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Recent studies suggest that the maintenance of cognitive function in the

later life of older people is an essential factor contributing to mental

wellbeing and physical health. Particularly, the risk of depression, sleep

disorders, and Alzheimer’s disease significantly increases in patients with mild

cognitive impairment. To develop early treatment and prevention strategies

for cognitive decline, it is necessary to individually identify the current

state of cognitive function since the progression of cognitive decline varies

among individuals. Therefore, the development of biomarkers that allow

easier measurement of cognitive function in older individuals is relevant

for hyperaged societies. One of the methods used to estimate cognitive

function focuses on the temporal complexity of electroencephalography

(EEG) signals. The characteristics of temporal complexity depend on the

time scale, which reflects the range of neuron functional interactions. To

capture the dynamics, composed of multiple time scales, multiscale entropy

(MSE) analysis is e�ective for comprehensively assessing the neural activity

underlying cognitive function in the brain. Thus, we hypothesized that EEG

complexity analysis could serve to assess a wide range of cognitive functions

in older adults. To validate our hypothesis, we divided older participants

into two groups based on their cognitive function test scores: a high

cognitive function group and a low cognitive function group, and applied

MSE analysis to the measured EEG data of all participants. The results of the

repeated-measures analysis of covariance using age and sex as a covariate

in the MSE profile showed a significant di�erence between the high and low

cognitive function groups (F = 10.18,p = 0.003) and the interaction of

the group × electrodes (F = 3.93,p = 0.002). Subsequently, the results of

the post-hoc t-test showed high complexity on a slower time scale in the

frontal, parietal, and temporal lobes in the high cognitive function group.
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This high complexity on a slow time scale reflects the activation of long-

distance neural interactions among various brain regions to achieve high

cognitive functions. This finding could facilitate the development of a tool for

diagnosis of cognitive decline in older individuals.
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1. Introduction

In a super-aging society, cognitive decline in older adults is a

pressing issue (Gauthier et al., 2006). In particular, maintaining

a high cognitive function is important for the mental wellbeing

of older individuals (Cohen, 2006; McFadden and Basting,

2010; Ueno et al., 2015). Therefore, maintaining high cognitive

function in later life is essential to optimizemental wellbeing and

physical health (Hendrie et al., 2006; Depp et al., 2011).

In patients with mild cognitive impairment (MCI), the

risk of depression, sleep disorders, and dementia increases

significantly (Petersen et al., 1999; Guarnieri and Sorbi, 2015;

Snowden et al., 2015). Additionally, the rate of conversion from

MCI to dementia is high and a return to a healthy state fromMCI

can be challenging (Gabryelewicz et al., 2007; Farias et al., 2009;

Marcos et al., 2016). Therefore, preventive interventions for

MCI are important (Roberts andKnopman, 2013). Furthermore,

increases personal and social burdens such as medical insurance

and patient care are necessary to deal with MCI and dementia.

If both the onset and progression of cognitive decline could

be delayed through early intervention, the number of people

requiring a high level of care would decrease (Brookmeyer

et al., 2007). Advances in treatment and prevention strategies,

which lead to a delay in cognitive decline, can significantly

reduce personal and social burdens (Brookmeyer et al., 2007).

Therefore, approaches toward maintaining high cognitive

function in older individuals are desired (Gates et al., 2019).

However, individual differences in the symptoms of cognitive

decline depend on various environmental factors, such as

lifestyle and other personal factors (Stern, 2012; Gates et al.,

2019). In such scenario, with individually varying cognitive

decline progression, tailor-made support programs are required

to efficiently maintain a high cognitive function (reviewed in

Beattie et al., 2002).

One of the essential factors in establishing tailor-made

support programs is estimating the current state of cognitive

function individually. Currently, cognitive function tests, such as

the Mini Mental State Examination (MMSE) and the Montreal

Cognitive Assessment, are widely used in clinical practice (Smith

et al., 2007; Wong et al., 2015). These tests impose a considerable

burden in older individuals and medical resources since they

are conducted multiple times within a certain period; each test

is face-to-face and requires a long time (Arevalo-Rodriguez

et al., 2015; Wong et al., 2015). Additionally, the diagnosis of

cognitive decline requires analysis using cognitive indicators

combining multiple biomarkers in longitudinal measures (Aisen

et al., 2011). Therefore, the development of new biomarkers that

can objectively and quantitatively assess cognitive function in

older adults is crucial.

In recent years, studies based on the temporal dynamics

of neural activity using electroencephalography (EEG),

magnetoencephalography (MEG), and functional magnetic

resonance imaging (fMRI) have revealed neural activity across

neural networks in the brain (Kuller et al., 1998; Camp et al.,

1999; Debener et al., 2006; Nobukawa et al., 2019a, 2020b).

Among these neuroimaging methods, EEG is cost-effective,

widely available, and noninvasive, making it suitable for

clinical applications (Vecchio et al., 2013; Kulkarni, 2018). An

estimation of cognitive decline by EEG demonstrated that EEG’s

power spectrum was associated with reduced performance

in multiple advanced cognitive function areas (Van der Hiele

et al., 2007). In addition, Jelic et al. (2000) reported that the

indices associated with alpha and theta relative powers in the

left temporal lobe can significantly distinguish MCI patients

with and without progressive cognitive decline. In another

study examining the relationship between the power spectrum

and cognitive decline, Elmståhl and Rosén (1997) revealed that

low beta activity in the EEG reflects cognitive decline in older

individuals. Therefore, frequency band-specific EEG activity

can estimate cognitive decline by capturing the neural activity of

extensive neural networks in the brain. However, the power of

brain activity in EEG signals mainly reflects local brain activity.

The integration of information from various brain neural

networks plays an important role in optimal brain function

(Varela et al., 2001; Buzsaki and Draguhn, 2004; Fries, 2005;

Hutchison et al., 2013; Koutsoukos et al., 2015). Therefore, it is

important to assess not only these local brain activities, but also

the interactions among global neural networks.

One of the methods reflecting the interaction of neural

activity between brain regions focuses on the functional

connectivity among neural networks (Mišić et al., 2011;

Tobe and Nobukawa, 2021). Functional connectivity reflects

the integration of brain information processing between

brain regions as the mutual interaction of neural activity
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(Varela et al., 2001; Fell and Axmacher, 2011; Hardmeier et al.,

2014); especially, methods focusing on network connectivity

have been widely used to reflect brain activity through age-

related cognitive decline and the degree of cognitive function

in older individuals (Ferreira and Busatto, 2013; Damoiseaux,

2017; Nobukawa et al., 2020b). However, in functional

connectivity, the interaction between many areas, typified as

cognitive function, needs to be assessed in terms of whole-

brain network characteristics as network topology (e.g., node

degree and centrality) (Zeng et al., 2015; Makarov et al., 2018).

Therefore, to assess the topological features of the whole-brain

network, a highly dense EEG is needed (Mišić et al., 2011;

Hardmeier et al., 2014), which restricts clinical availability.

Another method for evaluating the neural interactions

underlying cognitive processes focuses on the temporal

complexity of neural activity (Takahashi, 2013; Ueno et al., 2015;

Ando et al., 2021; Iinuma et al., 2022). These complex temporal

variabilities in brain activity play an important role in perception

and mental and behavioral processes and are mechanisms of

stochastic resonance and stochastic facilitation (McDonnell and

Ward, 2011; Garrett et al., 2013b; Takahashi, 2013; Yang and

Tsai, 2013; Nobukawa et al., 2020b). In particular, in the study of

cognitive functional changes related to age and the pathology of

cognitive decline, the application of complexity analysis, such as

multifractal analysis, the correlation dimension, and Lyapunov

exponent to EEG, has been widely used to quantitatively

characterize complexity (Lee et al., 2000; Takahashi et al., 2009;

Ueno et al., 2015; Zorick et al., 2020; Ando et al., 2021; Ma et al.,

2021). Furthermore, the complexity obtained from local brain

regions reflects the topological characteristics of whole-brain

functional connectivity (Mišić et al., 2011; Ando et al., 2022).

Therefore, complexity analysis with low-density EEG is suitable

for developing biomarkers for evaluating cognitive decline in

older individuals.

Moreover, the complexity of brain activity depends on

the time scale and corresponds to interactions between brain

regions (Wang, 2010). In particular, neural activity on fast time

scales reflects local inter-regional neural activity, whereas neural

activity on slow time scales reflects long-range neural activity

(Wang et al., 2018). Thus, the dynamics of brain activity are

composed of neural activity on multiple time scales (Fisher

et al., 2004). In particular, the time scale dependent neural

variability obtained from EEG has been shown to reflect the

relationship between cognitive function, aging, and creativity

(Takahashi et al., 2009, 2016; Ueno et al., 2015; Nobukawa et al.,

2019a; Ando et al., 2022). Therefore, multiscale entropy (MSE)

analysis has been widely used to quantify complexity and assess

brain activity using multiple time scales (Costa et al., 2002;

Takahashi, 2013). The application of MSE analysis to EEG was

useful to capture changes in the complexity of EEG dynamics

associated with creativity and aging (Takahashi et al., 2009;

Ueno et al., 2015; Nobukawa et al., 2019a, 2020a; Ando et al.,

2021).

Various approaches have been conducted in the past,

concerning the estimation of cognitive function using EEG

(Ueno et al., 2015; Nobukawa et al., 2019a, 2020a; Ando et al.,

2021). However, previous studies on cognitive function and EEG

complexity have focused on limited cognitive functions, such as

disease-level cognitive decline, specific cognitive functions, and

aging network alternation (Ueno et al., 2015; Nobukawa et al.,

2019a, 2020a; Ando et al., 2021). A more comprehensive and

detailed time scale dependent assessment of cognitive function

and complexity has not been conducted so far. For preventive

interventions in a hyperaging society, it is important to deal with

these evaluations. Therefore, we hypothesized that focusing on

the time scale dependent complexity of functional neural activity

in the brain, captured by EEG, would allow us to evaluate a wide

range of cognitive functions in older people. To validate this

hypothesis, this study aimed to study the potential of EEG to

reveal high and low cognitive function in order people. In this

study, we divided healthy older people into two groups based on

their high and low scores on cognitive function tests, and applied

MSE analysis to the EEG data of each participant to derive

EEG complexity on multiple time scales and detect the changes

between the groups with high and low cognitive functions. In

addition, to confirm the usefulness of MSE analysis in this study,

we conducted power spectrum density analysis to confirm the

advantage of the method.

2. Methods

2.1. Participants

We gathered 199 people form the communal society in

the Eiheiji-cho. For comparison, we recruited 43 healthy older

medication-free participants (age range: 65–85 years old),

based on the following exclusion criteria: major medical or

neurological conditions, history of alcohol or drug dependency,

and internal diseases, including hypertension, hyperlipidemia,

and diabetes mellitus. Based on these exclusion criteria,

participants with relatively high cognitive function for their

age were chosen in the communal society. In particular,

no participants with MCI satisfying with mini mental state

examination (MMSE) threshold (<24) (Trzepacz et al., 2015).

To test cognitive function, we used the Five-Cognitive Functions

(Five-Cog) test, developed by the International Psychogeriatric

Association to detect cognitive decline in the older individuals

(Miyamoto et al., 2009). This test consists of five items:

“character position matching task” to measure attention,

“category cued recall task” to measure memory, “clock drawing

task” to measure visuospatial functional ability, “word recall

task” to measure language ability, and “similar word task” to

measure thinking ability (Fujii et al., 2021). The “character

position matching task” is an attention-splitting task that

requires attention switching and declines particularly at the
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TABLE 1 Basic composition of the participants in high and low cognitive functioning groups based on Five-Cognitive Functions (Five-Cog) scores.

High cognitive group Low cognitive group p-value

Mean age [Standard deviation (sd)] 70 (4.30) 74.14 (5.22) 0.007

Mean education history [Standard deviation (sd)] 12.0 (1.57) 11.9 (2.45) 0.8745

Mean total score of Five Cog (sd) 168.27 (10.04) 142.52 (8.28) <0.001

Mean BMI values 23.636 23.4078 0.832

Mean blood pressure (Systolic) 139.900 137.182 0.599

Mean blood pressure (Diastolic) 80.150 78.546 0.652

Male/Female 6/16 7/14 0.665

The p-value of the group difference between the high and low cognitive function groups with p < 0.05 is indicated in bold characters.

stage of MCI. The “category cued recall task” is a task that

indicates impaired episodic memory function at the stage of

MCI. The “similar word task” can easily decline with MCI.

In contrast, the visual component and the ability to draw out

appropriate words do not decline much at the stage of MCI,

but they do in Alzheimer’s disease (AD). The “clock drawing

task” and “word recall task” are tasks that indicates the decline

in these abilities. In this study, the sum of the scores of all

Five-Cog domains in each individual were used as total score.

As criterion, considering the situation for restricting size of

participants, the median of the distribution is appropriate to

divide two groups with the same size. Therefore, the participants

were divided into two groups based on the median of their

total Five-Cog score: a high cognitive function group and a

low cognitive function group. The basic characteristics of the

participants in the two groups is shown in Table 1. The education

level in the high cognitive group was significantly higher than in

the low cognitive group. However, as the Five-Cog test scores

were adjusted based on educational history, this difference does

not affect our results. Additionally, there were no significant

differences in blood pressure or BMI between groups. All

participants provided informed consent before the beginning

of the study. The study protocol was approved by the Ethics

Committee of Fukui University. All procedures were conducted

in accordance with the principles of the Declaration of Helsinki.

2.2. EEG recordings

EEG data were recorded using a 21-channel system (EEG-

1514, Nihon Kohden, Tokyo) at 19 electrode sites (Fp1, Fp2,

F3, F4, C3, C4, P3, P4, O1, O2, F7, F8, T3, T4, T5, T6, Fz, Cz,

and Pz), in accordance with the international 10-20 system, with

the two ear lobes jointly forming the reference. The participants

sat comfortably on chairs in an electrically shielded, soundproof,

and dimmed room. During EEG recordings, they were in a state

of wakefulness with their eyes closed for ≥3 min. The EEG

signals were recorded with a sampling frequency of 500 Hz,

a 1–60 Hz bandpass filter, and a time constant of 0.3 s. Since

FIGURE 1

Overview of complexity analysis of EEG signals by multi-scale

entropy (MSE) analysis.

the bandpass-filtered data contained little line noise at 60 Hz,

a notch filter was not applied. The electrode impedances were

< 5 k�. Artifacts, including eye movements, blinks, and muscle

activity, were manually excluded.

2.3. MSE analysis

An overview of complexity analysis of EEG signals by MSE

analysis is shown in Figure 1. MSE analysis is a method for

quantifying the complexity of time-series data at multiple time

scales by coarse-graining (Costa et al., 2005).

First, compared to the original EEG time series,

{x1, x2, · · · , xN} were coarse-grained using the time scale

factor (τ ) with a non-overlapping window by

yτj = (
1

τ
)

jτ∑

i=(j−1)τ+1

xi, (1 ≤ j ≤
N

τ
) (1)

where {y1, y2, · · · , yN} are the obtained coarse-grained signals.

{y1, y2, · · · , yN} were converted using the Zscore.
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Since the temporal complexity of {y1, y2, · · · , yN}, sample

entropy (SampEn) was defined by

SE(m, r) = − log
Um+1(r)

Um(r)
. (2)

Um(r) is the probability that |ymi − ymj | < r(i 6=

j, i, j = 1, 2, · · · ). ymi is an m-dimensional vector, ymi =

{yi, yi+1, · · · , yi+m−1}. τ (τ = 1, 2, · · · ) is the time scale. In this

study, we setm = 2 and r = 0.2 (Costa et al., 2005).

The SampEn values obtained with smaller scale factors

capture the temporal complexity arising from short-range

interactions, whereas higher scale factors are associated with

temporal complexity produced by long-range interactions

(Ueno et al., 2015). Therefore, evaluating the complexity at

multiple time scales provides a more comprehensive assessment

of the complexity of EEG signals as the temporal-scale profile

of inherent dynamics (Costa et al., 2005; Ueno et al., 2015;

Nobukawa et al., 2019a,b, 2020a, 2021). In this study, SampEn

derived from 40 scales was averaged and evaluated for each of

the five scales, that is, averaged eight time scale ranges: 1–5 scale

(5–25ms), 6–10 scale (30–50ms), 11–15 scale (55–75ms), 16–20

scale (80–100 ms), 21–25 scale (105–125 ms), 26–30 scale (130–

150 ms), 31–35 scale (155–175 ms), 36–40 scale (180–200 ms).

In addition, as the number of epochs differs among individuals,

SampEn is averaged across epochs (mean number of epochs

among individuals: 12.12).

2.4. Power spectrum

In addition to the complexity analyzed by MSE analysis, we

computed the power spectral density (PSD) of our EEG signals.

In this analysis, we estimated PSD in dB/Hz using Welch’s

method with a Hanning window function with a width of 2.0 s.

2.5. Statistical analysis

For SampEn, repeated measures analysis of covariance

(ANCOVA) with the groups (high cognitive function group

vs. low cognitive function group) as between-subject factor,

electrodes (19 electrodes from Fp1 to Pz) and time scales (8

scale ranges averaged per scale 5) as within-subject factors,

and age and sex as the covariates was performed to test for

group differences. The Greenhouse-Geisser adjustment and a α

bilateral level of 0.05 were applied. The result of the ANCOVA

was represented by the F-value based on the comparison of

covariances within/between groups. The post-hoc t-test was used

to assess the significant main effects of the group and per-

electrode and per time scale interactions. Benjamini-Hochberg

false discovery rate (FDR) correction was applied to the t-scores

for multiple comparisons (q < 0.05) (152 p-values: 19 electrodes

× 8 scale ranges). For the electrode-wise group comparisons of

TABLE 2 High cognitive function group vs. low cognitive function

group based on the repeated measure ANCOVA results F-value

(p-value) and partial η2-value in multi scale entropy (MSE) analysis

results, F and p-value with p < 0.05 are indicated by bold characters.

F-value (p-value) Partial η2

Group 10.181 (0.003) 0.207

Group× scale 1.295 (0.279) 0.032

Group×node 3.930 (0.002) 0.092

Node×scale×group 1.150 (0.332) 0.029

the PSDs, a t-test with an FDR correction was also used. As well

as for MSE analysis, q < 0.05 was applied (1, 121 p-values: 59

frequency points [2–60 Hz; width of the frequency bin, 1.0 Hz]

× 19 electrodes).

3. Results

3.1. MSE analysis

We performed an MSE analysis in the high and low

cognitive function groups. Table 2 shows the repeated-measures

ANCOVA results from the MSE analysis. A significant large

main effect of SampEn group differences was confirmed as was

a significant large interaction effect of group × nodes. As a

post-hoc t-test, the mean SampEn values in the high and low

cognitive function groups and the t-values between the high

and low cognitive function groups are shown in Figure 2. The

results showed that EEG complexity tended to be higher in the

high cognitive function group than in the low cognitive function

group in the slow time scale regions 11 to 40 (55–200 ms). In

particular, 13 electrodes (Fp1, Fp2, F3, F4, P3, P4, F7, T3, T4,

T5, T6, Cz, and Pz) passed the FDR correction, and the results

confirmed site specificity from the frontal to the parietal and

temporal lobes of the brain.

3.2. Power spectrum analysis

Figure 3 shows the EEG PSD for the high and low

cognitive function groups. In this power evaluation, we

did not find significant differences after adjusting for FDR

at q < 0.05.

4. Discussion and conclusion

To identify the early signs of cognitive decline in healthy

older adults, we divided them into two groups, one with high

cognitive function and the other with low cognitive function,

based on their cognitive function test scores. The results revealed

a significant difference in the complexity between the two
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FIGURE 2

Multi-scale entropy analysis in the high and low cognitive function groups. The horizontal axis represents the temporal-scale factor τ . (A) Mean

values of sample entropy (SampEn) from scale factors 1 (0.005 s) to 40 (0.2 s) in the high cognitive function group. (B) Mean values of SampEn

from scale factors 1 (0.005 s) to 40 (0.2 s) in the low cognitive function group. (C) t-value between the high and low cognitive function groups.

The warm (cold) color represents a higher (smaller) SampEn value for the high cognitive function group compared to that of the low cognitive

function group. (D) The t-value satisfying the FDR correction criteria q < 0.05 corresponding to (p < 0.002). A significantly higher SampEn of the

high cognitive function group was confirmed at slow time scale regions 11–40 (55–200 ms).

groups, and higher EEG complexity in the high cognitive

function group. High complexity was observed in the frontal,

parietal, and temporal lobes, and the tendency for increasing

complexity was observed on the slow time scale.

First, we considered the reasons for the high EEG complexity

in the high cognitive function group. Cognitive functions

emerge in neural networks connected by long-range brain

regions; therefore, their related neural activity reflects long-

range neuronal interactions (Tononi et al., 1998; Garrett

et al., 2013a), which involve a high degree of information

integration (Tononi et al., 1998). Several studies have reported

that older people with low cognitive function exhibit less

temporal complexity in their brain activity (Garrett et al.,

2013a; Ishii et al., 2017). The results obtained in this study

are highly congruent with previous findings. In addition,

the time scale ranges reflecting cognitive function are not

arbitrary but reflect the frequency-band specific functional

networks (Miraglia et al., 2017; Nobukawa et al., 2020b). In

this study, the increased complexity of dynamics on the 55–

200 ms time scale corresponds to a frequency component of

approximately 5–18 Hz, corresponding to the alpha and theta

bands. Previously, Nobukawa et al. (2020b) revealed increased

whole-brain functional connectivity of the alpha band in the

high cognitive group. In addition, Vecchio et al. revealed

decreased functional connectivity in the theta band in AD/MCI

in comparison with healthy aging (Miraglia et al., 2017). This

indicates that cognitive function is supported by the appropriate

theta-band functional connectivity strength. Based on the above,

the enhancement of whole-brain neural interactions, associated

with increased functional connectivity in the alpha and theta

bands and strongly related to high cognitive function, can

increase the complexity of dynamics on the 55–200 ms time

scale. This finding is also supported by previous findings on

the correlation between functional connectivity strength and the
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FIGURE 3

EEG power spectral density (PSD) for the high and low cognitive function groups. Solid lines and shaded areas indicate mean and standard

deviation in each group. We found no significant di�erences after adjusting for false discovery rate (FDR) with q < 0.05.

complexity of neural activity (Sporns et al., 2007; Mišić et al.,

2011; Ando et al., 2022).

Second, we considered the reasons for the high complexity

of the frontal, parietal, and temporal lobes in the high cognitive

function group. Patients with cognitive dysfunction reportedly

have significantly lower functional connectivity than healthy

participants, particularly in the frontal lobe (Braakman et al.,

2013), where age-related brain volume reductions are most

pronounced (Tisserand et al., 2002). Patients with AD and

bilateral atrophy of the parietal lobes showed a more rapid

decline in cognitive function than other patients with AD (Na

et al., 2016). In addition, graymatter atrophy in the posterior and

medial parietal regions results in a chain reaction of cognitive

dysfunction; the parietal lobe is involved in many cognitive

functions, including memory, which is the most prominent

dysfunction in AD (Buckner et al., 2005; Jack et al., 2010;

Jacobs et al., 2012). Furthermore, the temporal and parietal lobes

showed the greatest reduction in brain glucose metabolism,

associated with cognitive decline in patients with AD (Small

et al., 2000). Therefore, we considered that the significant

differences in EEG complexity between the two groups in the

frontal, parietal, and temporal lobes were congruent with the

regions associated with cognitive decline.

Third, we considered the reasons explaining why high

cognitive functions were not identified by the power spectrum

analysis but only by MSE analysis. It might be that the

complexity captured by MSE analysis reflects complex neural

interactions among whole-brain regions, which play a crucial

role for emerging cognitive functions (Garrett et al., 2013b);

meanwhile, the power spectrum merely reflects local neural

activity. Therefore, the complexity profile reflects cognitive

function with higher sensitivity than the power spectrum profile.

This study has some limitations. In this study, although

we captured changes in cognitive function in healthy older

populations using EEG complexity, the number of participants

was too small to inform clinical application. In addition, the

age distributions of the two groups could hardly be identical

due to the small sample size. Therefore, further studies with

more subjects are needed to investigate the age distribution

under the same conditions in both groups. Further, considering

the aim of this study was to develop biomarkers to support

the diagnosis of dementia of older populations, longitudinal

Frontiers inNeuroscience 07 frontiersin.org

https://doi.org/10.3389/fnins.2022.878495
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Iinuma et al. 10.3389/fnins.2022.878495

studies are needed to understand the transition from healthy

state to MCI and dementia. In the future, we aim to develop

a tool to aid in the diagnosis of cognitive decline across a

wider age range and a system to predict cognitive decline by

measuring cognitive function scores and EEG over longer time

periods.

In this study, we identified the time scale- and site-specific

profiles of EEG complexity concerning comprehensive cognitive

functions. Despite its limitations, this finding could facilitate the

development of a tool for assisting the diagnosis of cognitive

decline in older adults.
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