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Abstract

Process analytical technology combines understanding and control of the process

with real‐time monitoring of critical quality and performance attributes. The goal is to

ensure the quality of the final product. Currently, chromatographic processes in

biopharmaceutical production are predominantly monitored with UV/Vis absorbance

and a direct correlation with purity and quantity is limited. In this study, a

chromatographic workstation was equipped with additional online sensors, such as

multi‐angle light scattering, refractive index, attenuated total reflection Fourier‐
transform infrared, and fluorescence spectroscopy. Models to predict quantity, host

cell proteins (HCP), and double‐stranded DNA (dsDNA) content simultaneously were

developed and exemplified by a cation exchange capture step for fibroblast growth

factor 2 expressed in Escherichia coliOnline data and corresponding offline data for

product quantity and co‐eluting impurities, such as dsDNA and HCP, were analyzed

using boosted structured additive regression. Different sensor combinations were

used to achieve the best prediction performance for each quality attribute. Quantity

can be adequately predicted by applying a small predictor set of the typical

chromatographic workstation sensor signals with a test error of 0.85 mg/ml (range in

training data: 0.1–28 mg/ml). For HCP and dsDNA additional fluorescence and/or

attenuated total reflection Fourier‐transform infrared spectral information was

important to achieve prediction errors of 200 (2–6579 ppm) and 340 ppm (8–3773

ppm), respectively.
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1 | INTRODUCTION

Real‐time monitoring and model‐based prediction of purity and

quantity are key steps towards real‐time release in the manufacturing

of biopharmaceuticals (Jiang et al., 2017). According to the ICH

guidelines (Q8 R2), real‐time release testing is defined as “the ability to

evaluate and ensure the quality of an in‐process and/or final drug

product based on process data, which typically includes a valid

combination of measured material attributes and process controls”

(Holm, Allesø, Bryder, & Holm, 2017). There is not a single online

sensor available that allows a direct measurement of the quality of a

biopharmaceutical. Therefore, the information must be extracted from

multiple sensor signals. In addition, model‐based prediction of purity

and quantity can be used for process control, in particular for real‐time

decisions on pooling. Currently, the determination of the critical

quality attributes (CQAs) of biopharmaceutical products during

processing is performed offline after the unit operation has been

completed. This requires extensive sample preparation, is time‐
consuming, and adds to the manufacturing costs. The acquired

information is available with a substantial time delay. Such a

Quality‐by‐Testing approach using offline analysis is a retrospective

quality control and is not suitable for continuous manufacturing (Food

& Drug Administration, 2004; Löfgren et al., 2017). In contrast, the

fundamental concept of the Quality‐by‐Design (QbD) approach is that

a process is controlled to perform in defined design space and thus

guarantees a continuous quality output (Rathore, 2016; Read et al.,

2010; Scott & Wilcock, 2006; Yu et al., 2014). Process analytical

technology (PAT), as one strategy of the QbD approach, includes the

tasks of designing, analyzing and controlling production processes

based on real‐time monitoring of quality attributes to allow continuous

manufacturing and enhanced flexibility. Online monitoring by employ-

ing fast and noninvasive mostly spectroscopic technologies collect

real‐time data of the process which have to be converted into relevant

process information by appropriate statistical models. Therefore,

online monitoring and model predictive control are mandatory for

the realization of a PAT approach and to significantly reduce the need

for offline analyses. Besides process control, PAT can be applied

efficiently to increase the process understanding during development

(Rathore, 2016) and for prospective real‐time release (Jiang et al.,

2017). So far, QbD and PAT have limited applications in biomanu-

facturing. Several studies for real‐time monitoring of upstream

processes were performed where the most important criteria to be

controlled are the product formation and feed strategies and

corresponding offline methods (e.g., cell‐based assays) can last up to

days (Dabros, Amrhein, Bonvin, Marison, & von Stockar, 2009; Luchner

et al., 2012; Melcher et al., 2015; Melcher, Scharl, Luchner, Striedner,

& Leisch, 2017; Pais, Carrondo, Alves, & Teixeira, 2014; von Stosch,

Hamelink, & Oliveira, 2016). Chromatography is the main purification

method for biopharmaceutical proteins. Process‐related impurities

such as host cell proteins (HCP), DNA, endotoxins, and product‐related
impurities (e.g., product variants or aggregates) have to be depleted to

deliver a product that meets defined quality standards (Food & Drug

Administration, 2003). Controlled loading and pooling of the eluates

are critical for the overall chromatography performance to ensure

consistent product quality (Borg et al., 2014). The knowledge of the

eluate composition is crucial for subsequent downstream steps.

Currently, process decisions are based mainly on online monitoring

of UV absorbance, which is beneficial for the estimation of overall

protein content or the protein/DNA ratio, but is rather unspecific for

typical co‐eluting critical impurities. It is challenging when HCP and

product variants possess physicochemical properties similar to the

target protein. For reliable control of preparative chromatographic

processes, monitoring methods have to discriminate the product from

relevant impurities within short response times (i.e. seconds), as quality

attributes of the effluent are changing quickly. Another challenge is the

complex matrix of buffers and product samples that change throughout

the purification steps. Single sensor methods have been examined for

their feasibility in PAT for pooling of chromatographic methods

(Großhans et al., 2018; Rathore, Li, Bartkowski, Sharma, & Lu, 2009;

Rathore, Wood, Sharma, & Dermawan, 2008; Rathore, Yu, Yeboah, &

Sharma, 2008; Read et al., 2010; Rüdt, Briskot, & Hubbuch, 2017). Most

commonly, UV/Vis absorption and attenuated total reflection Fourier‐
transform infrared (ATR‐FTIR) spectroscopy are used for PAT applica-

tions (Brestrich, Briskot, Osberghaus, & Hubbuch, 2014; Brestrich et al.,

2015; Großhans et al., 2018; Rathore et al., 2008). In all these cases,

only a single quality attribute was monitored and used as a pooling

criterion. Spectroscopic methods have been widely used as tools, as

they deliver information on the primary, secondary, tertiary, and

quaternary structures of proteins. These techniques are useful as

noninvasive, nondestructive, rapid, sensitive, and automatable methods

with the ability to provide information simultaneously on different

proteins, conformational variations, or DNA (Brestrich et al., 2014;

Flatman, Alam, Gerard, & Mussa, 2007; Rüdt et al., 2017; Workman,

Koch, & Veltkamp, 2007). UV/Vis spectroscopy mainly measures the

primary structure, such as the content of aromatic amino acids

(UV280 nm) or polypeptide backbone (UV214 nm). The UV260 nm

absorbance provides an estimation of DNA content (Antosiewicz &

Shugar, 2016). The refractive index (RI) has also been applied for

protein quantification (Zhao, Brown, & Schuck, 2011). The secondary

structure can be measured by vibrational spectroscopy such as FTIR,

circular dichroism, and Raman spectroscopy (Flatman et al., 2007; Rüdt,

Briskot et al., 2017; Workman et al., 2007). At‐line ATR‐FTIR can

distinguish between HCP and target protein (Capito, Skudas, Kolmar, &

Stanislawski, 2013). The benefit of ATR is the lack of complex sample

preparation, as part of the totally reflected infrared beam in the ATR

crystal enters the sample interface. In the spectral regions where the

sample absorbs energy, the beam is attenuated (Barth, 2007). The

tertiary structure of proteins can be measured via intrinsic fluorescence

of the aromatic amino acids and structural changes induced by polarity

changes can be detected (Ghisaidoobe & Chung, 2014; Rathore et al.,

2009). Their quaternary structure, for example, protein aggregation, can

be determined by light scattering methods (Lorber, Fischer, Bailly, Roy,

& Kern, 2012; Minton, 2016). Fluorescence spectroscopy, as well as

light scattering techniques, have been used for at‐line determination of

quality attributes (Rathore et al., 2009; Yu, Reid, & Yang, 2013). All

those spectroscopic data are complex with limited first principle
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knowledge. Online ion‐exchange liquid chromatography has been

applied to monitor antibody variants in a continuous process, however

one sample measurement lasts 15 min (Patel et al., 2017).

State of the art statistical methods to relate many sensor signals to

offline analyses include Partial Least Squares (PLS), tree‐based methods

(e.g., Random Forests) or boosted structured additive regression (STAR),

which extends the well‐known multiple linear regression models with

interaction effects or nonlinear spline functions (Bühlmann & Hothorn,

2007; Hothorn, Bühlmann, Kneib, Schmid & Hofner, 2015).

No studies are available using a combination of sensors that would

allow the simultaneous monitoring and prediction of many product

quality attributes in parallel (Borg et al., 2014; Großhans et al., 2018;

Rathore et al., 2009; Rüdt, Brestrich, Rolinger, & Hubbuch, 2017; Rüdt,

Briskot et al., 2017; von Stosch et al., 2016; Yu et al., 2013).

The aim of the present study was a comprehensive and efficient

real‐time monitoring of a protein purification step using a panel of

online sensors. UV/Vis, pH and conductivity probes are standard

sensors of a chromatographic workstation. Multi‐angle light scatter-

ing (MALS) and RI detectors, ATR‐FTIR, and fluorescence spectro-

scopic sensors were additionally integrated into a commercially

available chromatographic workstation for model‐based prediction of

product quantity and impurity content. As HCP and dsDNA are

critical host cell impurities they were addressed in this study. Data

analysis was performed with boosted STAR, which gives promising

results in settings, where the number of variables (greatly) exceeds

the number of observations, as it is common, when spectroscopic

sensor systems are involved (Melcher et al., 2017).

2 | MATERIALS AND METHODS

2.1 | Fibroblast growth factor 2

Fibroblast growth factor 2 (FGF‐2) was overexpressed in Escherichia

coli (E. coli) BL21 cells (Sauer et al., 2018). FGF‐2 has a molecular

weight of 17 kDa and an isoelectric point pI of 9.6 (Gasparian

et al., 2009).

2.2 | Chromatographic capture step by ion
exchange

A cation exchange resin was used to purify FGF‐2 from the clarified

E. coli homogenate. A Tricorn column (d = 10 mm; h = 150 mm; GE

Healthcare; Uppsala, Sweden) was packed with Carboxymethyl

Sepharose Fast Flow resin (GE Healthcare; Uppsala, Sweden)

resulting in a column volume (CV) of 11.8 ml. The FGF‐2 capture

method was conducted at a flow rate of 1 ml/min. 10 CV of clarified

E. coli homogenate (1.7 ± 0.2 mg/ml) were loaded and elution was

performed with a linear gradient from 0 to 1 M NaCl in 100 mM Na‐
phosphate (pH 7.0). For each performed chromatographic run, 15

fractions (UV280 nm signal >50 mAU) of 1 ml were collected and used

for all offline assays (Sauer et al., 2018). Clarified homogenate

compositions of fermentation batches are provided in Table SI.

2.3 | Offline monitoring

Product quantity (mg/ml) was determined by reverse‐phase high‐
performance liquid chromatography (RP‐HPLC). Based on the FGF‐2
concentration, the relative dsDNA content (ppm) was quantified by

PicoGreen® assay and the HCP content (ppm) by enzyme‐linked
immunosorbent assay (ELISA). The intra‐assay variabilities were 20%

for HCP ELISA, 15% for the PicoGreen® assay, and 5% for the RP‐
HPLC quantification (Sauer et al., 2018).

2.4 | Online monitoring

The chromatographic workstation Äkta Pure 25 (GE Healthcare,

Uppsala, Sweden) comprises a multi‐wavelength UV/Vis detector

(UV214 nm, UV260 nm, and UV280 nm), a conductivity and a pH probe

and therefore contributes five variables/predictors in the subsequent

prediction models. The mid infrared spectrometer MATRIX‐FM
(Bruker; Billerica) based on ATR was chosen to measure FTIR

spectra from 3500 to 750 cm−1 with a resolution of 2 cm−1 (resulting

in 1427 channels/predictors). 16 ATR‐FTIR scans were performed

per spectrum and averaged within 4 s. For fluorescence detection,

the setup consisted of a laser‐induced xenon lamp (EQ‐99XFC LDLS;

Energetiq; Woburn), a fiber optic multiplexer (Avantes, Apel-

doorn, The Netherlands), a flow cell (FIAlab Instruments; Seattle,

USA), and the spectrometer (AvaSpec‐ULS‐TEC with 600 L/mm

grating; Avantes; Apeldoorn, The Netherlands). This fluorescence

sensor enabled excitation with seven different wavelengths (265 ±

10 nm, 280 ± 10 nm, 289 ± 10 nm, 300 ± 10 nm, 300 ± 40 nm, 340 ±

10 nm, 400 ± 10 nm). For each excitation wavelength, emission

spectra were detected over a range of 236–795 nm at a resolution of

0.3 nm and an integration time of 1 s per excitation wavelength

(giving 3215 channels/predictors after data reduction to the spectral

region of interest containing emission bands). The measurement of all

seven emission spectra took 16 s, including multiplexer switching

time. A differential RI detector was used (Optilab T‐rEX; Wyatt;

Santa Barbara), with a differential RI in the range of − 0.0047 to +

0.0047 RIU. The RI also traced an additional forward monitor and

LED monitor intensities (three predictors). The MALS detector

(miniDAWN TREOS; Wyatt; Santa Barbara) recorded light scattering

signals from three integrated detectors at angles of 43.6° (LS1), 90°

(LS2), and 136.4° (LS3) plus forward monitor intensity (four

predictors). All buffers applied were aqueous based, therefore water

was used as the common blank. All sensors were integrated in the

liquid stream after the chromatography column in the order of

increasing flow cell void volume.

2.5 | Data preprocessing and statistical modeling

On‐ and offline data were collected for 19 chromatographic runs, 13

of which were used for model building (training runs) and the

remaining six served as test runs. All runs were performed under

identical experimental conditions and are expected to differ only by

random, biological variation. The test runs originate from two
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different fermentation batches and therefore represent a typical field

of application of the derived models. While the test runs are

complete data sets, there are some missing sensor data in the

training set.

The major preprocessing operations consisted of two time‐
alignment steps:

(1) The correction of the time shift in the data between the online

sensors resulting from void volumes in the setup. The delay volume

between the first (UV) and last sensor (RI) was 1.39 ml and between

the last sensor and the outlet valve 0.37 ml.

(2) Offline data were available for 1 ml fractions (collection time:

60 s, 15 fractions per run), whereas the online signals were

measured on a time grid of typically one (UV, pH, conductivity,

MALS, RI) or a few seconds (fluorescence, ATR‐FTIR). Conse-
quently, the online signals were averaged over the time interval

of 60 s to achieve corresponding online/offline data pairs

required for modeling. The so composed training matrix X

consists of n 225= observations (one row per offline fraction for

13 runs, 15 fractions per run and triplicate offline measurements

for a single run) and up to p 4650≈ variables/predictors xj.

Preprocessing methods for fluorescence and ATR‐FTIR sensor

signals are described in the supplementary material. Structured

additive regression (STAR) was used as a statistical learning

technique (Fahrmeir, Kneib, & Lang, 2004). Based on a n p×

predictor matrix X with entries xij and a n−vector of responses y, a

response value yi is modeled with univariate linear (f j
lin) or smooth

terms (e.g., spline functions f j
s) and (eventually) bivariate interaction

terms f j
ia resulting in the following model:

y f x f x f x x,i
j

j ij
k

k
s

ik
j k

j k
ia

ij ik i
lin

,
, ε∑ ∑ ∑= ( ) + ( ) + ( ) + (1)

The sums extend over predictors (or pairs of predictors in the

interaction case) and iε is a random error term capturing the

unexplained variation in the data. Due to computational reasons,

besides linear and penalized regression (P‐) splines (Eilers & Marx,

1996) only product interactions between non‐spectroscopic pre-

dictors were used.

Due to the high number of predictors, an efficient variable

selection technique is required. The boosting algorithm builds the

model stepwise, where in each step a single linear, smooth, or

interaction term (in this context called a baselearner) is added to

the current model starting with a simple intercept model and

stopping after the addition of m (not necessarily different)

baselearners with m (the number of iterations) usually being

determined by a form of cross‐validation (Bühlmann & Hothorn,

2007; Bühlmann & Yu, 2003). Typically, between a few hundred up

to several thousand iterations are required. This model optimiza-

tion is performed on the training set using leave‐one‐run‐out
cross‐validation, that is a model is built on all observations except

those from a single run and applied to the left‐out observations.

This process is repeated until each run was left out once. As an

error measure, the root‐mean‐square error is chosen:

n
y yRMSE

1

i

n

i i
1

2∑= ( − ˆ )
=

(2)

where n is the number of observations, yi the measured and yiˆ the

predicted response. If the predictions yiˆ in equation (2) are obtained

in a CV framework on the training set, these errors are termed

RMSECV (or cross‐validation errors) and are used to select a single or

a few best model(s). Applying this/these model(s) to the test set gives

an independent estimate of the model performance by the so‐called
test error RMSETest. For descriptive purposes, in a few cases also the

mean relative deviation (MRD [%]) will be given

n
y y

y
MRD

100

i

n
i i

i1

∑=
− ˆ

=

(3)

All computations were performed using the software platform R

version 3.4.2 (R Core Team, ) using the packages mboost (Hofner,

Boccuto, & Göker, 2015; Hofner, Hothorn, Kneib, & Schmid, 2011;

Hothorn et al., 2015), signal and baseline.

3 | RESULTS

The model building workflow is depicted in Figure 1. Standard signals

from sensors of the chromatographic workstation (UV280 nm,

UV260 nm, UV214 nm, pH, conductivity) were complemented with

MALS, RI, fluorescence spectroscopy, and ATR‐FTIR (Figure 1a–e).

The clarified E.coli homogenate was loaded on a CM‐Sepharose Fast

Flow column, washed and eluted with a linear salt gradient. Overlays

of chromatograms are shown in Figure S1a,b .The eluate was

fractionated and analyzed (Figure 1f–h). The FGF‐2 concentration

in the eluate fractions ranged from 0.1 to 28 mg/ml (Figures 2S a,b),

HCP from 3 to 6579 ppm (Figure 3S a,b), and the dsDNA content

from 8 to 3773 ppm (Figures 4S a,b).

We define a basic model as one containing only standard signals

from the chromatographic workstation (UV280 nm, UV260 nm,

UV214 nm, pH, conductivity) as predictors, whereas in a medium

model additionally MALS and/or RI predictors are considered. Both

model types contain a small number of predictors (p 12≤ ) and are

simple to handle. On the other hand, an extensive model also

contains spectroscopic predictors (ATR‐FTIR and/or fluorescence).

By using a stepwise approach (basic→ medium→ extensive model)

the benefit of a sensor system for predicting a response can be

assessed by comparing the RMSECV values for models with or

without this sensor type. A more complex model (with respect to the

number of sensors and/or predictors) is considered as superior only if

a considerable reduction in RMSECV is achieved which compensates

the loss in robustness (due to missing data extensive models can only

be based on 7 instead of 13 runs as for the basic and medium models)

and the higher computational costs.

2002 | SAUER ET AL.



3.1 | Prediction of FGF‐2 quantity

Already the basic model enables an accurate prediction of the

product quantity with a RMSECV of 0.51 mg/ml (range in training

data: 0.1–28 mg/ml), which corresponds to a relative error of

about 6.4% if only fractions with a protein concentration above 1

mg/ml are considered. Further extension of the predictor set does

not improve the model performance: The medium model based on

the same training set gives the same RMSECV of 0.51 mg/ml

(Figure 2a). The extensive model (based on seven training runs)

results in an error of 0.32 mg/ml which is only a negligible

improvement to an RMSECV of 0.33 mg/ml obtained by the basic

model based on this smaller data set (Figure 2b), but at the cost of

a much more complex model. The performance of the basic model

on the test runs with a RMSETest of 0.85 mg/ml is satisfactory

(Figure 2c). This example demonstrates that a more complex model

(with respect to the number of predictors) does not necessarily

imply a more powerful model. This finding is in accordance with

the state‐of‐the‐art monitoring where estimation of product

concentration based on UV/Vis signals is well established. In fact,

it turns out that omitting pH and using just the four signals

UV280 nm, UV260 nm, UV214 nm and conductivity is sufficient to

obtain the same model quality. There are a number of alternative

models capable of predicting the protein quantity with slightly

higher errors, among them models based solely on the fluores-

cence or ATR‐FTIR sensor signals, which are neither contained in

the previously suggested model. The fact that a sensor is not

selected does not necessarily imply its uselessness for predicting

response. However, it is natural that a model with only 4

predictors (UV and conductivity) is preferred.

In our purification process, a low HCP content of <20 ppm was

reached in the fractions of the highest FGF‐2 concentration and up to

6500 ppm in later eluting fractions. Therefore, the unspecific

influence and contribution of HCP to the UV absorbance was not

significant. For purification protocols, where a higher content of co‐
eluting impurities will be present, models including MALS, RI, ATR‐
FTIR, or fluorescence signals are expected to be superior over the

basic model.

F IGURE 1 Real‐time monitoring of a chromatographic step using a commercial chromatographic workstation equipped with additional

online sensors. For each run, 15 fractions of the elution peak were collected and analyzed by offline assays for their FGF‐2 concentration and
impurity profile of HCP and dsDNA. Error bars in all figures represent ± one standard deviation of the mean of each fraction calculated from 13
training runs. The online signals (a) UV280 nm/UV260 nm/UV214 nm/conductivity/pH were provided by the chromatographic workstation, (b)

fluorescence sensor, (c) ATR‐FTIR, (d) MALS, and (e) RI; offline data included: (f) FGF‐2 quantity, (g) HCP content, and (h) dsDNA content.
ATR‐FTIR: attenuated total reflection Fourier‐transform infrared; dsDNA: double‐stranded DNA; HCP: host cell protein; FGF‐2: fibroblast
growth factor‐2; MALS: multi‐angle light scattering; RI: refractive index
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3.2 | Prediction of HCP content

Basic and medium models for HCP content show similar prediction

errors of 563 and 582 ppm, respectively, and hence no benefit of the

MALS and RI sensors is determined (Figure 3a). Accurate prediction

of HCP requires spectroscopic sensors, which becomes evident in

Figure 3b depicting a comparison of the performance of the basic and

extensive models on the smaller 7‐run training set. A RMSECV of

F IGURE 2 Performance of the prediction models for FGF‐2
quantity (mg/ml) based on different sensor combinations.
Comparison of RMSECV and RMSETest for (a) the basic and medium
models based on 13 training runs and (b) basic and extensive models

based on seven training runs. The basic model is the preferred one.
(c) Comparison of the measured (black) and predicted (gray) values
for 15 fractions in each of the six test runs (RMSETest = 0.85 mg/ml

for the basic model). FGF‐2: fibroblast growth factor 2; RMSE: root
mean square error

F IGURE 3 Performance of the prediction models for the HCP (ppm)

based on different sensor combinations. Comparison of RMSECV and
RMSETest for the (a) basic and medium models based on 13 training runs
and (b) basic and extensive models of several sensor combinations on

seven training runs. The final contains predictors of the UV, conductivity,
and fluorescence sensors. (c) Comparison of measured (black) and
predicted (gray) values for the six test runs (overall test error of 193
ppm). HCP: host cell protein; RMSE: root mean square error
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200 ppm is obtained by adding fluorescence predictors to the UV and

conductivity signals in the basic model, which is a 40% reduction in

the prediction error. On the other hand, ATR‐FTIR signals slightly

decrease the model performance to 347 ppm and result in a 10%

improvement to 178 ppm when added to the previous model already

containing fluorescence predictors. The marked increase in the

corresponding test error from 193 to 242 ppm might be an indication

of overfitting, hence we consider a model based on UV, the

conductivity and fluorescence signals as the final model. Omitting

any of these sensors results in models with at least 50% increased

error. The requirement of the extensive predictor set is obvious

because the target product is present in excess and UV properties of

the product and HCP are very similar and do not allow differentia-

tion. The HCP prediction profiles are in good agreement with the

offline measurements for the test runs (Figure 3c), even though the

HCP levels in test runs 4–6 are significantly lower than those in test

runs 1–3. The mean relative deviation (MRD) for HCP is 46% (with a

median of 33%).

3.3 | Prediction of dsDNA content

Figure 4b compares the basic, medium and extensive models for the

dsDNA content on the small 7‐run data set indicating decreasing

errors with increasing complexity of the models ‐ basic (510 ppm)→

medium (396 ppm) → extensive (339 ppm) (Figure 4b). When

comparing the two former models on the larger (13‐run) data set

(Figure 4a), similar RSMECV values of 321 and 341 ppm are obtained

(due to missing fluorescence sensor data the extensive model cannot

be evaluated on this data set). As these two models are based on

approximately twice as many observations as the extensive model

(13 vs. 7 runs), this might explain the lower test error of

approximately 260 ppm (vs. ≈ 360 ppm for the extensive model).

The choice between the more robust and parsimonious basic model

and a more complex extensive model, which outperforms the former

on the 7‐run data set, is somewhat subjective. However, Figure 4c

shows exemplarily the performance of the extensive model contain-

ing UV, fluorescence, and ATR‐FTIR signals on the test runs

(RMSETest = 359 ppm). There are some obvious deviations between

predicted and measured dsDNA values. Low dsDNA fractions are

sometimes predicted negatively, but the model captures the general

U‐shape sufficiently well for all test runs. Predictions of negative

concentrations could be avoided by modeling the log‐transformed

response (as was done for HCP), which results in strictly positive

values upon back transformation using the exponential function.

However, in the case of dsDNA, the overall errors (both cross‐
validated and test errors) were significantly lower for models based

on the original response data. The benefit of the sensors for dsDNA

quantification is lower than for protein‐based information.

3.4 | Process control — model‐based pooling

After integration into the chromatographic system, these models can

be used in process control as a PAT application and enable

predictions of the quality attributes in real‐time, which is the overall

goal of the online monitoring system. The methodology presented

can be used for online pooling by switching the collection valve, for

decisions if the process stream is out of specification or for a

F IGURE 4 Performance of the prediction models for the dsDNA

(ppm) based on different sensor combinations. Comparison of
RMSECV and RMSETest for the (a) basic and medium models based on
13 training runs and (b) basic, medium, and extensive models based

on seven training runs. The final model contains predictors of the UV,
fluorescence and ATR‐FTIR sensors. (c) Comparison of measured
(black) and predicted (gray) values for the six test runs (overall test

error of 359 ppm). ATR‐FTIR: attenuated total reflection
Fourier‐transform infrared; ds DNA: double stranded DNA; RMSE:
root mean square error
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fraction‐wise pooling after the process is completed resulting in a

reduction of holding times and offline analytics. As process control

application a fraction‐wise pooling based on the online signals is

demonstrated for the test runs. The results of the model‐based
pooling were compared to the conventional offline pooling based on

measured values regarding yield, impurity content and product

quantity. We assumed the following minimum pooling criteria: HCP

content < 35 ppm, dsDNA content <60 ppm and FGF‐2 concentration

>1 mg/ml. The pools should meet these criteria at least on average

and highest possible yield. Our model‐based pooling leads to the

collection of less fractions, but only with about 3% reduced product

yield. The pools calculated on the model‐based prediction compared

to offline analysis showed 33 ± 1 ppm and 32 ± 4 ppm for the HCP

content and 29 ± 17 ppm and 25 ± 8 ppm for the dsDNA,

respectively. The standard deviation for the HCP content was even

lower in the model‐based pooling, whereas dsDNA content showed

higher variation compared to the offline pooling (Table 1). Our

attempt has already proved a model‐based pooling of high accuracy,

as HCP, dsDNA content and yield were in the same range of the

offline values. Holding times and offline analytics can therefore be

tremendously reduced.

4 | DISCUSSION

Our study demonstrates that the selected analytical spectroscopic

methods provide a promising sensor combination for simultaneous

determination of several biopharmaceutical quality attributes. By

applying the final models (Table 2) on independent test runs, their

validity could be shown and estimates of the future performance

could be derived. The selection and combination of sensors in a

specific situation will depend on the product, the unit operation and

the stage of the downstream processing (capture, intermediate or

polishing) monitored. In the Supporting Information Material predic-

tion results for high molecular weight impurities are presented

(Figure S5). The rapid, non‐destructive spectroscopic methods enable

real‐time monitoring and control options for bioprocesses. Our

model‐based predictions can be computed within a few seconds and

are suitable for process intervention. Structured additive regression

in combination with boosting for variable selection proves to be a

high‐performance modeling technique, particularly if predictor/

response relations are nonlinear and the pool of potential predictors

is large. Nevertheless, there are still several challenges related to

real‐time monitoring and model‐based prediction. The main issue is

that the prediction accuracy is restricted by the measurement error

and variation of the offline assays. It is obvious that a model cannot

be more accurate than the offline assay applied for data generation

and can, therefore, be considered as a starting point for improve-

ments to become more precise. The models used for process

development need to be applied to highly varying training sets. The

training set(s) need to include larger variations (in the measured

data), enabling a large prediction range. In contrast, models used for

process control in manufacturing have to perform accurately within

the defined operation space to detect deviations/drifts and prevent

the process to be out of the specifications by control actions (e.g.,

defined pooling). The presented models were established for process

control as the training set used was generated based on typical

inherent process variations caused by preprocessing of the E. coli

homogenate of one fermentation batch and verified by test runs

processing additional fermentation batches. Real‐time monitoring

data of chromatographic runs from deliberately varied process

conditions were not included. As bioprocesses are comprised of

integrated unit operations wider ranges of validity have to be tested

and enlarged, including chromatographic training runs where process

parameters will be varied in a controlled way. Such input process

parameters influencing the output of quality attributes have to be

selected based on a risk assessment. Robustness could then be

improved within certain experimental variations to enhance the

operation space, for example, the different starting material, spiking

of impurities, buffer composition as predictions models are then

trained on these deviations. A challenge in our application for

prediction of product and impurity content during elution was the

gradient elution. The buffer varies with progressing elution. Certain

sensors are very sensitive to the electrolyte composition, for

example, ATR‐FTIR and RI. Except for the pH probe, all online

sensors have a fast response time and can be used with process

relevant flow rates. It is known that several salts and buffer

TABLE 1 Average pool composition and standard deviation of the
six test runs based on offline and model‐based pooling decisions.

FGF‐2
quantity
(mg /ml)

Pool

volume
(ml)

HCP
(ppm)

dsDNA
(ppm)

Yield
(%)

Offline

pooling

8.9 ± 0.5 11.0 ± 0.8 32 ± 4 25 ± 8 98.1 ± 2.5

Model‐
based

pooling

9.6 ± 0.4 9.3 ± 0.5 33 ± 1 29 ± 17 95.0 ± 5.2

Note. dsDNA: double‐stranded DNA; FGF‐2: fibroblast growth factor 2;

HCP: host cell protein.

TABLE 2 Summary (in terms of RMSECV, RMSETest) of the final
prediction models for all responses.

Response Final predictor set

Final model

RMSECV RMSETest

FGF‐2
(mg/ml)

Basic model (UV280 nm, UV260

nm, UV214 nm, conductivity)

0.51 0.85

HCP (ppm) Extensive model (UV280 nm,

UV260 nm, UV214 nm,

conductivity, Fluorescence)

200 193

DsDNA

(ppm)

Extensive model (UV280 nm,

UV260 nm, UV214 nm,

conductivity, Fluorescence,

ATR‐FTIR)

339 359

Note. Ds DNA: double stranded DNA; FGF‐2: fibroblast growth factor 2;

HCP: host cell protein; RMSE: root mean square error.
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components give signals in certain regions of the ATR‐FTIR spectra

(Capito, Skudas, Stanislawski, & Kolmar, 2013; Rathore et al., 2009).

Usually, the buffer background is subtracted before the spectrum is

deconvoluted. This is not possible with a linear gradient or suitable

for real‐time monitoring. We circumvented this problem by using

preprocessing operations such as spectra differences and normal-

ization. For spectroscopic data evaluation, statistical models are

especially useful to extract information as spectral overlaps of matrix

background and analytes are common (Esmonde‐White, Cuellar,

Uerpmann, Lenain, & Lewis, 2017). The models established in our

setup will be valid for minor process deviations as they have been

verified with the independent test runs. The process variability

represented in the training set defines the model applicability

(Esmonde‐White et al., 2017). Therefore transferability of the models

to other processes relies on measured data in the training set

(Craven, Shirsat, Whelan, & Glennon, 2013; Kroll, Hofer, Ulonska,

Kager, & Herwig, 2017; Pernot, 2017). The established methodology

allows simultaneous real‐time prediction of quantity, HCP, and

dsDNA. This attempt will be a basis for process control and real‐
time release. This real‐time monitoring approach requires the

cooperation of several disciplines: data science, biotechnology,

biophysics, and software engineering. More work like the prediction

of product potency is required to reach real‐time release require-

ments as end‐product testing cannot be replaced so far, but already

in‐process offline testing can be reduced and real‐time control can be

conducted for process consistency.

5 | CONCLUSION

Real‐time monitoring of a chromatographic capture step was

successfully implemented and provided a model‐based prediction

of HCP and dsDNA content and quantity of a biopharmaceutical.

STAR modeling can be applied for the prediction of (critical)

quality attributes in the eluate within seconds, despite the co‐
elution of many protein and non‐protein impurities. A small set of

online signals from the chromatographic workstation enabled the

adequate prediction of protein quantity. However, the prediction

of HCP and dsDNA content demanded more complex models

including spectroscopic sensors. The online sensors setup and the

predictive models are the basis for real‐time interventions, either

for process control (e.g., pooling) or real‐time release. In

chromatography, the production efficiency, yield, and product

quality can be improved and time‐consuming offline analyses are

reduced. Our findings pave the way towards PAT implementation

in biopharmaceutical manufacturing.
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