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Since the discovery of autoimmunity as the main pathophysiologic process involved in 
type 1 diabetes, many attempts have tried to delay or stop beta cell destruction. Most 
research protocols in humans have investigated the effects of therapeutic agents targeting 
specific steps of the autoimmune response. In spite of safety and some degree of beta 
cell preservation, the clinical impact of such approaches was similar to placebo. Recently, 
research groups have analyzed the effects of a more intense and wider immunologic 
approach in newly diagnosed type 1 diabetic individuals with the “immunologic reset,”  
i.e., high-dose immunosuppression followed by autologous hematopoietic stem cell trans-
plantation. This more aggressive approach has enabled the majority of patients to experi-
ence periods of insulin independence in parallel with relevant increments in C-peptide levels 
during mixed meal tolerance test. However, on long-term follow-up, almost all patients 
resumed exogenous insulin use, with subsequent decrease in C-peptide levels. This has 
been at least in part explained by persistence of islet-specific T-cell auto-reactivity. Here, we 
discuss future steps to induce immune tolerance in individuals with type 1 diabetes, with 
emphasis on risks and possible benefits of a more intense transplant immunosuppressive 
regimen, as well as strategies of beta cell replacement not requiring immunomodulation.

Keywords: type 1 diabetes, immunotherapy, autologous hematopoietic stem cell transplantation, immunologic 
reset, autoimmunity, beta cell preservation

tHe cOMPLeX AUtOiMMUNe rePertOire OF tYPe 1 
DiABetes (t1D)

Type 1 diabetes is an autoimmune disease characterized by a silent phase of progressive beta cell 
destruction, followed by a symptomatic phase of hyperglycemia, when great amount (not well 
defined) of beta cell mass and function has been reduced. This phenomenon occurs in individuals 
with genetic background exposed to still undefined immunologic triggers (1). The rate of beta cell 
destruction is not absolutely linear as previously described. The pattern of temporal beta cell loss is 
typical of relapsing-remitting diseases, as periods of exacerbated beta cell destruction alternate with 
those of inactivity (1). In addition, subjects who are older at diagnosis present a slower process of 
autoimmune destruction, and, as a consequence, larger residual beta cell mass (2, 3).

Recent data from the TEDDY (The Environmental Determinants of Diabetes in the Young) trial 
showed that autoantibodies against islet antigens may occur early in life of a subset of patients. In 
fact, the age of patients at diagnosis of overt diabetes and the order of antibody positivity depend 
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tABLe 1 | Recent secondary prevention trials in individuals with type 1 diabetes and their effect on beta cell preservation.

immunomodulatory  
approach

Main target of 
medication

Follow-up effect on c-peptide on time comments

Teplizumab (11) T cell (CD3+) 2 years Slower decline compared with placebo At 1 year, 5.3% (11/207) of patients in the full-dose 
group were free from insulin. In year 2, three of  
these 11 were still insulin-free

Otelixizumab (12–15) T cell (CD3+) 4 years Slower decline in C-peptide with higher 
doses of otelizumab. No effect with 
lower doses

The higher the dose of otelizumab, the better the  
clinical response, but the more the risk of side effects. 
No patient became insulin-free

ATG + granulokine (16) T cell (CD4+, 
CD8+), B cell, T reg

1 year Slower decline compared with placebo No differences in insulin dose compared with  
placebo. No patient insulin-free. Time of disease at 
randomization: 4 and 24 months

Rituximab (17) B cell 2 years Slower decline compared with placebo Lower insulin requirements in the treated group. No 
patient insulin-free

Alefacept (18) T cell (CD4+, CD8+) 2 years Slower decline compared with placebo Reduced insulin dose in treated group. No patient 
insulin-free

Abatacept (19) T cell (CD80+, CD 
86+, CD28+)

3 years Slower decline compared with placebo No differences in insulin dose compared with placebo

Autologous mesenchymal stem 
cell (21)

T cell, T reg 1 year No change compared with placebo No differences in insulin dose compared with placebo. 
Cells were harvested from bone marrow

Autologous T regs (23) T reg 2 years No changes in C-peptide along the time 
compared to baseline

No differences in insulin dose along the time

Chemotherapy followed by 
autologous hematopoietic stem 
cell transplantation (26–35)

“Immunologic reset” Up to 
7 years

Increase in C-peptide > 3 y post-
transplantation and then returned 
to baseline levels after 6 years and 
(compared to baseline)

Around 80% of patients became insulin-free for  
variable periods. Lack of randomized, parallel, double- 
blind, placebo-controlled trials. One death occurred  
in the Polish group. Potential risk of severe side effects
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both on HLA and non-HLA genotypes (4, 5). The exact trig-
gers of autoimmunity against pancreatic islet beta cells have not 
yet been identified, and much of the immunologic mechanisms 
involved in this process are still under study. There is a pathologi-
cal cross talk involving B and T lymphocytes, regulatory cells (B 
and T reg cells), autoantibodies, monocytes, natural killer cells, 
cytokines, and the beta cells themselves (1, 6–8). Although 
there is evidence that CD8+ effector T  cells may be directly 
involved in beta cell death, other cell types most certainly par-
ticipate in this autoimmune response (8, 9). In this scenario, which  
are the effects of immune interventions in humans with T1D?

tHe rOLe OF iMMUNOiNterveNtiONs 
iN tHe PreservAtiON OF BetA  
ceLL MAss

Since the discovery of autoimmunity as the key phenomenon 
leading to T1D, many immunologic interventions have been 
investigated as strategies to stop beta cell destruction. The Diabetes 
Control and Complication Trial showed that higher C-peptide 
levels are associated with lower incidence of diabetic nephropathy, 
retinopathy, and less episodes of hypoglycemia (10). Preservation 
of beta cell mass is also associated with less exogenous insulin 
requirement (3). Autoimmunity in T1D is complex and involves 
different pathways, connections, organs, and cells. Nevertheless, 
most research protocols have attempted to hinder beta cell 
destruction targeting specific molecules or pathways, instead of 
wider immunosuppressive approaches. The argument is that sys-
temic immunosuppression may expose the patient to undesirable 

adverse effects. Table 1 summarizes the main outcomes of recent 
clinical trials on beta cell preservation in patients with T1D (sec-
ondary prevention trials).

Effector T  cells are directly related to beta cell death, and 
secondary prevention trials with teplizumab (anti-CD3 mono-
clonal antibody) (11) and otelixizumab (anti-CD3 monoclonal 
antibody) (12–15) have used these cells as targets to preserve 
pancreatic function. In these studies, treated patients presented a 
less accelerated rate of decline in C-peptide levels and also some 
reduction in daily insulin doses, when compared to non-treated 
patients, indicating a beneficial effect of these immunomodula-
tory agents on beta cell preservation. However, less than 5% of 
individuals experienced periods free from insulin.

The combination of antithymocyte globulin plus granulocyte 
colony-stimulating factor (G-CSF) has also been investigated, as 
another attempt to stop T cell auto-reactivity. Individuals up to 
2 years after diagnosis of T1D (different from other secondary 
prevention trials) were included. Along 1  year, the decline in 
C-peptide levels was slower in treated patients, when compared 
to the control group, but there was no difference in insulin 
requirements (16). In 2014, Peskovitz and colleagues turned the 
focus on B cells, treating newly diagnosed T1D individuals with 
rituximab (anti-CD20 monoclonal antibody). The treatment was 
considered safe and able to induce slower decline in C-peptide 
levels; however, no significant difference in insulin requirements 
was detected between treated and placebo groups (17).

Later, T  cells were again targeted by immunomodulatory 
approaches with alefacept (LFA3-IgG1 fusion protein that binds 
CD2) (18) and abatacept (CTLA-4-IgG1 fusion protein that binds 
CD80/CD86) (19) that induce apoptosis and inhibit activation of 
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T-cells, respectively. Both drugs promoted beta cell preservation, 
with slower rate of reduction of C-peptide levels and were con-
sidered safe. Nevertheless, clinical effects were disappointing, as 
alefacept promoted only slight reduction of insulin requirements, 
while abatacept did not change them at all.

Cell-based therapies were also investigated in secondary pre-
vention trials. Multipotent mesenchymal stromal cells (MSCs) are 
considered safe promising tools to change the natural history of 
T1D and other immune-mediated diseases. They exhibit immuno-
modulatory potential, migratory capacity to injured and inflamed 
areas and can contribute to tissue regeneration [directly or by 
the secretion of bioactive factors (20)]. In 2015, Carlsson and 
colleagues analyzed the effect of autologous MSCs in adults with 
recent-onset T1D. In contrast with non-treated T1D patients, who 
presented a significant decline in serum C-peptide levels, beta cells 
were still preserved in the MSC-treated group at 1-year follow-up, 
with stable levels of C-peptide. The beneficial effect on pancreatic 
function, however, did not reflect on insulin requirements of the 
MSC-treated group. No relevant side effects were observed (21).

The pathophysiology of T1D also involves defective function 
of regulatory T  cells (Tregs), and perhaps T effector cells that 
may be refractory to Treg suppression (22). In 2015, Bluestone 
and colleagues evaluated the effects of intravenous infusions 
of expanded autologous polyclonal Tregs in recent-onset T1D 
patients (22). In this phase I open label study, autologous Treg 
infusions were safe, but did not change the temporal secretion of 
C-peptide and exogenous insulin use along 2 years of follow-up. 
Phase 1/2 trials have also investigated the effects of low-dose 
exogenous IL-2 on Treg function (23, 24). However, although the 
studies have detected increments in Treg numbers, the effects on 
glycemic control have yet to be established.

Most of the research protocols in humans used approaches 
that aimed to target only some steps of autoimmunity repertoire. 
Despite safety and some degrees of beta cell preservation, the 
clinical impact of such agents was similar to the placebo groups. 
Moreover, most of these immunomodulatory agents were origi-
nally developed and/or tested to prevent progression of other 
autoimmune diseases, and they may not necessarily share similar 
pathophysiological mechanisms of T1D.

Under the rationale of having a wider approach to the complex 
immune dysfunctions linked to T1D, in 2007 Voltarelli and col-
leagues published the first trial analyzing the effect of the “immu-
nologic reset” in newly diagnosed T1D patients. The strategy 
included ablation of the autorreactive immune system, followed 
by generation of a new and tolerant system through infusion 
of autologous stem cells. Hematopoietic stem cells were mobi-
lized with cyclophosphamide (2.0  g/m2) and G-CSF (10  µg/kg  
per day) and then were harvested from the peripheral blood by 
leukapheresis and cryopreserved. Subsequently, hematopoietic 
stem cells were injected intravenously after conditioning with 
cyclophosphamide (200 mg/kg) and rabbit antithymocyte globu-
lin (4.5 mg/kg). In this prospective non-randomized trial, most 
patients (21 out of 25) became insulin-free after transplant. At 
4  years posttransplantation, C-peptide levels were significantly 
higher than pretransplant levels (25–30). Furthermore, at 7 years, 
most patients had already resumed exogenous insulin use, but 
C-peptide levels were still similar to those pretransplantation.

Independent research groups have reproduced the Brazilian 
transplant protocol with slight modifications to increase efficacy of 
the procedure (31–34). In the Polish protocol, patients underwent 
2 or 3 plasmapheresis sessions before transplant and acarbose 
was used as maintenance drug (31, 32). In the Mexican protocol, 
the transplant conditioning regimen included cyclophosphamide 
plus fludarabine (34). Nevertheless, results regarding duration of 
insulin independence and transient increase in C-peptide levels 
were similar to those shown by Voltarelli and colleagues.

Recently, to compare long-term effects of the “immunologic 
reset” with the real world scenario, a cross-sectional analysis was 
made with BrazDiab1 (the largest multicenter observational study 
in T1D in Brazil) data. During the long-term follow-up of 8 years, 
none of the transplantated patients had developed microvascular 
complications, while 21.5% of the non-transplanted BrazDiab1 
patients had presented at least one microvascular complication 
(30). Despite limitations, this study suggests that hematopoietic 
stem cell transplantation may promote long-term beneficial 
metabolic effects beyond insulin freedom.

Ethical and safety issues are key points of research protocols 
that involve high-dose systemic immunosuppression. Since there 
are potential short-term risks of infection, acute organ dysfunction 
and death, and theoretical long-term risks of malignancies and 
secondary autoimmune diseases, the inclusion of young children 
with T1D has been restricted in these trials. The majority of patients 
included in the studies presented only nausea, vomiting, alopecia, 
and fever as transplant-related adverse events. In the Polish study, 
however, there was one death due to Pseudomonas aeruginosa sepsis 
(32). To date, no severe long-term side effects have been described.

In 2017, Malmegrim and colleagues analyzed the effects of 
autologous hematopoietic stem cell transplantation on the immune 
system (27). Although CD8+ T-cells reconstituted early after trans-
plant, CD4+ T-cell remained lower than baseline for several months, 
resulting in a prolonged inversion of the CD4/CD8 ratio. B cells 
reconstituted to baseline levels at 2–3 months posttransplantation 
and regulatory T cell (CD4+CD25hiFoxP3+ and CD8+CD28−CD57+) 
counts increased. In the overall population, memory cells comprised 
most of T cells detected on follow-up of patients after transplanta-
tion; however, in patients that remained insulin-free for longer 
periods after transplant, there was slower reconstitution of effector 
memory cells. When analyzed separately, islet-specific autoreactive 
CD8+ T cells were still present after high-dose immunosuppres sion, 
indicating insufficient ablation of these cells.

The lack of knowledge of the exact mechanisms of disease, 
genetics, and environmental triggers may be one of the reasons 
for not restoring immunological balance in secondary prevention 
trials. On the other hand, the organ-specific autoreactivity may 
be too intense and persistent to be controlled, even by systemic 
ablation of the immune system.

tHe FUtUre: BetA ceLL rePLAceMeNt 
Or MOre iNteNse 
iMMUNOsUPPressiON?

As secondary prevention trials did not achieve complete restoration 
of immune balance, development of new strategies to preserve 
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FigUre 1 | Main results of recent secondary prevention trials and perspectives in the immunologic approaches for individuals with T1D.
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and/or increase beta cell mass are still required. If even the most 
intense immune-based approach of “immunologic reset” with 
autologous hematopoietic stem cell transplantation was not 
able to change the natural history of T1D, it is less probable that 
low intensity or target-specific immunomodulatory approaches 
would achieve clinical success in this field.

Figure 1 presents some of the strategies that can be investi-
gated in the near future to manage T1D autoreactivity.

increasing the intensity of the 
conditioning regimen for Autologous 
Hematopoietic stem cell transplantation
As previously shown, clinical trials with autologous hematopoi-
etic stem cell transplantation for T1D included similar drugs as 
conditioning regimen. The Brazilian protocol used high dose 
cyclophosphamide plus rabbit ATG, while the Polish protocol 
added plasmapheresis to the procedure and the Mexican pro-
tocol used fludarabine plus cyclophosphamide. All provided 
similar outcomes, indicating insufficient control of islet-specific 
autoreactivity. Therefore, new protocols of autologous hemat-
opoietic stem cell transplantation should be developed, aiming to 
increase effectiveness of the immunosuppressive approach. One 
possibility is to increase the intensity of transplant conditioning 
regimens. In this context, a three-drug immunosuppressive regi-
men (cyclophosphamide + fludarabine +  rabbit antithymocyte 
globulin) regimen has been proposed, aiming to more efficiently 
destroy the memory T and B  cell compartment and possibly 
improve treatment outcomes (28).

Graft manipulation with CD34+ may also be investigated as 
a strategy to be added to future transplant protocols. Although 
there is no consensus and still a matter of debate in transplanta-
tion for other autoimmune diseases, CD34+ selection has not 

been investigated in T1D. The rationale for this approach is that 
during unselected infusions, memory T cells are reinfused, per-
petuating the autoimmune process after transplant. Importantly, 
graft manipulation is associated with higher incidence of post-
transplant viral infections.

For every newly proposed intervention, safety and long-term 
toxicity must be considered, especially when higher immunosup-
pression is expected. Despite lifetime insulin-dependence and 
poor quality of life of patients, T1D is a non-malignant disease, 
and new strategies to improve glycemic control are constantly 
under investigation.

In addition to the immune-based interventions, other ongoing 
research protocols investigate means to restore insulin secretion. 
Most of the current effort involves development of technologies 
for beta cell or stem cell encapsulation.

intra-Abdominal endocrine Pancreas 
Bioengineering
One of the greatest challenges in islet transplantation is the need 
for chronic immunosuppression (with or without corticoster-
oids) to avoid rejection of allogeneic cells. This problem may 
be circumvented by encapsulation of the islet cells to physically 
prevent host immune cells from reaching the graft.

Recently, Baidal and colleagues (35) reported the case of a 
woman with longstanding T1D who received pancreatic islets 
from a deceased donor and became insulin-free 17 days after the 
procedure. Islets were combined with host autologous plasma and 
were laparoscopically layered onto the omentum. A degradable 
biologic scaffold was created, but immunosuppression regimen 
still had to be used in this case.

The next step will be the improvement of the technique of 
islet encapsulation so that immunosuppression will be no longer 
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needed. In the future, embryonic stem cells or even induced 
pluripotent stem cells (iPS) may be used as alternative sources for 
insulin-producing cells.

stem cell-Derived islet replacement 
therapy
As a further step in the use of allogeneic insulin-producing cells, 
an ongoing study investigates transplantation of pancreatic endo-
derm cells derived from human embryonic stem cells to restore 
insulin and glucose homeostasis (NCT02239354). Immune-
mediated rejection is prevented by a surrounding semi-permeable 
and protective membrane, enabling pancreatic endoderm cells to 
further differentiate into mature and functional pancreatic cells, 
and not requiring use of immunosuppressive drugs.

transforming Adult cells into Pancreatic 
Beta cells
The use of autologous sources for beta cell replacement is another 
strategy to avoid rejection. Doiron and colleagues designed a 
lentiviral vector construct expressing the glucokinase gene under 
control of the cytomegalovirus promoter (36). In this study, 
insulin-secreting cells could be generated, in  vivo, from adult 
pancreatic tissue of a mouse model of partial pancreatectomy. 
Treated animals presented long-term normalization of glucose 
tolerance and insulin secretion. Despite technical difficulties still 
to be circumvented, mainly the use of non-viral vectors, this is 
an attractive approach to restore organ function on humans. As 
beta cells would be generated from the patient’s own tissue, no 
immunosuppression would be necessary.

cONcLUsiON

Many attempts have been made to modulate or even to reset 
the immune system in type 1 diabetic individuals, aiming to 

avoid pancreatic beta cell destruction. However, even high-
dose immunosuppression followed by infusion of autologous 
hematopoietic stem cells was not able to sustainedly restore 
immune tolerance. Given these observations, new approaches 
need to be developed. These would include the use of more 
intense immunosuppressive protocols to preserve beta cell mass, 
perhaps coupled with replacement of beta cells protected against 
immune destruction.
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