E-01D

NTLYLQMGNSLR NTLFLQMDSLR/FR3E/HV311_
HUMAN 1 231 ±  154 447 ±  192 3.8E-10 1.9E-06

Other SSQSVLYSSNNK CDR1F/KV401_HUMAN 1 42 ±  54 100 ±  94 5.7E-06 2.8E-02

Table 2. Proteins and peptides of particular interest with different abundances in AD and DLB samples. 
Mean and standard deviations are given in ppm (total relative abundance in each domain =  1,000,000). P-values 
are given with and without Bonferroni correction. For full list of peptides and proteins see Supplementary Table 4. 
ADementia with Lewy Bodies, BAlzheimer’s disease, CStandard Deviation, DReaches significance when PD patients 
are included, Supplementary Table 4 EFramework, FComplement determining region.
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IgG peptides in Table 2, NTLYLQMGNSLR and SSQSVLYSSNNK, were significantly elevated for the E4-genotype 
compared to non-carriers both in AD patients as well as in all patients combined (both - p =  0.003).

On the protein level, no molecule in either proteome was significant following the BF-correction. This does 
not necessarily mean that there are no differences between the patient groups on the proteome level. Using 
BF-correction improves the confidence in eliminating false positives, but it is likely that this will also remove in 
the process a number of true positives). For example, Apolipoprotein E had a significantly lower abundance for 
the E4-genotype not only in AD patients (p =  0.001), but also in all patients (p =  0.0003). In E4-carrying DLB 
patients, Apolipoprotein E levels were also lower than in non-carriers, but with a lower significance (p =  0.07). 
These results are in line with the previous studies that have shown that APOE-E4 carriers have lower levels of total 
Apolipoprotein E40,41.

Discussion
The SpotLight approach combines two novel features, MG-enrichment and BLAST-filtered de novo sequencing, 
and greatly enhances the diagnostic power of the classical blood proteomics analysis3,4. At the modest expense 
of an additional (fast and inexpensive) sample preparation step and doubling the instrumental analysis time, 
two new domains of analysis are added – MG-enriched proteins and IgG peptides. As a result, the number of 
quantified peptides is almost doubled, and the predictive power of separating two common types of dementia, 
AD and DLB, increased from ∼ 85% to ∼ 95%. Note that this result was achieved even in a conservative approach 
on an altogether different subset (n =  96) of patients than the smaller subset (n =  48) used for model training. 

Figure 4. (A) The Cross-Validated scores from the multivariate combined peptide-based model of the complete 
dataset (Fig. 3A). Patients are divided according to known Apolipoprotein E genotypes (E2-E3 and E3-E3, 
n =  51 versus E3-E4 and E4-E4, n =  75) and disease type. (B) The Cross-Validated scores from the multivariate 
combined protein model of the complete dataset (Fig. 3A), divided according to Apolipoprotein E genotypes 
and disease type. Marked out lines in the plots represent the medians.
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Furthermore, we also had access to nine additional samples from PD patients which had similar pathophysiology 
to DLB patients25. We used these patients as an extra control and could confirm that also on the proteome/pepti-
dome level the PD profiles resembled those of the DLB patients. However, due to the low number of PD patient 
samples, we could not verify potential features that may signify a specific “PD” profile (different from both AD 
and DLB). As an additional validation of our method, a strong influence of the ApoE genotype in the patient’s 
blood proteome was found, potentially indicating four different disease related phenotypes: DLB-E4+ , DLB-E4− , 
AD-E4+  and AD-E4− .

The most intriguing group of de novo sequenced peptides was from the variable CDR regions of IgGs. Of these 
peptides, the majority was from the CDR1 and CDR2 areas of the LV and KV chains and had a close homology 
to the germline sequences. Despite this homology, the abundances of one CDR1 KV peptide and several de novo 
sequenced peptides from the conserved framework regions were distinctly different between the patient groups 
(p-values: 10−11–10−6, Supplementary Table 4), thus indicating that the changes in the polyclonal IgG-repertoire 
are to a certain degree orchestrated in individuals whose immune systems are challenged in a similar way. This 
observation may have implications for future biomarker discovery studies. Conventional antigen-based bio-
marker discovery often has limited success in bodily fluids due to the issues related to large dynamic range, 
varying degree of excretion into the circulation, rapid turnover and overall inter-individual variability42–45. In 
search for an antigen (which might be elusive), discovery of the marker antibody peptides may be the first step of 
pragmatic importance. While the presence of an antigen in the body can be organ-specific, uneven in time and 
short-lived, antibody levels in blood are likely to be more persistent. Furthermore, disease-specific antibodies are 
usually present at higher concentrations, and can be enriched further by immunoprecipitation.

In addition to peptides with sequence homology to IgG, the MG-extracts contained hundreds of peptides with 
little sequence homology to known human proteins. While some of these sequences might come from sample 
preparation (via impure trypsin or Melon Gel) and microorganism contamination, it is among this peptide pool 
that CDR3 sequenced peptides are likely to be hiding. Two pairs of such peptides with close sequence homology 
between themselves were significantly elevated in the AD vs the DLB patients (Table 2). This part of the hidden 
proteome is the most intriguing, and requires special attention.

In conclusion, since blood proteomics is rapidly gaining ground in clinical setting, its enhanced version pre-
sented herein is likely to find clinical applications, e.g., in diagnosis, prognosis, drug action monitoring, and 
in mechanistic disease studies. Being implemented in several diseases, the SpotLight approach to proteomics 
can significantly expand our knowledge on selection of polyclonal IgG-repertoire in disease development and 
progress. This approach may further improve the specificity and accuracy of predicting the disease status in 
individual patients.

Methods
Patients. This study was conducted according to the guidelines laid down in the Declaration of Helsinki. All 
procedures involving human subjects were approved by the Norwegian regional Ethics Review Board (approval 
number 2010/633) and the Norwegian authorities for collection of medical data. Written informed consent was 
obtained from all subjects. Subjects were recruited into the DemWest cohort as previously described46. Briefly, 
47 patients diagnosed with mild Dementia with Levy Bodies (DLB, age: 76 ±  7 years, 20 females) and 97 patients 
diagnosed with mild Alzheimer’s disease (AD, age: 75 ±  8 years, 70 females), were included in the study (Table 1, 
Supplementary Table 6). In addition to clinical and biomarker diagnostic procedures, patients were recruited for 
brain donation. For the first 46 cases analyzed post-mortem, the accuracy of the AD/DLB diagnostics was > 85%.  
The patients were divided into two groups (Group A and Group B, Table 1, Supplementary Table 6). The Group 
A samples were used to generate a disease-differentiating model, which was then validated using Group B. In 
order to avoid non-disease related bias, the Group A patients were age and gender matched (DLB: 76 ±  4 years, 
12 males, 12 females; AD, 76 ±  5 years, 12 males, 12 females). Group B contained the remaining patients (23 
DLB-patients; age: 76 ±  9 years, 8 females and 73 AD-patients; age 74 ±  9 years, 58 females). Additionally, nine 
Parkinson Disease patients (70 ±  7 years, 4 females) were included in the study (Table 1, Supplementary Table 6). 
Three patient samples (two AD and one DLB) were excluded from the analysis after initial assessment, as they 
appeared to be strong outliers, likely due to failed sample storage or preparation.

Sample preparation. Experimental design and approaches were permitted by and conducted at Department 
of Medical Biochemistry and Biophysics, Karolinska Institutet, Sweden.

Intact proteome. Serum samples were digested with trypsin using Protease MAXTM Surfactant, Trypsin 
Enhancer (Promega) and urea according to a modified protocol as previously described47. 10 μ g of total protein 
per sample were reduced with 20 mM dithiothreitol for 30 min at 56 °C and alkylated with 66 mM iodoacetamide 
for 30 min in the dark. Trypsin was added at a ratio of 1:30 (enzyme:protein) and the proteins were digested at 
37° overnight. Tryptic peptides were desalted using C18 StageTips (Thermo Scientific), dried in a SpeedVac and 
resuspended in 0.1% formic acid and 1% acetonitrile.

MG-enrichment. Polyclonal IgGs and associated proteins were enriched from blood serum using Melon Gel IgG 
Spin Purification Kit according to the protocol provided by the manufacturer (Thermo Scientific). Briefly, 40 μ L 
aliquots of serum were diluted with Melon Gel Purification Buffer (1:10). 500 μ L of Melon gel slurry/sample were 
washed twice with 300 μ L purification buffer (30 s at 2,500 g). The samples were added to the Melon Gel columns 
and incubated at 20 °C for 30 min using end-over-end mixing. The IgG-molecules with associated proteins were 
collected via centrifugation (60 s at 2,500 g). IgG enrichment was confirmed on a pooled sample of the MG-extracted 
IgG from all patients using denaturating SDS-PAGE mini gel system (NuPAGE®  Bis-Tris Mini Gel, Sigma Aldrich). 
A human pooled plasma standard (SeraLab) and a human polyclonal IgG standard (Sigma Aldrich) were used as 
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controls (Supplementary Fig. 6). Samples were stored at − 80 °C until trypsin digestion, which was performed similar 
to the proteomics samples described above (but excluding the first precipitation step).

Ready peptide mixtures were kept at 10 °C and injected onto a chromatographic column in 1 μ g aliquots.

Liquid chromatography - tandem mass spectrometry (nLC-MS/MS) analysis. All samples were 
analyzed in singlets (running order is provided in Supplementary Table 6).

Intact proteome. A reversed phase liquid chromatography system Easy-nLC II coupled in-line with a Q Exactive 
Plus Orbitrap mass spectrometer (both - Thermo Fisher Scientific) was used. The chromatographic separa-
tion was achieved on a 10 cm column in-house packed with 3 μ m C18-AQ ReproSil-Pur®  (Dr. Maisch GmbH, 
Ammerbuch-Entringen, Germany) using a 90 min elution gradient from 5–35% of solution B (98% acetonitrile).

Positive mode electrospray ionization was used. The mass spectra were acquired in data-dependent acquisi-
tion (DDA) mode. A survey mass spectrum in the range of m/z 300–1650 obtained at a nominal resolution of 
70,000 was followed by the selection for MS/MS of the top ten most abundant precursor ions. MS/MS was per-
formed using higher energy collisional dissociation (HCD) with normalized collision energy of 26 and detection 
at a resolution of 17,500.

MG-enriched proteome. A nano-liquid chromatography system Ultimate 3000 connected in-line to a Fusion 
Orbitrap mass spectrometer (both - ThermoFisher Scientific) was used. Reversed phase LC-separation of the 
peptides was performed on a 15 cm long EASY spray column (PepMap, C18, 3 μ m, 100 Å). The chromatographic 
separation was achieved using a gradient solvent system containing (A) water with 2% acetonitrile and 0.1% for-
mic acid and (B) acetonitrile with 2% water and 0.1% formic acid. The gradient was set up as follows: 1–30% (B) 
in 94 min, 31–95% (B) in 5 min, 95% (B) for 8 min and 1% (B) for 10 min. The flow rate was set at 300 nL/min. The 
mass spectrometer was operating in the positive DDA mode. A survey mass spectrum was acquired in the range 
of m/z 300–1700 with a nominal resolution of 120,000 (AGC target of 4.0e5 with a maximum injection time of 
50 ms). Precursor ion selection was performed in the “top speed” mode of the charge states from 2 to 7, with the 
most intense precursor priority and with a minimum intensity of 50,000. Dynamic exclusion duration was set 
as 120 s. Up to five precursor ions were selected for MS/MS, which was performed for each precursor with both 
HCD (collision energy: 27%, resolution 15,000, AGC target 5.0e4, maximum injection time 200 ms) and electron 
transfer dissociation (ETD; “collision energy”: 40%, resolution 15,000, AGC target 5.0e4, maximum injection 
time 200 ms).

Protein and peptide identification and quantification. Database matching. All MS/MS spectra 
from MG-extraction experiments were firstly searched against the human reference proteome (89,027 UniProt 
protein sequences, February 2014). Morpheus (v.165) was used as a search engine, allowing up to two missed 
tryptic cleavages, with 10 ppm and 20 ppm mass tolerances for precursor and fragment peaks, respectively. 
Carbamidomethylation of cysteine was set as a fixed modification; variable modifications included oxidation 
of methionine, deamidation of asparagine and glutamine, as well as acetylation of protein N-terminus. MS/MS 
spectra assigned to peptide sequences with < 1% FDR were then excluded from the dataset. The remaining data 
underwent de novo sequencing.

De novo sequencing. The remaining unassigned spectra were pair-wisely (HCD-ETD) submitted to 
pNovo +  (v.1.3)26. Precursor mass range was limited to between 700 to 4000 Da, oxidized methionine was con-
sidered as an independent residue, and mass tolerance was set at 5 ppm for precursors and 15 ppm for fragments 
in MS/MS. All candidate sequences were filtered by the criteria of full backbone coverage by the fragments. 
Three top-scoring peptide sequences were kept as candidates. The de novo sequencing process was repeated 
for each HCD-ETD pair with the precursor mass shifted + 1.003 and − 1.003 Da, in order to correct potential 
errors in monoisotopic mass assignment. Therefore, up to nine top sequence candidates were generated for each 
HCD-ETD pair. These candidates were homology-searched against the human UniProt protein database (89,027 
protein sequences, February 2014) using BLASTp. Two scores were given for each de novo peptide. The de novo 
scores (as reported by pNovo+ ) ranged between 30 to 147 (mean ±  S.D: 38 ±  17), and the corresponding BLAST 
scores ranged between 31 to 125 (mean ±  S.D: 52 ±  14). BLAST scores were calculated combining three elements, 
1) number of identical residues, 2) number of positively scored residues and 3) BitScores48. Notably, both the de 
novo score and the BLAST score are positively related to the sequence length. De novo sequenced peptides and 
the corresponding scores are given in Supplementary Table 7. Assignment of CDR and FR regions were based 
on Uniprot information and by using the VBASE sequence directory (Tomlinson et al., MRC Centre for Protein 
Engineering, http://www2.mrc-lmb.cam.ac.uk/vbase/alignments2.php). Since leucine (Leu/L) and isoleucine 
(Iso/I) were difficult to distinguish in de novo sequencing, all isoleucine residues (I) in the protein sequence data-
base were converted to leucine (L). The match with the highest BLAST score was reported as the final sequence 
for a given HCD-ETD spectral pair.

The UniProt human protein database and all obtained de novo sequences were merged in a new SpotLight 
database, on which a second database search was then performed as described below and followed by 
quantification.

Quantification. Raw mass spectrometry data were processed through the DeMix-Q workflow23,24, in which 
MS/MS spectra were matched against the SpotLight database. Morpheus search engine was used with the same 
parameters as described above. MS/MS identifications with < 1% FDR were assigned to chromatographic features 
that were assembled from MS1 spectra using OpenMS449. Maps of chromatographic features from individual 
LC-MS experiments were aligned and clustered into a consensus map, which contains the information of m/z, 

http://www2.mrc-lmb.cam.ac.uk/vbase/alignments2.php
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retention time, charge states, abundances and possible peptide sequences. If a consensus feature was associated 
with more than one peptide sequence or different sequences in different LC-MS/MS runs, only the most com-
mon association was kept. Peptide abundances were reported as the summed integrals of ion currents from all 
charge states. Proteins identifications were reported by applying the rule of maximum parsimony, and the de novo 
sequences were assigned to the proteins they matched in the BLAST search. Protein abundances were calculated 
by averaging the abundances of three most abundant constituent peptides. Only proteins from which we could 
identify at least two unique peptides per protein were used. Only the proteins and peptides that could be found 
and quantified in at least 50% of either all DLB- or all AD-patients were included in the output. The abundances of 
MG-enriched IgG peptides were re-normalized such that their total abundance in all samples was the same, both 
for the intact and MG-enriched proteome. The non-IgG peptides were normalized separately in the same way. On 
the protein level, all protein abundances were normalized to add to 100% in total in the sample.

Fc-glycan profiling. Fc-glycan profiling was performed as previously described21,50. Briefly, IgG 
Fc-glycopeptides were identified and quantified in the LC-MS/MS datasets (from the raw files generated in the 
MG-enriched proteome analyses that were acquired on the Ultimate 3000 LC system connected on-line to the 
Fusion Orbitrap mass spectrometer, as described in the nLC-MS/MS section). Glycopeptides were identified by 
their characteristic retention times (as determined by IgG standard) and accurate monoisotopic masses (within  
< 10 ppm from the theoretical values) of doubly and triply charged ions (IgG1: EEQYNSTYR, IgG2/(3): 
EEQFNSTFR, IgG3/4: EEQYNSTFR/EEQFNSTYR) as well as of triply and quadruply charged ions (IgG1: 
TKPREEQYNSTYR, IgG2/(3): TKPREEQFNSTFR and IgG3/4: TKPREEQYNSTFR/TKPREEQFNSTYR). 
Abundances of IgG1, IgG2/(3) and IgG3/4 glycopeptides were normalized by their respective total content. The list 
of the glycoforms that were screened for, their relative distribution and abundance differences between the two 
patient cohorts is given in Supplementary Table 8.

Statistics. Univariate statistical analysis was performed using two-tailed Student’s t-test with equal or une-
qual variance depending upon the F-test. P-values were adjusted with Bonferroni correction for the number 
of tested variables. ROC-curve analysis and linear regression tests were performed using PRISM (GraphPad 
Software, CA, USA). Principal component analysis (PCA) and orthogonal projections to latent structures dis-
criminate analysis (OPLS-DA) was performed using SIMCA 14.0 (Umetrics, Umeå, Sweden) following mean 
centering, log scaling and UV scaling. Model performance was reported as the cumulative correlation R2X[cum], 
and predictive performance – as Q2[cum] based on seven-fold cross validation. OPLS-DA models were further 
validated using ANalysis Of VAriance testing of Cross-Validated predictive residuals (CV-ANOVA), cross vali-
dated scores t (tCV) and predicted scores t (tPS).
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