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Letter to the Editors-in-Chief 

Invited commentary to: ADAMTS13 deficiency is associated with abnormal distribution of von 
Willebrand factor multimers in patients with COVID-19 by Tiffany Pascreau et al. Letter to the 
Editors-in-Chief, Thrombosis Research 

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) 
infection is the cause of a world-wide pandemic that has caused more 
than 2.5 million deaths worldwide as of mid February 2021 since its 
onset in December 2019. Severely affected patients suffer from pneu-
monia, necessitating invasive ventilation and several groups showed a 
high incidence and prevalence of venous and arterial thromboembolic 
events of large vessels and also microvascular thrombosis of the pul-
monary circulation [1–3]. Hemostatic laboratory parameters at admis-
sion of COVID-19 patients, especially strongly elevated D-dimer levels, 
were predictive of mortality [4]. Tang et al. described that 15 of the 21 
non-survivors among 183 consecutive patients with COVID-19 pneu-
monia fulfilled the ISTH criteria for overt disseminated intravascular 
coagulation (DIC) [5], whereas DIC was present in only 1 of 162 sur-
vivors [6]. Diagnosis of DIC in these patients was based on often strongly 
increased D-dimers, mildly/moderately prolonged prothrombin times 
and often mild thrombocytopenia [6]. In contrast to typical DIC asso-
ciated with bacterial sepsis, obstetrical complications and other in-
flammatory conditions, fibrinogen levels in COVID-19 are mostly highly 
elevated and rarely fall below the critical limit of 100 mg/dL and 
thrombocytopenia is often mild or lacking [7,8]. Several authors sug-
gested that the hemostaseologic alterations in COVID-19 together with 
autopsy and histopathologic findings reflected a form of thrombotic 
microangiopathy (TMA) rather than DIC [9–12]. Direct endothelial in-
vasion by SARS-CoV-2 resulting in endothelial cell apoptosis [13], se-
vere alveolar damage with occlusion of the pulmonary microcirculation 
[10,14–16] by fibrinous microthrombi [14–16], distinctive features of 
abnormal new vessel growth with intussusceptive angiogenesis [15], 
and deposition of complement activation products hinting at activation 
of the alternative and lectin based complement pathways [16] were 
reported in autopsy studies. Besides predominant pulmonary involve-
ment, microvascular injury to the skin was observed in histopathologic 
studies of biopsies of COVID-19-associated skin rashes [16]. 

Compatible with severe endothelial damage, several authors noted 
marked elevations of Von Willebrand factor activity (VWF:act), VWF 
antigen (VWF:Ag) and factor VIII clotting activity (FVIII:C) in COVID-19 
patients [7,8,11,17–20] and some found low normal or mildly decreased 
ADAMTS13 (A Disintegrin And Metalloprotease with ThromboSpondin 
type 1 motif, number 13) activity [8,9,11,18–20]. The VWF:Ag/ 
ADAMTS13 activity ratio was strongly elevated in these studies 
[8,11,18,20]. 

In this issue of Thrombosis Research, Pascreau et al. present a single 
tertiary care center study on 70 patients with COVID-19 pneumonia of 
variable severity (n = 4, treated as outpatients; n = 44, needing hospi-
talization on non-intensive care units; and n = 22, needing treatment on 
intensive care units) [21]. These authors are to be congratulated for 

having performed a systematic study on the ADAMTS13-VWF axis in a 
large number of COVID-19 patients. VWF:act and VWF:Ag levels were 
significantly increased and the VWF:act/VWF:Ag ratio was slightly 
lower in both non-ICU and ICU patients with COVID-19 as compared to 
healthy controls. ADAMTS13 antigen values, on the other hand, were 
significantly lower in hospitalized COVID-19 patients than in controls, 
whereby the ICU patients tended to have lower ADAMTS13 antigen than 
the non-ICU patients (no significant difference). The ADAMTS13:Ag in 
the 70 patients correlated negatively with the VWF:Ag and also with C- 
reactive protein. In a subgroup of 10 patients, Pascreau et al. analyzed 
the VWF multimeric distribution using the commercial Hydragel 5 von 
Willebrand factor multimer kit (Sebia) and found a relative decrease of 
high molecular weight VWF multimers and a relative increase of inter-
mediate and low molecular VWF multimers in 8/10 patients [21]. This 
imbalance of a markedly increased VWF and moderately decreased 
ADAMTS13 levels with an elevated VWF/ADAMTS13 ratio is suggested 
to represent a «consumption» of ADAMTS13 by the massively increased 
VWF and proposed to contribute to the pulmonary microthrombi for-
mation [21]. The authors note that in contrast to the disease thrombotic 
thrombocytopenic purpura (TTP), defined by a very severe 
autoantibody-mediated or congenital deficiency of the ADAMTS13 
[22,23], the hallmarks of severe thrombocytopenia and micro-
angiopathic hemolytic anemia are lacking in almost all COVID-19 pa-
tients [7,8,20]. Also, the thrombi of the pulmonary microcirculation 
have mostly been reported as predominantly “fibrinous” [14–16], even 
though Fox et al. suggested the presence of platelets and VWF in the 
microthrombi of pulmonary alveolar capillaries by immunostaining 
[24]. 

Pascreau et al. [21] as well as other investigators [9,11,18,20] pro-
pose that the VWF-ADAMTS13 dysbalance may be causally related to 
the prothrombotic tendency and the (predominantly pulmonary) 
microvascular thrombosis. Based on this hypothesis, it is proposed that 
supplementation of ADAMTS13 [21] or the use of caplacizumab 
blocking the VWF A1 domain interaction with platelet glycoprotein Ib- 
alpha might be useful therapeutically in severe COVID-19 [11]. Capla-
cizumab has been found efficacious as an adjunctive therapy to plasma 
exchange, fresh frozen plasma replacement and immunosuppression in 
patients suffering from acute autoimmune TTP with severe acquired 
ADAMTS13 deficiency, resulting in a faster normalization of the 
severely decreased platelet count as compared to placebo [25,26]. 
Nevertheless, in Covid-19 patients there is mostly no severe thrombo-
cytopenia and no microangiopathic hemolytic anemia [8,20] which are 
the diagnostic hallmarks of classic TMAs [22]. 

We offer the following pathophysiologic hypothesis: the severe 
endothelial damage caused by direct SARS-CoV-2 invasion leads to 
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profound and prolonged release of VWF from endothelial storage sites, 
the Weibel-Palade-bodies. The ADAMTS13 is partially trapped to the 
endothelial surface where it cleaves the nascent unusually large VWF on 
the endothelial surface [27] resulting in a mild to moderate decrease of 
circulating ADAMTS13 similar to the situation in severe sepsis or septic 
shock [28] or, as a short-lived phenomenon, after excessive VWF release 
induced by endotoxin or desmopressin application in healthy volunteers 
[29]. This is compatible with the highly significant negative correlation 
of the ADAMTS13 antigen with increasing VWF antigen as shown by 
Pascreau et al. in 70 COVID-19 patients [21] and the mildly decreased 
ADAMTS13 could represent a mere epiphenomenon. The widespread 
thrombi in the pulmonary microcirculation consist mainly of fibrin 
[14–16] similar to the predominantly renal microthrombi in hemolytic 
uremic syndrome [30]. The strongly elevated FVIII:C levels in severe 
COVID-19 [7,19] may enhance thrombin and fibrin generation. The fact 
that COVID-19-associated coagulopathy with its predominantly pul-
monary thrombotic microangiopathy is not accompanied by severe 
thrombocytopenia and intravascular red blood cell fragmentation with 
schistocytes [8,20], in contrast to the classic TMAs such as TTP or HUS 
[22], may hypothetically be due to the much lower blood pressure 
gradient in the pulmonary as compared to the peripheral arterial cir-
culation [8]. Certainly, this hypothesis needs further confirmation. 
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