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Abstract

Recently large scale transcriptome and proteome datasets for human cells have become available. A striking finding from
these studies is that the level of an mRNA typically predicts no more than 40% of the abundance of protein. This correlation
represents the overall figure for all genes. We present here a bioinformatic analysis of translation efficiency – the rate at
which mRNA is translated into protein. We have analysed those human datasets that include genome wide mRNA and
protein levels determined in the same study. The analysis comprises five distinct human cell lines that together provide
comparable data for 8,170 genes. For each gene we have used levels of mRNA and protein combined with protein stability
data from the HeLa cell line to estimate translation efficiency. This was possible for 3,990 genes in one or more cell lines and
1,807 genes in all five cell lines. Interestingly, our analysis and modelling shows that for many genes this estimated
translation efficiency has considerable consistency between cell lines. Some deviations from this consistency likely result
from the regulation of protein degradation. Others are likely due to known translational control mechanisms. These findings
suggest it will be possible to build improved models for the interpretation of mRNA expression data. The results we present
here provide a view of translation efficiency for many genes. We provide an online resource allowing the exploration of
translation efficiency in genes of interest within different cell lines (http://bioanalysis.otago.ac.nz/TranslationEfficiency).
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Introduction

The nature of a cell, tissue, or organism is largely determined by

the precise amounts of specific set of proteins made. Recent

transformational advances in molecular technologies have made

determining the amounts of mRNA common in many studies.

However, to usefully interpret this data we need to understand

how mRNA is translated into functional proteins. In the last few

years advances in proteomic technologies have made it technically

feasible to measure the expression of thousands of proteins,

reviewed in [1,2]. A significant finding from these studies is that

there is not a good correlation between the amount of protein and

mRNA.

The amount of protein corresponding to the mRNAs for a

particular gene depends on how efficiently the mRNAs are

translated, translation efficiency (TE) and the protein stability. In a

general model of gene expression it is expected that increases in

mRNA levels would have concomitant increases in protein,

providing that the protein half-life does not vary. Deviations from

this simple relationship during changes in gene expression may be

due to translational control mechanisms, or could result from

variation in translation efficiency of alternative mRNA isoforms

[3,4].

The relationship between mRNA and protein levels has been

modelled with differing levels of detail and complexity [4,5]. A

calculation for translation efficiency similar to that used here

has been used in previous studies [6,7]. Alternative measures of

estimating TE have been successfully used to model translation,

recent examples include ribosome profiling, tRNA Codon

Adaptation Indices (tCAI), or other measures of codon bias

(e.g. CAI) [8]. Ribosome and polysome profiling have some

advantages in that protein data need not be collected [9,10].

Measures such as CAI and tCAI can be derived directly from

the genome but do not allow for much cell specificity [11,12],

these measures have been most useful in single celled eukaryotes

and prokaryotes [13].

Proteins mediate some of the best known post-transcriptional

regulatory mechanisms – a classic example being the binding to an

Iron Responsive Element (IRE) in ferritin mRNAs [14,15,16].

Non-coding RNAs such as miRNAs binding to target sites in

mRNAs can also effect translation. These can both repress

translation and destabilise specific mRNAs, though recent studies

have indicated that the predominant form of regulation may be

mRNA destabilisation [17]. Modulation of RNA stability is not

considered in this study as experimentally determined absolute

mRNA levels are used.

To measure gene expression it is presently technically easier to

detect mRNA, rather than protein, or indeed functional protein.

Therefore, despite indications of widespread translational control

mechanisms, many studies utilise mRNA expression as a proxy for

gene expression.
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Several recent studies have generated large datasets that contain

both protein and mRNA levels for thousands of genes [7,18,19]. In

each study protein levels were determined by mass spectrometry

and mRNA levels were determined by high throughput sequenc-

ing. Protein stability data were determined using the pulsed

SILAC method [20,21] in the HeLa cell line [22]. These

combined datasets have provided the opportunity to compare

TE values across different cell lines for many individual genes.

This study presents data for 3,990 genes in five human cell lines. It

provides a gene by gene comparison of TE and suggests avenues

for further research.

Results

Messenger RNA and Protein Levels in Five Human Cell
Lines

Paired protein and mRNA data for five human cell lines from

published studies were available. The MCF-7 and HeLa are the

well established breast and cervical cancer cell lines. A-431 is an

epidermoid (squamous cell) carcinoma cell line. U-2 OS is an

osteosarcoma cell line. U-251 MG is a glioblastoma cell line. The

protein and mRNA data were determined by similar methodol-

ogies in three different laboratories. The number of paired

detectable proteins and mRNA values was 24,920. In total there

were paired data for 8,170 unique genes in one or more cell lines.

The well studied cervical cancer cells (HeLa) had the most

comprehensive dataset with 7,297 pairs. This may indicate a

greater sensitivity of protein detection in that study. For

2,156 mRNA and protein pairs, there were data for all five cell

lines, and protein stability data was available for 1,807 of these.

The data and analysis for each of 8,375 genes and the major

groups defined below are available at bioanalysis.otago.ac.nz/

TranslationEfficiency and in a supplementary spreadsheet (File

S1).

In order to compare the five sets of data a common analysis

pipeline was used. The amounts of mRNAs (FPKM) and proteins

(normalised IBAQ) are plotted on a log scale for all of the data

points (24,920 pairs) and for each of the cell lines in Figure 1. The

interdecile range of mRNA varies over 2 orders of magnitude, and

the protein over 4 orders of magnitude. This demonstrates the

ability of these newly developed techniques to capture a wide

dynamic range of both protein and mRNA levels. The dynamic

range of the protein levels is greater than that of the mRNA,

confirming suggestions of the importance of post-transcriptional

control from other studies [7].

There is no significant stratification in the data that might

indicate technical limitations with high or low abundances, or lack

of sensitivity in any of the studies or cells. However, there is some

evidence of saturation in the upper protein amounts in the three

cells lines (Figure 1, upper red points on last three panels) from the

Lundberg study, possibly reflecting a small systematic saturation

effect for the abundant proteins.

There are a range of correlations between the amount of protein

and the mRNA that encodes it in each cell line (Spearman’s

correlation coefficient r = 0.48–0.58). For all the data combined

the overall correlation is r = 0.52 and the coefficient of determi-

nation, R-squared, R2 = 0.28 (Methods). This indicates that

assuming a linear model, 28% of the amount of protein can be

estimated from the amount of mRNA. The individual cell lines

differed but all show a similar distribution of points within the

overall dataset (Figure 1). The best correlation, r = 0.58 was seen

for the largest dataset – the HeLa cells, in agreement with the

previously reported correlation (0.6) from this data prior to

processing though our pipeline [19].

These figures represent the overall correlation between protein

and mRNA levels. However, some genes show better correlations

for the five cells. This is due to either differing mRNA amounts in

each cell line with proportional changes in protein levels, or similar

amounts of both mRNA and protein in all cell lines.

Calculation of Estimated Translation Efficiency (TE)
For each gene a relative measure of estimated TE was

calculated (formula Figure 2A, Methods and [7]). This calculation

includes mRNA levels, protein levels, and protein stability. This

calculation also assumes steady state of both mRNA levels and

protein levels. The dataset for protein stability used was

determined by pulsed SILAC in HeLa cells [22] – this dataset

came from the same group as the HeLa mRNA and protein levels.

These protein stability values were also used for the other cell lines.

To investigate the effect of applying the protein stability levels

from HeLa to other human cell lines, protein stability data

collected using similar methods in mouse (NIH-3T3) cell lines [7]

were compared for orthologus genes (Figure S1). This result is

similar to a comparison between the HeLa cell line and the mouse

C2C12 cell line [22]. There was a good protein by protein

correlation (r = 0.58), however the mean protein stability deter-

mined for the mouse NIH-3T3 cell line is about twice that for the

HeLa cell line (half life of ,40 h vs. ,80 h). As protein stability is

regulated in specific cells, the use of HeLa data is a limitation of

our model for non-HeLa cell lines.

The normalised protein stability values and comparison for the

NIH-3T3 and HeLa cell lines are available in the material S1.

The term in the TE formula (Figure 2A) which accounts for the

protein stability is (12e2kdeg), the protein stability accounting term

(PSAT). The interquartile range of this term is 0.015 to 0.027 (1.85

fold) with a median of 0.019. This term scales the ratio of protein

level to mRNA level, by accounting for protein stability.

The calculated TE values have the approximately log-normal

distribution shown in Figure 2B. The log10 (TE) values have a

median of 3.12, standard deviation of 0.72. Each of the cell lines

had a similar range of TE (Figure 2B).

The Relationship between Translation Efficiency and
Gene Function

Genes involved in particular processes, functions or cellular

components possibly have similar TE. We tested this idea by

dividing the genes present in all five cell lines into five groups by

TE (Figure 3A, red points). Each group was analysed for

enrichment in Gene Ontology (GO) and KEGG pathway terms

(Methods).

Surprisingly, there were no ontologies or pathways that

showed significant enrichment over all five cell lines. However,

significant (p,0.05, Benjamini corrected) enrichment was

observed for individual cell lines, these terms are shown in

Figure 3B. The different types of cells showed various

enrichments in high or low TE. ‘‘GTP binding’’ showed

enrichment within the high TE genes for the HeLa, MCF-7

and U-251 MG cell lines. The biological process, ‘‘small

GTPase mediated signal transduction’’ shows enrichment for

high TE in HeLa cells. Notably, mitochondrial groups show

enrichment within the high TE genes in MCF-7 cells. The A-

431 and U-2 OS cell lines also had significant enrichment for

‘‘RNA splicing’’ within the high TE genes. The U-2 OS cell

line showed enrichment for ‘‘steroid biosynthetic process’’ within

high TE genes. There was significant enrichment for KEGG

‘‘pathways in cancer’’, ‘‘focal adhesion’’ and ‘‘ECM-receptor

interaction’’ within the low TE genes for the HeLa cell line.

Interestingly within the second lowest TE quintile the A-431, U-
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2 OS and U-251 MG cell lines all show enrichment for the

ribosome cellular component and KEGG pathway in addition

to several similar terms (Figure 3B).

In order to assess the robustness of the estimated TE data and

enrichments, a similar analysis using NIH-3T3 protein stability

data was completed. Detailed results are shown in Figures S2 and

S3.

The Relationship between Translation Efficiency and
Protein Stability

TE and protein stability might be correlated, as for example,

genes with a high TE might have high protein stability, both

increasing protein levels. We tested for correlation in the HeLa cell

data. For the HeLa cells the relationship between TE and half life

of the protein is shown in Figure 4A. The inter quintile range for

TE is ten fold, but for protein half life it is less than two fold.

Figure 1. The relationship between mRNA and protein levels for five human cell lines. The source datasets originate from the referenced
studies and are processed as displayed to allow comparison (see Methods). Each point on the graphs represents a gene, the amount of mRNA on the
x-axis and the amount of protein on the y-axis. The mRNA levels are the counts of Fragments Per Kilobase of exon model per Million mapped reads
(FPKM). The protein quantities are Limma normalised intensity based absolute quantification (IBAQ). The first panel shows the combined results and
subsequent panels particular human cell lines highlighted in red. The r-values indicate the Spearman’s rank correlation coefficient, n - indicates the
number of mRNA/protein pairs for each cell line or in total for the first panel.
doi:10.1371/journal.pone.0057625.g001

Figure 2. A. Calculation of translation efficiency. This calculation provides a measure of translation efficiency, an important determinant of
gene expression. The term that accounts for the protein stability is (12e2kdeg), the protein stability accounting term (PSAT). The kdeg is the decay
constant of the protein from Nagaraj 2012. The interquartile range of overall TE is 10 fold and for the PSAT factor 1.85 fold. B. Distribution of
estimated translation efficiency in the five types of cell. The distributions of TEs are shown for each cell line. The median log10TE is 3.12 and
SD 0.72 for all cell lines (n = 15,918); A-431 (median: 3.15, SD: 0.69, n = 3,376); HeLa (median: 3.11, SD: 0.67, n = 3,661); MCF-7 (median: 2.79, SD: 0.74,
n = 2,158); U 251-MG (median: 3.23, SD: 0.72 n = 3,358); U-2 OS (median: 3.20, SD: 0.73, n = 3,365).
doi:10.1371/journal.pone.0057625.g002
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Surprisingly, there is no significant overall correlation between TE

and protein stability (Figure 4A), despite protein stability being

included in the TE calculation.

It might be expected that TE and protein stability would work

synergistically to give high or low expression for classes of genes.

Therefore sets of high TE + high stability (Figure 4A, upper right,

quintiles), and low TE + low stability (Figure 4A, lower left,

Figure 3. Functional characteristics of genes grouped by estimated translation efficiency. A. Quintiles using the median estimated TE for
genes with available data in all five cell lines are highlighted in red. Genes with higher TE tend to have higher accumulated protein levels. There are
some genes in the combined data (grey) that are not included - these are only expressed in some of the cell lines, or there were no protein stability
data available. B. Analysis of enrichment within gene ontology (GO) and KEGG pathway classifications for genes within each quintile of TE for each
cell line. All ontologies shown have at least one enrichment passing a Benjamini corrected p-value,0.05. The colours in the figure correspond to
corrected p-values such that colours from white to red show significance up to a significant p-value,0.05 (red). A spreadsheet of these p-values is
included in the File S2.
doi:10.1371/journal.pone.0057625.g003
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quintiles) might be expected to show enrichment for specific classes

of genes. We have analysed these two expected groups, and the

other two combinations, more closely. Figure 4B shows those

terms with significant enrichment in intersecting quintile groups.

The genes that have both low TE and low protein stability are

significantly enriched for those involved in ‘‘regulation of growth’’,

‘‘regulation of transcription’’, ‘‘chromatin modification’’ and

‘‘extracellular matrix organization’’. An example in this class of

genes is the STAT6 transcription factor which has a protein half

life of 18 hours, PSAT = 0.038 and a log10 TE of 2.57. The IBAQ

value of 555,142 is in the 2nd quartile for HeLa cells and the

FPKM value of 56 is in the 3rd quartile for HeLa cells.

The genes that have high TE and high protein stability are

significantly enriched for those involved in ‘‘nucleosome assembly’’

and ‘‘macromolecular complex assembly’’. These include mainly

histones and other DNA binding proteins. The histone mRNAs

lack polyA tails and so their transcripts may be underrepresented.

An example of this class of gene (other than a histone) is TUBB3–

from the tubulin protein family. The TUBB3 gene has a protein

half life of 65 hours, PSAT = 0.011 and a log10 TE of 3.68. The

IBAQ value of 526,639 is in the 2nd quartile for HeLa cells and the

FPKM value of 1 is in the 1st quartile for HeLa cells.

The two groups where TE and protein stability go in opposing

directions show enrichment in only one term. Genes with a low

TE but high protein stability are enriched for the GO term,

‘‘translational elongation’’. These include 15 very stable ribosomal

proteins and a translation elongation factor. The median log10 TE

for these ribosomal proteins is 2.18 and the median protein half life

is 72 hours (PSAT = 0.0096).

A spreadsheet of the classes and p-values, also including those

not passing the stringent Benjamini correction, is included in the

File S2.

Variation of Estimated Translation Efficiency for Genes in
Different Cell Lines

In order to determine if specific genes had similar TEs in the

different cell lines, we calculated the coefficient of variation for the

TE (TE CV, the standard deviation divided by the mean,

Methods). This was done for the 1,807 genes with a TE value in

each cell line. The distribution of TE CV across the datasets is

shown in Figure 5A. Some genes have very small variations in TE,

and therefore have CVs near 0. This is postulated to have a

biological basis, however it is possible that many genes may have

similar TEs by chance. To assess this, we permuted the genes and

TE values 20 times and determined the spread of the TE CV. The

random sets had significantly higher variation in TE indicating

selection for consistent TE in different cell lines for some genes (t-

test p-value,2.2610216).

Genes with low or high variation in TE may be enriched in

particular categories. To address this the data was first divided into

five groups of 362 genes by ranking on TE CV. Protein level is

closely coupled to the mRNA levels in the 20% with the lowest TE

CV (those with a log10 TE CV of less than 0.075, Figure 5A).

Notably only 4% of randomly permuted TEs were so consistent

(Figure 5A). This low TE CV group are enriched in genes involved

in the molecular function gene ontology class, ‘‘RNA binding’’.

The data for five individual genes with low variation in TE are

shown in Figure 5B. These genes have been shown as they were

well studied and show representative ranges of expression. More

detailed data for each of the 1,807 genes is available on the

companion website. The most extreme range in expression among

genes in the lowest quintile of TE CV was for FARSA

(phenylalanyl-tRNA synthetase, alpha subunit) – this showed a

low variation in estimated translation efficiency over a 23 fold

change in mRNA level between different cell lines.

For the RAS member (RAB10) expression of both mRNA and

protein is high in all the cell lines (blue triangles), but there is little

difference between the points (log10 TE = 3.5560.07, protein half

life 32 h, PSAT = 0.021). In contrast for the heme oxygenase

(HMOX2), there are cell type specific changes in expression.

There are a five fold range of mRNA levels in the five cell lines

(yellow squares) however protein levels are proportional (log10

TE = 3.7760.1, protein half life 35 h, PSAT = 0.020) and a line is

shown to indicate that a log-linear model closely describes this

gene’s data (R2, 0.95, p = 0.003). SRP72 and HSPB1 also show

consistent TEs (log10 TE = 2.9660.1, 4.1160.2). They have

similar protein half lives (44 h, 43 h, PSAT = 0.016) this indicates

that HSPB1 is translated with a consistently (,14 fold) higher

efficiency than SRP72.

In contrast, the data for selected genes with a large variation in

TE (quintile with TE CV .0.21) are shown in Figure 5C. The

genes shown represent genes that have known translational control

mechanisms (FTH1, VIM) and other well studied genes

(SMARCC1, CDK4, MTOR). Genes such as SMARCC1 have

large variation in the amount of mRNA with smaller variation in

the amount of protein. Conversely genes such as CDK4 have a

wide range of protein levels but little difference in the amounts of

mRNA. Other genes such as VIM vary differently in both protein

and mRNA amounts.

Discussion

In this work data from several different studies have been

integrated and reanalysed to gain insight into potential transla-

tional control mechanisms in human cells. In the five cell lines

analysed there is limited overall correlation between mRNA levels

and protein. Messenger RNA levels predict 24–34% (R2 values) of

individual protein levels using log-normal models, this is consistent

with correlations from prior studies [1,7]. Non-linear models

might improve this prediction, although in other studies using such

models similar relationships were obtained (27%) [23].

The primary protein and mRNA data were collected by three

different groups. These datasets were processed in this study using

a standard pipeline. This pipeline aimed to minimise differences in

read lengths and mapping strategies between the original studies.

The ranges of values for FPKM and IBAQ values were similar in

the cell lines (Figure 1, 2). As more datasets become available these

can be integrated into our analysis system.

Translation Efficiency
We have used a previously described calculation for TE that

utilises mRNA levels, protein levels and protein stability

(Figure 2A). TE has previously been defined as the number of

protein molecules translated from an mRNA per unit time

(proteins per mRNA per h) and this is an intuitively useful unit [7].

For a published mouse cell line, where absolute quantification was

Figure 4. Relationship between translation efficiency and protein half life in HeLa cells. A. Plot of the translation efficiency versus the
protein half life for each gene expressed in HeLa cells. The pink highlighting indicates intersections between the upper and lower quintiles. B.
Enrichment of gene ontology classes for the four groups of genes highlighted in 4A. All classes shown have at least one enrichment passing a
Benjamini corrected p-value,0.05. A spreadsheet of these p-values is included in the File S2.
doi:10.1371/journal.pone.0057625.g004

In Silico Estimation of Translation Efficiency

PLOS ONE | www.plosone.org 7 February 2013 | Volume 8 | Issue 2 | e57625



possible due to inclusion of an internal standard (human) the

median was 43.6 proteins per mRNA per h and interquartile

range 17–93. Without calibration against known values or internal

standards the TE calculated in this study has relative units. If

overall TEs in human and mouse cell lines are similar then the TE

median of 1,318 (log10 (TE) 3.12, Figure 2B) would correspond to

43.6 proteins per mRNA per h, and the interquartile range of

these human TEs 444–3,648 corresponds to 17–93 proteins per

mRNA per h.

Translation efficiencies varied widely for individual genes

(Figure 3). Although, some classes of genes were highly translated

in some cell lines (e.g. ‘‘spliceosome’’ genes in A-431 cells),

grouping by median TE showed no significant enrichments within

GO groups or KEGG pathways. For some abundant proteins the

TE was not high. For example, for the 98 genes encoding the

‘‘cytosolic ribosome’’ both proteins and mRNAs were abundant,

however the mean protein half was high at 68 h, PSAT = 0.010

(HeLa) thus the median log10 (TE) was low (2.93– in the second

quintile and 3.02 in HeLa cells).

The inclusion of protein stability is a significant difference

between the TE calculation used here and a simple protein/

mRNA ratio. If protein stability were not taken into account then

the ‘‘cytosolic ribosome’’ mRNAs would fall into the third quartile

of a simple ratio calculation. Ribosomal mRNAs are translation-

Figure 5. Grouping of genes by variation in estimated translation efficiency. A. The distribution for the coefficient of variation (CV) of the
estimated TE for all genes is shown with the quintiles marked. A similarly calculated distribution using randomly generated TE values is shown for
comparison. The real data has a lower TE CV than would be expected randomly. B. Genes with a small variation in TE. Some examples of well-
studied genes are shown. They either have similar expression values at both the protein and mRNA level (e.g. RAB10, SRP72) or have linear
relationships between these values (e.g. HMOX2, HSPB1, FARSA). A line is drawn representing this latter relationship where the p-value is,0.01. C.
Genes with a large variation in TE. Estimated translation efficiency for some genes is highly variable between cell lines. Examples indicated here
are FTH1, which has well studied translational control mechanisms. Some genes (e.g. SMARCC1) have large variation in the amount of mRNA but not
in the amount of protein. Conversely other genes (e.g. CDK4) have a large variation in protein but little variation in mRNA. Other genes (e.g. VIM) vary
in both protein and mRNA amounts.
doi:10.1371/journal.pone.0057625.g005
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ally regulated by the TOP element - a sequence of pyrimidines at

the 59 terminal. Messenger RNAs with TOP elements are

translationally repressed in slow growth. In growing cells about

30% of these mRNAs are sequestered and not translationally

active [24]. In resting cells this percentage is higher. The analysis

of TE presented here is an average for all mRNAs in the cell and

for all cells. A particular gene may have some mRNAs that will be

translated more or less efficiently and cells will be in various states

of growth. If the fraction of ribosomal mRNAs that are

sequestered and translationally inactive is estimated at 30% it

would mean that the log10 (TE) for the ‘‘cytosolic ribosome’’

mRNAs would be 3.08– close to the median. Other studies also

indicate that proteins involved in translation are regulated

translationally [10].

The analysis presented in this study provides a large set of genes

and estimated TEs that may be further investigated to identify

transcript features common to high or low TE. Previous studies

have used transcript, coding sequence or UTR characteristics such

as length, predicted structure and the presence of upstream open

reading frames (uORFs) to help build models capable of predicting

protein levels from RNA levels [4,8,23,25]. Directly measured or

estimated TE offers the possibility of building improved models for

the prediction of protein levels from mRNA levels.

Protein Stability
Protein stability data is required to accurately estimate TE

(Figure 2). In this study protein stability data from the HeLa cell

line was used [22]. This was published by the same group as the

expression data for this cell line [19]. We therefore expect the TE

values will be most accurate for HeLa cells. The experimentally

determined stability data was used as an estimate of protein

stability in the other human cell lines, although tissue or cell

specific regulation of protein turnover is important [26]. Our

model could be improved by the use of further protein stability

datasets as these become available.

Previous studies have used computational estimates of protein

stability predicted from sequences of the proteins [23], this also

generates a single cell type independent value. These stability

prediction methods are still under active development and have

not yet been tested, improved or refined by the extensive protein

stability data used here [27,28].

TE values have a wider range than protein stability values,

furthermore we found no overall correlation between TE and

protein stability (Figure 4). This supports previous studies that

showed that protein stability lies within a narrower range than

mRNA or protein abundance [1]. Previous findings also showed

protein stability to be a relatively small contributor to overall gene

expression in mouse (NIH-3T3) cells [7] and for some S. cerevisiae

genes [29] although this may be a larger contributor in bacteria

[30].

Variation in Translation Efficiency
This study shows that there was much less variation in TE

across cell lines than expected by chance (Figure 5A). This analysis

of variation is equivalent to determining the coefficient of variation

for the mRNA/protein ratio as the estimate of protein stability

used here is the same for every cell line. Some genes show not only

low TE variation but also similar expression of the message and

protein in all cell lines. These could be useful as internal mRNA or

protein level controls across cell lines. As selection of internal

controls is critical for quantitative comparisons across tissues there

has been much gene-by-gene analysis done of candidate controls

[31,32,33,34].

For some genes with low variation in TE between cell lines there

can still be proportional differences in protein levels and mRNA

levels. For 88 genes of the 362 genes with the smallest TE variation

there is over a five fold range in mRNA levels. For 114 genes of

these 362 genes with smallest TE variation there is over a five fold

range in protein levels. These genes provide good targets for

studying translation without cell specific control.

Analysing gene expression data at the mRNA level has been a

challenge for understanding biological function and the elucida-

tion of many diseases. Often high throughput results present many

targets for follow up. Changes in mRNA levels for genes with low

TE variation would be more likely to result in a change at the level

of protein and a biological effect. The degree of variation seen in

translation efficiency could be incorporated into tools that rank

gene candidates [35].

Possible Examples of Translational Control
Many genes exhibit a large variation in TE between different

cell lines (362 genes in the upper quintile, Figure 5A, 5C). These

large variations (CV .0.21) though partly due to noise in the

underlying data (about 20%, Figure 5A), reflect underlying

differences in biological processes in these cells. In particular this

pattern of varying efficiencies between different cell lines would be

consistent with different translational control mechanisms acting in

these cells. This could be protein or RNA (e.g. miRNA) mediated.

As examples in support of this idea, two genes (FTH1, VIM) with

well established cell or environment specific translational control

mechanisms have significant TE variation. For the ferritin heavy

chain 1 mRNA (FTH1) there is an IRE in the 59 UTR that

inhibits translation depending on iron levels [14]. Subtle

differences in iron in the media between the studies or in iron/

oxygen metabolism between the cell lines could produce

significantly different TEs [36]. The vimentin (VIM) message is

localised within some cells and such localisation is often coupled

with translational control [37].

In this study we could not separate the mRNAs or proteins

corresponding to alternatively spliced transcripts from the same

gene. Alternatively spliced transcripts may be translated with

different efficiencies, particularly when these alter UTRs

[3,16,29]. Therefore, differences in translation efficiency identified

in this study may be explained by differential expression of splice

variants, differences in protein stability and/or by active transla-

tional control mechanisms.

This study has analysed the relationship between protein and

mRNA levels in human cell line data. Large scale quantitative data

is becoming available for more complex systems, e.g. plants or

animals [38,39,40] and the methodology described here will be

applicable to new datasets as they become available. Comparing

data from non-human species would reveal conservation and

differences in the regulation of gene expression [41].

We provide an analysis in a graphical form for each of 8,170

genes on a companion website. Researchers can examine the data

for their own gene of interest or groups of interesting genes. We

also provide all the processed data for additional bioinformatic

analysis.

Materials and Methods

Figure S4 shows a summary of the pipeline used to estimate

translation efficiency in the five cell lines.

Data
Published NGS and IBAQ data were obtained for MCF-7 and

HeLa cell lines [7,19]. For the A-431, U-2 OS and U-251 MG cell
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lines [18] published NGS data were also available and the

proteomic data were available as mass spectrometry intensities.

The MCF-7 and HeLa are the well established breast and cervical

cancer cell lines. A-431 is an epidermoid (squamous cell)

carcinoma cell line. U-2 OS is an osteosarcoma cell line. U-

251 MG is a glioblastoma cell line.

The transcript data for the MCF-7 cell line [7] were acquired

from 36 base reads and the HeLa cell line [19] were acquired from

76 base reads both using the Illumina GAIIx platform. Transcript

data for the A-431, U-2 OS and U-251 MG cell lines [18] were

acquired from 50 base reads using the SOLID sequencing

platform. The reads from all studies were trimmed to 36 bases

and the tophat/cufflinks pipeline [42,43] was used to map these

and compute FPKMs.

For A-431, U-2 OS and U-251 MG the intensity data was

converted to IBAQ values using the method previously followed

for the MCF-7 cell line [7] (see below). For MCF-7 and HeLa the

published IBAQ values were used.

Conversion of Intensity Data to IBAQ Values
Initially the sophisticated model of PeptideCutter from ExPASy

[44] was used to predict trypsin peptide fragments for each

protein. A count was made of all peptides in this prediction

between 6 and 30 amino acids in length. The intensity values from

the Lundberg dataset were divided by these peptide counts to give

IBAQ values. A small proportion of the data (47/5237) related to

proteins with a varying number of predicted peptides - these were

excluded from the analysis.

Data Pre-processing
The FPKM (Fragments Per Kilobase of exon model per Million

mapped reads) data counts are intrinsically a normalised dataset.

The IBAQ values were normalised to ensure the average

intensities had the same empirical distribution between the

different cell lines studied. The limma package from bioconductor

[45] was employed for this purpose – using the normalizeBetwee-

nArrays function with the ‘‘Aquantile’’ method. Data points with

an FPKM value less than 0.1 were excluded from analysis. The

FPKM, IBAQ, TE and Protein Stability (kdeg) values are available

in File S1.

Estimated Translation Efficiency (TE)
An estimated measure of translation efficiency was calculated by

using three experimental values: the amount of protein, the

amount of mRNA, and protein stability. This is shown in the

formula in Figure 2A. At the time the determination is made the

amount of each protein and mRNA is assumed to be in a steady

state. This means that the amount of newly synthesized protein is

equal to the amount of protein being degraded.

Protein stability data was obtained from pulsed SILAC

experiments on HeLa cells. In absence of more cell specific

information, the protein stability data from the HeLa cell line [22]

were used as an estimate of stability in the other human cell lines.

In support of this use, there was a strong correlation between

protein stability in HeLa and both NIH-3T3 (Figure S1) and

C2C12 mouse myoblast [22] cell lines.

The estimated translation efficiency (TE) was calculated for

those genes where protein stability data were available. Where

data were available for all five of the human cell lines, the median

and coefficient of variation (CV) of the translation efficiency was

calculated on a gene by gene basis.

Gene Ontology Analysis
The genes were divided into quintiles based on their median

and per cell line estimated translation efficiency. These were

uploaded to DAVID [46] together with a background consisting of

all the genes for which cell line/median translation efficiency data

were available. The Functional Annotation Charts denoted by

‘‘GOTERM_BP_FAT’’, ‘‘GOTERM_BP_FAT’’, ‘‘GO-

TERM_BP_FAT’’ and ‘‘KEGG_PATHWAY’’ were used – these

are ontologies which have had the broadest terms filtered.

Thresholds were changed to a gene count of 2 and EASE score

of 1 (modified Fisher exact p-value). Ontologies were filtered to

include enrichments with Benjamini corrected p-values,0.05.

In a similar analysis to the above, the genes in the upper and

lower quintiles of translation efficiency in HeLa cells were

intersected with those in the upper and lower quintiles of protein

stability in HeLa cells. A background was used of all the genes

where both protein stability and translation efficiency data were

available.

Supporting Information

Figure S1 Comparison of protein stability for ortholo-
gous genes in HeLa and NIH-3T3 cells.

(TIF)

Figure S2 Functional characteristics of genes grouped
by estimated translation efficiency calculated from
HeLa protein stability data. Analysis of enrichment within

gene ontology (GO) and KEGG pathway classifications for genes

within each quintile of TE for each cell line. All ontologies shown

have at least one enrichment passing a Benjamini corrected p-

value,0.05. The colours in the figure correspond to corrected p-

values such that colours from white to red show significance up to

a significant p-value,0.05 (red). Only genes with protein stability

data available in HeLa and NIH-3T3 cells are considered in the

analysis.

(TIF)

Figure S3 Functional characteristics of genes grouped
by estimated translation efficiency calculated from NIH-
3T3 protein stability data. Analysis of enrichment within gene

ontology (GO) and KEGG pathway classifications for genes within

each quintile of TE for each cell line. All ontologies shown have at

least one enrichment passing a Benjamini corrected p-value,0.05.

The colours in the figure correspond to corrected p-values such

that colours from white to red show significance up to a significant

p-value,0.05 (red). Only genes with protein stability data

available in HeLa and NIH-3T3 cells are considered in the

analysis.

(TIF)

Figure S4 The pipeline used to estimate translation
efficiency in the five cell lines.

(TIF)

File S1 The FPKM, IBAQ, TE and Protein Stability data
are provided in this spreadsheet. This data is also
available on the companion website (http://bioanalysis.
otago.ac.nz/TranslationEfficiency).

(XLS)

File S2 A spreadsheet of the numeric results from the
enrichment analysis, including those terms not passing
Benjamini correction. Only those passing this filter are shown

in the paper.

(XLS)
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