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Purpose: Prior artificial intelligence (AI) models for predicting glaucoma progression have used traditional
classifiers that do not consider the longitudinal nature of patients’ follow-up. In this study, we developed survival-
based AI models for predicting glaucoma patients’ progression to surgery, comparing performance of regression-,
tree-, and deep learningebased approaches.

Design: Retrospective observational study.
Subjects: Patients with glaucoma seen at a single academic center from 2008 to 2020 identified from

electronic health records (EHRs).
Methods: From the EHRs, we identified 361 baseline features, including demographics, eye examinations,

diagnoses, and medications. We trained AI survival models to predict patients’ progression to glaucoma surgery
using the following: (1) a penalized Cox proportional hazards (CPH) model with principal component analysis
(PCA); (2) random survival forests (RSFs); (3) gradient-boosting survival (GBS); and (4) a deep learning model
(DeepSurv). The concordance index (C-index) and mean cumulative/dynamic area under the curve (mean AUC)
were used to evaluate model performance on a held-out test set. Explainability was investigated using Shapley
values for feature importance and visualization of model-predicted cumulative hazard curves for patients with
different treatment trajectories.

Main Outcome Measures: Progression to glaucoma surgery.
Results: Of the 4512 patients with glaucoma, 748 underwent glaucoma surgery, with a median follow-up of

1038 days. The DeepSurv model performed best overall (C-index, 0.775; mean AUC, 0.802) among the models
studied in this article (CPH with PCA: C-index, 0.745; mean AUC, 0.780; RSF: C-index, 0.766; mean AUC, 0.804;
GBS: C-index, 0.764; mean AUC, 0.791). Predicted cumulative hazard curves demonstrate how models could
distinguish between patient who underwent early surgery and patients who underwent surgery after > 3000 days
of follow-up or no surgery.

Conclusions: Artificial intelligence survival models can predict progression to glaucoma surgery using
structured data from EHRs. Tree-based and deep learning-based models performed better at predicting glau-
coma progression to surgery than the CPH regression model, potentially because of their better suitability for
high-dimensional data sets. Future work predicting ophthalmic outcomes should consider using tree-based and
deep learning-based survival AI models. Additional research is needed to develop and evaluate more sophisti-
cated deep learning survival models that can incorporate clinical notes or imaging.
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Glaucoma is a progressive disease of the optic nerve that
causes vision loss and irreversible blindness. However, the
clinical trajectory of glaucoma can vary dramatically be-
tween patients, with some patients progressing quickly to
surgery and others remaining stable for many years.1

Although elevated intraocular pressure (IOP) is a major
risk factor for glaucoma progression, many other ancillary
factors crucially influence or are indicators of the clinical
trajectories of patients with glaucoma (e.g., medication
use, eye examination findings, or ancillary testing
results).2e4 Thus, identifying patients who are at high risk
and predicting glaucoma progression is complex and
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requires multifactorial data inputs, rendering the task ripe
for artificial intelligence (AI) prediction algorithms.

Some previous work has used AI models to predict
glaucoma progression using electronic health records
(EHRs). These include traditional machine learning classi-
fication models, such as logistic regression, random forest,
and support vector machines, for structured data from
EHRs,5,6 as well as deep learning models using natural
language processing for free-text notes from EHRs.7

However, most AI predictive models are classifiers that
provide a binary outcome prediction and do not explicitly
consider the longitudinal nature of follow-up with patients.
1https://doi.org/10.1016/j.xops.2023.100336
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Survival analyses are longitudinal analyses commonly
used in traditional inferential studies but are not as common
for developing AI prediction models, especially for
ophthalmology. Cox regression is the most widely used
model for longitudinal analysis. Still, it operates under
many restrictive assumptions,8 such as the assumption of
proportional hazards and of uncorrelated features. These
restrictions may be difficult to satisfy, especially for large
data sets with many features, such as those typically used
for AI predictive models. Alternative tree-based survival
model approaches, such as random survival forest (RSF)
and gradient-boosting survival (GBS), have shown superior
performance in diagnosing several diseases, including breast
cancer, lung cancer, and brain tumors, such as glioma.8e11

Deep learning approaches to survival analyses, such as
DeepSurv and DeepHit, have also achieved outstanding
results in multiple studies.11,12

The purpose of the present study was to predict glaucoma
progression to surgery using survival-based AI models and
comparing the performance of different approaches. In this
article, we applied regression-based (Cox regression), tree-
based (RSF and GBS), and deep learningebased (Deep-
Surv) survival AI models to our glaucoma data set to
evaluate the performance of these 4 models and their asso-
ciated analytic approaches.

Methods

Study Population and Cohort Construction

We identified from EHRs 4512 patients with glaucoma seen by the
Stanford Department of Ophthalmology from 2008 to 2020. These
patients included patients who had either undergone incisional
glaucoma surgery (Current Procedural Terminology codes 66150,
66155, 66160, 66165, 66170, 66172, 66174, 66175, 66179, 66180,
66183, 66184, 66185, 67250, 67255, 0191T, 0376T, 0474T, 0253T,
0449T, 0450T, 0192T, 65820, 65850, 66700, 66710, 66711, 66720,
66740, 66625, and 66540) and who had� 2 instances of a glaucoma
diagnosis but did not undergo glaucoma surgery (International
Classification of Diseases [ICD] 9 codes H40- (excepting H40.0-),
H42-, Q150-, and their ICD9 equivalents). At least 120 days of
baseline follow-up after the first visit (and before surgery for the
surgical patients) was required to allow for adequate baseline testing
to be gathered on new patients, a process which could take several
visits at our center. The cohort was split into training, validation, and
test sets in a 6:3:1 ratio. All models were trained on the training set,
with hyperparameters tuned on the validation set or by
crossvalidation on the training set, and final results were reported on
the test set. This study adheres to the tenets of the Declaration of
Helsinki and was approved by the Stanford Institutional Review
Board with a waiver of informed consent.

Feature Engineering

The structured features considered in the modeling included de-
mographics, eye examination findings, diagnoses, and medication
information from the baseline period, defined as the first 120 days
after the initial ophthalmology visit. All baseline features were
converted into either categorical variables or continuous numeric
variables. Categorical variables included all diagnoses, medica-
tions, gender, race, and ethnicity. Race and ethnicity were included
as defined in the EHR of the patient. Numeric variables included
age at baseline, best visual acuity for both eyes during the baseline
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period, and maximum IOP for both eyes during the baseline period.
For categorical variables, features with < 1% variance were
removed; for numeric variables, missing values were filled in using
column-mean imputation. A total of 361 features were included in
the input data set. The follow-up time was defined as the number of
days from the baseline date to either surgery or the last visit.

Modeling

We developed AI survival models using regression-, tree-, and
deep learningebased approaches to predict the time of patients
with glaucoma progression to surgery. Regression-based models
predict outcomes by constructing linear combinations of multiple
predictive factors, in contrast with tree-based and deep
learningebased models that capture highly nonlinear relationships
between predictive factors and predicted outcomes. We also sought
to characterize the most important features contributing to the
prediction. Two Cox regression models were constructed with
principal component analysis (PCA). We built 2 tree-based sur-
vival models using RSF and GBS models. A deep learning survival
model was also developed and evaluated.

Cox Proportional Hazards Model

The Cox proportional hazards (CPH) model is a regression model
that uses hazard rate as the measure of risk or probability of
occurrence of a certain event. The CPH model has several
important assumptions, including independence of survival times,
absence of correlation between features, a multiplicative relation-
ship between the predictors and the hazard, and a constant hazard
ratio. The following formula illustrates the associations between
risk factors and the outcome:

ln

�
hðtÞ
h0ðtÞ

�
¼ b1X1 þ b2X2 þ :::þ bpXp

where hðtÞ is the expected hazard at time t; h0ðtÞ is the baseline
hazard; X1;X2;:::Xp are the predictors or risk factors; b1; b2::: bp are
regression coefficients to qualify the associations between
predictors.
1. CPH: the baseline model was a CPH with regularization,
commonly known as penalized Cox regression. Hyper-
parameters, including the number of iterations and penalty
term weight (alpha), were optimized using threefold
crossvalidated grid search.

2. Cox proportional hazards model with principal component
analysis (PCA_CPH): because there were numerous input
features, to reduce the dimensionality of the input feature
space, we built a machine learning pipeline with PCA
added as the first step. The PCA-derived components were
then input into the CPH model. Hyperparameters,
including number of principal components, number of it-
erations, and alpha, were fine-tuned using threefold
crossvalidated grid search.
RSF Model

The RSF model, an extension of the random forest model, ensem-
bles a number of survival trees and uses averaging to reduce pre-
dictive variance and control overfitting for time-to-event data.13 We
used the RandomSurvivalForest method from the sksurv package
(version 0.17.1) to build the RSF model.14 Using a threefold
crossvalidated grid search, we fine-tuned the number of survival
trees, the maximum depth of each tree, the minimum number of
samples required to split an internal node, and the maximum number
of features to consider when looking for the best split.



Table 2. Population Characteristics of 4512 Patients with Glaucoma

Surgery (n [ 748) No Surgery (n [ 3764) Total (N [ 4512)

Median follow-up, days 601 1139 1038
Age, yrs 64.8 � 17.0 65.0 � 18.1 65.0 � 17.9
Gender
Female 350 (46.8%) 1920 (51.0%) 2270 (50.3%)
Male 398 (53.2%) 1844 (49.0%) 2242 (49.7%)
Race
White 276 (36.9%) 1616 (42.9%) 1892 (41.9%)
Asian 228 (30.5%) 969 (25.7%) 1197 (26.5%)
Black 48 (6.4%) 168 (4.5%) 216 (4.8%)
Pacific Islander 5 (0.7%) 23 (0.6%) 28 (0.6%)
Native American 2 (0.2%) 7 (0.2%) 9 (0.2%)
Other 177 (23.7%) 805 (21.4%) 982 (21.8%)
Unknown 12 (1.6%) 176 (4.7%) 188 (4.2%)
Ethnicity
Hispanic/Latino 106 (14.2%) 460 (12.2%) 566 (12.6%)
Non-Hispanic 632 (84.5%) 3159 (83.9%) 3791 (84.0%)
Unknown 10 (1.3%) 145 (3.9%) 155 (3.4%)
Visual acuity (logMAR)
Right eye 0.43 � 0.76 0.39 � 0.74 0.39 � 0.74
Left eye 0.43 � 0.76 0.43 � 0.79 0.43 � 0.78
IOP (mmHg)
Right eye 20.1 � 27.7 18.0 � 6.2 18.3 � 12.3
Left eye 21.8 � 45.8 18.3 � 6.5 18.8 � 19.1

IOP ¼ intraocular pressure; logMAR ¼ logarithm of the minimum angle of resolution.
Race and ethnicity were as reported in the electronic health record for each patient.
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GBS Model

A GBS model is an extension of traditional gradient-boosting
models. Gradient-boosting survival implements gradient boosting
with Cox proportional loss with regression trees as the base learner,
and the regression tree is fit on the gradient descent of the loss
function. We used GradientBoostingSurvivalAnalysis method with
partial likelihood loss from the sksurv package,14 and tuned the
learning rate (shrinkage of the contribution of each regression
tree) as well as the abovementioned hyperparameters using
threefold crossvalidated grid search.

Deep Learning Survival Model

To investigate the performance of deep learning survival models
compared with regression-based and tree-based models, we trained
DeepSurv,11 a deep feed-forward neural network that uses multiple
fully connected layers, to estimate the cumulative hazard of the
outcome. Baseline input features x from the data set are input into
multiple hidden layers to get the output layer bhqðxÞ (a single node)
with a linear activation equal to the log-risk hazard estimation. In
the present study, we trained the DeepSurv model with 2 hidden
layers and dropout. Hyperparameters, including the number of
nodes, dropout rate, training batch size, and learning rate, were
optimized on the validation set.

Evaluation Metrics

Model performance was evaluated using the concordance index
(C-index) and mean cumulative/dynamic area under the curve
(AUC) score. Concordance index is the standard performance
metric for survival models. It measures the rank correlation
between predicted risk scores and observed time points15; in
other words, it gives the probability of concordance between
predicted and observed survival. The mean AUC score is the
mean value of all time-dependent AUC scores from across the
study duration. Because, at any given time point in the study,
the number of patients who have experienced the outcome and
the number remaining at risk varies, the receiver operating
characteristic (ROC) curve is expected to vary among different
study time points. Thus, the ROC curve is time dependent. The
time-dependent AUC score is the area under the time-dependent
ROC curve, which is calculated using cumulative cases and
dynamic controls at a given time point t, where cumulative
cases are all individuals who underwent glaucoma surgery
before or at time t (ti � t), whereas dynamic controls are those
with ti > t. By computing the area under the cumulative/dy-
namic ROC at time t, we can determine how well a model can
distinguish patients who require surgery by a given time point
(ti � t) from patients who do not require surgery at or before
this time point (ti > t).16

All models’ hyperparameters were tuned for optimal C-index,
with the final evaluation performed on the test set. A summary of
tuned hyperparameters for each model is shown in Table S1
(available at www.ophthalmologyscience.org).

Explainability and Interpretability

To better explain the models’ predictions, we investigated which
were the most important features of regression-, tree-, and deep
learningebased models using SHapley Additive exPlanations, a
model-agnostic method derived from coalitional game theory.
Because the calculation of Shapley importance values does not
depend on the underlying model architecture, this method enables a
fair comparison of important features across different types of
models.17,18

We also plotted cumulative hazard curves of different models
for the same group of patients with glaucoma to investigate how
models predict risks for surgical and nonsurgical patients. We
selected 3 patients from the test set to highlight the models’
3
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Table 3. Performance of Survival-based AI Models for Predicting
Progression to Glaucoma Surgery

Approach Model C-index Mean AUC

Regression-based CPH 0.720 0.756
Regression-based PCA_CPH 0.745 0.780
Tree-based RSF 0.766 0.804
Tree-based GBS 0.764 0.791
Deep learning DeepSurv 0.775 0.802

AUC ¼ area under the curve; CPH ¼ Cox proportional hazards; GBS ¼
gradient-boosted survival model; PCA_CPH ¼ Cox proportional hazards
with principal component analysis; RSF ¼ random survival forest.
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interpretability by plotting cumulative hazard curves: 1 patient who
underwent early surgery at day 3 from the baseline time; 1 patient
who had late surgery at day 3472; and 1 patient who did not un-
dergo surgery during his follow-up period as of day 3330.
Results

Population Characteristics

Out of the 4512 patients with glaucoma included in the
study, 748 progressed to require glaucoma surgery. The
median follow-up time was 601 days for surgical patients
and 1139 days for nonsurgical patients. Population charac-
teristics are summarized in Table 2. White and Asian racial
groups constituted the predominant population in this
cohort. The patients’ mean age was approximately 65
years old, the mean logarithm of the minimum angle of
resolution visual acuity for both eyes at baseline was
about 0.43, and the mean baseline IOP for both eyes was
approximately 18.3 mmHg.
Model Performance

Model performance is summarized in Table 3. In general,
tree-based and deep learningebased models performed
better than regression-based models, achieving higher C-
index and mean AUC.

For the regression-based models, lowering the dimension
of the input features via PCA increased the C-index and the
time-dependent AUC scores (Table 3). Figure 1A illustrates
that PCA_CPH outperformed the original CPH model at
almost every time point in terms of AUC score.

Figure 1B shows that the RSF and GBS models had
similar time-dependent AUC scores. Although the RSF
model had slightly higher C-index and mean AUC scores
than the GBS model, the 2 tree-based models both out-
performed the regression-based survival models. Figure 1B
also more clearly shows that the RSF model had a higher
AUC than the GBS model at most time points.

Figure 1C shows that the DeepSurv model had similar
performance to the RSF and GBS models. Among these 3
models, RSF had the best time-dependent AUC score, but
DeepSurv had the highest C-index, as well as slightly better
performance than GBS.
4

Explainability

Predicted cumulative hazard curves for patients from the test
set with different outcomes (no surgery or surgery at
different time points) generated by different survival AI
models are shown in Figure 2. All models appropriately
predicted the steepest rise in cumulative hazard of surgery
for the patient who actually underwent surgery early in
the follow-up period. Most models were also able to
discriminate between a patient who had not yet undergone
glaucoma surgery as of their last follow-up time at day 3330
and a patient who underwent surgery at day 3472, with the
patient who eventually underwent surgery having a higher
predicted cumulative hazard.

We further studied the most important features relied
upon by the CPH and GBS models to predict the outcome
by calculating the Shapley values of features across the test
set. The most important features were similar across models,
including features from the broad categories of de-
mographics, medications, diagnoses, and examination
components (Table 4). Reassuringly, clinical features, such
as IOP and visual acuity, were important predictive factors
in these models, as was the usage of many common
glaucoma medications.
Discussion

In the present study, we developed and compared the per-
formance of different survival-based AI models to predict
glaucoma progression to surgery using structured EHR data
from patients with glaucoma. We compared regression- and
tree-based survival models, as well as a deep learning AI
survival model. According to our evaluation metrics, we
found that the deep learning model DeepSurv had the best
overall performance, followed by the tree-based RSF and
GBS models. DeepSurv, RSF, and GBS models have the
advantages of robustness against multicollinearity and the
ability to discern highly nonlinear relationships among
predictors without prior feature selection. Previous research
has shown that deep learning survival models perform bet-
ter, especially in high-dimensional data sets.19,20 Although
DeepSurv showed the best overall performance,
explainability analyses revealed important features that
were common for all our model predictions, such as age,
visual acuity, and the use of glaucoma medications.

Our work develop and compare survival-based predictive
models is relatively novel in the ophthalmology AI litera-
ture. Most previous models for predicting glaucoma pro-
gression are structured as classification models, whether
they operate on EHR data5e7 or imaging data.21,22 The
outputs of classification models can be interpreted as the
probability of experiencing the predicted event, which is
relatively simple for users to understand and potentially
act upon. However, classification models do not account
for the longitudinal nature of patient outcomes. The
challenges of modeling for longitudinal data with loss-to-
follow-up and censoring are well-known in statistical
inference; thus, Kaplan Meier survival analysis and CPHs
models are commonly employed for inferential studies that



Figure 1. Time-dependent area under the curve (AUC) and mean AUC scores. A, Regression models: time-dependent AUC (connected dots) and
mean AUC (horizontal dashed line) are shown for the Cox proportional hazards (CPH) model and the Cox proportional hazards model with principal
component analysis (PCA_CPH). B, Tree-based models: time-dependent AUC (connected dots) and mean AUC (horizontal dashed line) are shown
for the random survival forest (RSF) and gradient-boosted survival (GBS) models. C, Deep learning models: time-dependent AUC (connected dots)
and mean AUC (horizontal dashed line) are shown for the deep learning survival model (DeepSurv) alongside the previous RSF and GBS models for
comparison.
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Figure 2. Cumulative hazard functions for sample patients with different outcomes. The cumulative hazard functions as predicted by different models are
shown for patients who had early surgery (day 3), patients who had late surgery (day 3472), and patients who did not have surgery even after a long period of
follow-up (day 3330). Predicted cumulative hazard curves are shown for the (A) Cox proportional hazards (CPH), (B), CPH with principal components
analysis, (C), random survival forest, (D) gradient-boosted survival, and (E) DeepSurv models.
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focus on quantifying the relationship between a predictor
and an outcome. Survival-based prediction models have
begun to be explored for predicting outcomes in other
medical domains, including cancer survival prediction19,23

and dementia prediction.20 Overall, the performance range
of our survival AI models was comparable to similar
studies utilizing inputs from EHRs, including Kim et al19

for oral cancer (C-index, 0.694e0.781) and Spooner
et al20 for dementia prediction (C-index up to 0.828). In
addition, our results were similar to those from studies of
survival-based AI models in other medical fields. We also
found that tree-based methods and deep learning models
outperformed regression-based models, potentially because
of their suitability for high-dimensional data sets.19,20,23,24

Similar reasons can explain the improved performance
after adding PCA to the CPH model, further illustrating
6

that dimensionality reduction is crucial for prediction
models using complex input features from EHRs.

A potential drawback of survival-based AI models is that
their prediction outputs seem less interpretable to the user
than the simple probabilities of experiencing the outcome
that classification models provide. Thus, to provide better
insight into model outputs, we showed the cumulative
hazard predicted by different models (e.g., patients who
underwent early, late surgery, or no surgery). These curves
illustrate the stark differences in the predicted cumulative
hazard curves between a high-risk patient who underwent
surgery early in their clinical trajectory (steeply rising cu-
mulative hazard curve) and patients who did not undergo
surgery even after long periods of follow-up (slowly rising
cumulative hazard curves). Incredibly, most models also
were able to distinguish between a patient who had surgery



Table 4. The Most Important Features Contributing to Model Predictions

Penalized CPH Model Gradient-boosted Survival Model DeepSurv

Demographics Race (White)
Ethnicity (Hispanic)

Age
Race (White)

Age
Race (Native American)
Gender (Female)

Medications Latanoprost/Xalatan
Brimonidine/Alphagan
Dorzolamide-Timolol
Brinzolamide
Dorzolamide
Timolol
Travoprost

Dorzolamide-Timolol
Dorzolamide
Brimonidine/Alphagan
Timolol
Xalatan

Dorzolamide
Brimonidine
Dorzolamide-Timolol
Brinzolamide
Xalatan
Timolol
Hydrocodone

Diagnoses Z96.1 Presence of intraocular lens
H25.10 Age-related nuclear cataract,

unspecified eye
H25.13 Age-related nuclear cataract,

bilateral
H26.9 Unspecified cataract
H40.009 Preglaucoma, unspecified eye

H25.13 Age-related nuclear cataract,
bilateral

H25.10 Age-related nuclear cataract,
unspecified eye

H43.819 Vitreous degeneration,
unspecified eye

H40.1193 Primary open angle glaucoma,
severe stage

H26.9 Unspecified cataract
Z96.1 Presence of intraocular lens
H47.239 Glaucomatous optic atrophy,

unspecified eye
H35.30 Unspecified macular

degeneration
H27.0 Aphakia

Examination
components

Best-corrected visual acuity, OS Best-corrected visual acuity, OD
Best-corrected visual acuity, OS
IOP max, OS

Best-corrected visual acuity, OD
IOP max, OD
IOP max, OS

CPH ¼ Cox prportional hazards; IOP ¼ intraocular pressure; OD ¼ oculus dexter (right eye); OS ¼ oculus sinister (left eye).
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after approximately 10 years versus a patient who did not
have surgery after 10 years of follow-up, predicting a
slightly higher cumulative hazard in the former. Thus,
although it may seem simpler to interpret a predicted
probability for glaucoma progression to surgery in tradi-
tional classification models, this information does not pro-
vide an expected time horizon, and there may not be any
inherent relationship between a predicted probability of
surgery and its temporal nearness. One potential method of
incorporating temporal information into a classification
model could be through a multiclassification approach that
provides probabilities of glaucoma surgery occurring over
discrete future time windows. However, this approach may
not naturally account for censoring and may produce
probabilities for adjacent time windows that may not be
related, plausible, or easily interpretable. Future research
could focus on developing classification models that address
these limitations or on combining classification with sur-
vival models. A cumulative hazard output of a survival AI
model may therefore be beneficial for clinical decision
support tools that predict future events.

In addition, although traditionally criticized as being
opaque and unexplainable, AI tree-based and even deep
learningebased models can retain the explainability ben-
efits of the more commonly favored Cox regression
models. It is important to note that, although we can shed
light onto which features exert a stronger influence on
prediction in different models, that does not necessarily
suggest a true biologic relationship between the features
and the outcome, as would be the goal in a hypothesis-
driven inference study. Nevertheless, it is striking that
among the top most important predictors of glaucoma
surgery are factors that clinicians themselves would
consider important, such as visual acuity, age, and the use
of various glaucoma medications, including second- and
third-line medications, such as dorzolamide and brimoni-
dine. These reassuring explainability studies serve to in-
crease the apparent trustworthiness of these AI prediction
models.

Despite the above advantages of this study, there are
several limitations. The data we used are from a single
clinical center, and models may not generalize well with
data from other sites. However, in service of the goal of
personalized algorithms to deliver personalized medicine,
a fully generalized algorithm that applies universally is
not likely to be the goal. Rather, these approaches can and
should be fine-tuned to each population they may be
deployed upon. Another limitation of single-center data is
that patients may seek care at other institutions. In our
study, the models were designed to predict the first
glaucoma surgery performed at our institution for new
patients. To address this limitation, future research could
explore the use of natural language processing to extract
external surgery information from clinical notes. Single-
center longitudinal studies may also be limited by
censoring events, such as death or patient departure from
our clinical center. Additional challenges in this study
included the imbalance in the ratio of surgical to
nonsurgical patients with glaucoma, which in our data set
was approximately 1:5 and posed challenges to our
models. We also did not incorporate time-varying features
in this analysis containing hundreds of inputs. In addition
to the resultant challenges in cohort construction with
multiple time-varying features, this approach would also
reduce the ability to perform dimensionality reduction
using PCA or elimination of near-zero variance features
7
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and would introduce assumptions during inference that
may not be tenable. In addition, our analysis only
included structured input data from EHRs. Although this
included important measures, such as visual acuity and
IOP, measures, such as corneal thickness and refractive
error, had a high degree of missingness. Furthermore,
unstructured data, such as images and clinical notes,
contain a wealth of information about a patients’ prog-
nosis. Further studies combining features from these 2
additional modalities of data can be undertaken, using
approaches, such as embedding data extracted from im-
ages or text into the baseline features.
8

In conclusion, identifying which patients with glaucoma
are at high risk of progressing is an important aspect of
clinical care. In our study, observational clinical data were
collected from a single academic center, and multiple sur-
vival AI models were developed to predict which patients
progress to glaucoma surgery. After a comparison of eval-
uation results across different models, we concluded that the
neural network model DeepSurv and tree-based survival AI
models outperformed regression-based models. Future
research can be conducted to explore larger and more
diverse data sets from multiple clinics and integrate multiple
modalities of input data, such as text or imaging.
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