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“Strange metals” with resistivity depending linearly on temper-
ature T down to low T have been a long-standing puzzle in
condensed matter physics. Here, we consider a lattice model of
itinerant spin-1/2 fermions interacting via onsite Hubbard inter-
action and random infinite-ranged spin–spin interaction. We show
that the quantum critical point associated with the melting of
the spin-glass phase by charge fluctuations displays non-Fermi
liquid behavior, with local spin dynamics identical to that of the
Sachdev-Ye-Kitaev family of models. This extends the quantum
spin liquid dynamics previously established in the large-M limit of
SU(M) symmetric models to models with physical SU(2) spin-1/2
electrons. Remarkably, the quantum critical regime also features
a Planckian linear-T resistivity associated with a T-linear scatter-
ing rate and a frequency dependence of the electronic self-energy
consistent with the marginal Fermi liquid phenomenology.

Planckian metals | strange metals | marginal Fermi liquid |
Sachdev-Ye-Kitaev models | cuprate superconductors

T -linear resistivity is a central enigma of correlated quantum
matter. A universally observed feature of cuprate high Tc

superconductors (recent reviews are in refs. 1 and 2), it has been
reported in several other materials with correlated electrons and
has also been the subject of recent investigations in the context of
cold atomic gases in optical lattices (3, 4). For “bad metals” (5, 6)
corresponding to a resistivity larger than the Mott–Ioffe–Regel
(MIR) value (i.e., when the nominal mean-free path deduced
from the application of a simple Drude formula is smaller than
the lattice spacing), this phenomenon can be rationalized using
rather general theoretical considerations at high temperatures
(7–14). In contrast, a microscopic understanding remains rather
elusive for metals displaying T -linear resistivity smaller than the
MIR value and persisting down to low temperature. In pur-
suit of a theoretical understanding of this puzzle, the marginal
Fermi liquid (MFL) conjecture (15, 16) was put forward early
on. This approach considers fluctuations with 1/t scaling, where
t is time, and scattering electrons with a T -linear scattering rate
ImΣ(ω= 0,T )∝T . This phenomenology lacks a microscopic
fermionic model in which this is realized, however, although 1/t
scaling was found in dissipative quantum XY models recently
(17, 18). One strategy toward a microscopic theory has been to
investigate the role of quantum critical fluctuations leading to
non-Fermi liquid (non-FL) behavior (19, 20). However, field the-
oretic approaches for various itinerant fermion quantum critical
points (QCPs) typically predict a different power law (21–23),
and sign problem free quantum Monte Carlo found little tem-
perature dependence in the scattering rate (24). Hence to the
best of our knowledge, microscopic studies of QCP in mod-
els of itinerant spin-1/2 fermions have yet to find a T -linear
scattering rate.

Another elusive state whose pursuit was motivated by cuprate
phenomenology is the quantum spin liquid (QSL) (25). In efforts

to establish a QSL ground state in a microscopic model, Sachdev
and Ye (SY) (26) studied a spin model with quenched random
interactions on a fully connected lattice. Remarkably, the model
has an exactly solvable limit when one extends the spin symme-
try group to SU (M ) and takes the M →∞ limit. An exciting
finding of ref. 26 in this solvable limit was a QSL ground state
with slowly decaying local spin–spin correlations in the long-time
limit 〈S(t) ·S(0)〉∼ 1/t , where t is real time. Doping this model
in the spirit of a t-J model, ref. 27 found, again at M =∞, a
QCP separating the SY phase from a FL ground state. The quan-
tum critical regime was found to retain the QSL correlations of
the SY model and remarkably, to display bad metal behavior
with T -linear resistivity despite a single-particle scattering rate
behaving as

√
T (27). However, a numerical study of the SY

model with physical SU (2) spins found a spin glass (SG) ordered
ground state instead of the QSL ground state seen in the large-
M limit (28). The relevance of SY behavior to physical spin-1/2
electrons and to the T -linear resistivity problem in real materials
is therefore a major open question.

In this article, we provide a major step toward answering this
question in the positive by 1) considering a lattice model in
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which the SG phase can be quantum melted at the QCP and 2)
providing an explicit numerical solution of this model directly for
spin-1/2 SU (2) fermions. We find, remarkably, that the quan-
tum critical regime displays SY spin-liquid correlations and a
scattering rate linear in temperature, leading to T -linear resis-
tivity down to T = 0 at the QCP. Our numerical results are
consistent with the MFL phenomenology.

We consider a “t-U -J model” of itinerant spin-1/2 SU (2)
fermions with an onsite repulsive-U Hubbard interaction and
a random infinite-ranged spin–spin coupling, at half-filling.
Using the extended dynamical mean-field theory framework
(EDMFT) (29–32) and numerical methods detailed below, we
obtain the phase diagram displayed in Fig. 1. At t/U → 0, we
have a Mott insulating SG phase (Fig. 1), where the fermions
are localized onsite and the model reduces to the disordered
Heisenberg model. SG order is found below a freezing temper-
ature Tg ≈ 0.14J for t/U = 0 as previously established (28, 33)
(SI Appendix, sections A and B). As t/U is increased, the single-
occupancy constraint is relaxed, and the charge fluctuations lead
to quantum melting of SG order at a QCP (t/U )c ≈ 0.31 sep-
arating the SG from an FL phase at low-enough temperature
for (t/U )> (t/U )c (blue points in Fig. 1). Our key finding is a
quantum critical region emanating from the QCP with QSL spin
dynamics identical to that of the SY model (26) and T -linear
MFL scattering rate ImΣ(ω→ 0,T )∝T (red points in Fig. 1),
leading to T -linear resistivity as shown below.

More precisely, our model Hamiltonian reads

H =−
∑

〈ij〉,s=↑,↓

tij c
†
iscjs +U

∑
i

ni↑ni↓−
∑
i<j

Jij√
N
~Si · ~Sj . [1]

In this expression, Jij are quenched random Heisenberg inter-
actions (33) drawn from a Gaussian distribution with 〈Jij 〉= 0

and
〈
J 2
ij

〉
= J 2, N is the number of sites, and ~Si = 1

2
c†is~σss′cis′ ,

with ~σ the Pauli matrices. The model can be formulated either
on the infinite connectivity z→∞ Bethe lattice with tij = t/

√
z

or on a fully connected lattice with Gaussian distributed random

Fig. 1. Calculated phase diagram of the t-U-J model [1] at J/t = 0.5.
Solid black curve indicates a second-order phase transition to SG order.
Round markers represent parameters for which we have explicitly solved
the model. Markers have been colored red where we find a quantum
critical metal (QCM) with QSL spin dynamics and blue where we find an
FL. Background shading interpolates between the explicitly solved points.
Dashed black curve indicates the cross-over between QCM and FL regimes.
Gray markers indicate Mott insulating solutions. Black markers indicate SG
ordered solutions.

tij with 〈tij 〉= 0 and
〈
t 2
ij

〉
= t2/N , leading to identical equations

in the phase without magnetic ordering after replica averaging
(34). We restrict ourselves to the half-filling case µ=U /2 and
choose J = 0.5t . A study of the SU (M ) version of this model in
the large-M limit at half-filling is in ref. 35.

To investigate the phase diagram of model [1], both the onsite
repulsion in the charge channel and the random interaction in
the spin channel need to be tamed. This is achieved using the
EDMFT framework and the replica trick. In this framework, the
calculation of the local Green’s function and spin–spin correla-
tion function is mapped onto the solution of a local “quantum
impurity” problem subject to a self-consistency condition (26,
27, 29, 33, 34, 36–38). This mapping is exact in the infinite
connectivity z→∞ or infinite volume limit N →∞ of the two
formulations of the model discussed above.

The resulting local effective action, after disorder averaging
and making a replica diagonal ansatz, reads

Seff =−β
∑
n,s

c†s (iωn +µ−∆(iωn))cs + U

∫ β

0

dτn↑n↓

− J 2

2

∫ β

0

dτdτ ′ Q(τ − τ ′)~S(τ) · ~S(τ ′). [2]

In this expression, β= 1/T (kB = 1) is the inverse temperature,
τ ∈ [0,β] stands for imaginary time, and ωn = (2n + 1)π/β are
Matsubara frequencies. The dynamical mean-field (hybridization
function) ∆ and effective spin–spin retarded interaction Q are
subject to the following self-consistency conditions:

∆(τ) = t2G(τ), Q(τ − τ ′) =
1

3

〈
~S(τ) · ~S(τ ′)

〉
, [3]

in which the local Green’s function G(τ)≡−〈Tcs(τ)c†s (0)〉 and
the local spin–spin correlator

〈
~S(τ) · ~S(τ ′)

〉
are to be computed

with the local effective action [2]. Noting that iωn +µ−∆(iωn)
is the inverse effective one-body propagator of this action, a
fermionic self-energy can be defined from Dyson’s equation as

Σ(iωn) = iωn +µ−∆(iωn)−G−1(iωn). [4]

The local action [2] still presents a strongly correlated prob-
lem. SY (26) made further progress on the random Heisenberg
model by extending the spin symmetry to SU (M ) and taking
the M →∞ limit, which allows for an analytical calculation of
the spin–spin correlator of [2] and reduces the self-consistent
problem to a nonlinear integral equation. This M →∞ limit
was extended to itinerant fermions within the t-Jij model by
Parcollet and Georges (PG) (27), who obtained an FL regime
of the doped model at low T , and a quantum critical regime
associated with the proximity of the spin-liquid Mott insula-
tor characterized by a

√
ω,
√
T self-energy but remarkably,

bad metal behavior with linear resistivity. Recently, fermionic
versions of the random coupling problem, the so-called Sachdev-
Ye-Kitaev (SYK) models (39, 40), garnered much interest with
again a solvable limit for a large number of flavors M →∞.
Recent works (41–45) extended the mechanism of PG (27)
for linear-T resistivity to a lattice of SYK “quantum dots”
with hopping. Interestingly, when SYK dots are coupled to
another band of otherwise free and translationally invariant
(uniform hopping) fermions, not only does the T -linear resis-
tivity extend down to zero temperature, but the mechanism
switches to that driven by the MFL T -linear scattering rate
(46, 47).

For the physical limit of a single flavor of spin-1/2 fermions
that is of our interest, the self-consistency equations above
require computing two- and four-point correlators in the local
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model with SU (2) symmetry. We use an implementation of
Rubtsov’s continuous-time interaction–expansion quantum
Monte Carlo (CT-INT) (48) algorithm, which is based on the
TRIQS library (49). The algorithm works in imaginary time,
so we will discuss most of our results directly on the imaginary
axis without analytic continuation, except in the discussion of
transport. Our implementation determines the local spin–spin
correlator from the impurity three-point vertex function
rather than through an operator insertion measurement. This
algorithmic improvement allows for a drastic speedup of the
calculations.

Let us first consider the long-time spin dynamics. In Fig. 2,
we display the local spin–spin correlation function Q(τ) at a
fixed low temperature T/t = 0.01 for various t/U approaching
the QCP at (t/U )c ≈ 0.31 from the FL limit cutting the phase
diagram Fig. 1 along the horizontal axis. In Fig. 2, Inset, we
also display how Q(τ) varies upon raising temperatures for fixed
t/U = 0.357 making a vertical cut in the phase diagram slightly
away from the QCP. Since we work in the Matsubara formal-
ism, a zero-temperature long-time asymptotic form Q(t)∼ 1/tα

transforms into a scaling function Q(τ)∼ ((π/β)/ sin(πτ/β))α,
and the data should be examined away from τ = 0,β. Examining
correlators at τ =β/2 is an established method of analyzing long-
time, low-frequency behavior (50). However, as we are interested
in the scaling exponent, we examine the full τ dependence of
the spin–spin correlator in a large region around τ =β/2. Away
from the critical point, for t/U = 1.0, we obtain the FL behav-
ior at long-time Q(t)∼ 1/t2 (α= 2). The closer one gets to
the critical point, the longer it takes to reach this asymptotic
regime, reflecting the decrease of the FL coherence scale close
to the critical point. Once in the quantum critical regime, for
t/U = (t/U )c ≈ 0.31, the long-time spin dynamics crosses over
to Q(t)∼ 1/t (α= 1), which is the same power law as in the
SY M =∞ model. The QSL to FL cross-over is also visible in
the temperature cut shown in Fig. 2, Inset, where we observe the
cross-over from 1/t within the quantum critical fan above the FL
coherence temperature to 1/t2 at low temperatures. The phase
classification at each point in Fig. 1 follows the above criterion to
identify the FL regime and the QSL regime.

These results establish that our SU (2) t-U -J model has, in
the quantum critical regime, the same QSL local spin dynamics
(α= 1) as the SY model in the M =∞ limit. Renormalization
group (RG) methods should prove useful in establishing analyti-
cally our numerical findings for SU (2). For simplified versions of
the effective action [2] (e.g., involving only localized spins) (51),
RG methods have indeed established (51–61) that the Q(t)∼
1/t spin-liquid behavior is the only one consistent with the self-
consistency condition [3]. This was recently extended to the QCP
obtained by doping the U =∞ model (62).

Let us now consider the one-particle properties, encoded by
the self-energy Σ. In the FL regime for (t/U )c� (t/U ), the self-
energy has the low-energy expansion∗:

ImΣ(iωn ,T )≈
(

1− 1

Z

)
ωn +

ω2
n − (πT )2

E
+O(ω3

n). [5]

In the small hopping limit (t/U )� (t/U )c , Σ diverges at low
frequencies as 1/ωn , indicating a transition into an insulating
phase (SI Appendix, section C). We examine the cross-over from
the FL to the quantum critical regime in several ways. First,
a direct consequence of [5] is that the self-energy at the first
Matsubara frequency is linear in temperature with vanishing

*In a FL, the real-frequency dependence of the self-energy is well known to
be −ImΣ(ω)∼ (ω2 + (πT)2)/E. When the self-energy is analytically continued to
Matsubara frequencies, the imaginary part of self-energy gains a linear term in
frequency from the low-frequency expansion of ReΣ(ω), so that−ImΣ(iωn)∼ωn.

Fig. 2. Spin susceptibility log[Q(τ )/Q(β/2)] vs. τ/β for J/t = 0.5 and
T/t = 0.01, across several t/U. Gray curves show (1/ sinπτ/β)α with α= 1
(solid) and α= 2 (dashed). Color scheme follows the blue (FL) and red
(QSL) gradient of Fig. 1. (Inset) Spin susceptibility log[Q(τ )/Q(β/2)] vs.
− log[sin(πτ/β)], for J/t = 0.5 and t/U = 0.357, across a range of T , demon-
strating scaling behavior of Q(τ ) near τ = β/2. Gray curves show α= 1, 2
(solid and dashed, respectively).

quadratic corrections (63): ImΣ(iω0 = iπT ) = (1− 1/Z )πT +
O(T 3). Deviation from linearity in T at a temperature T ∗ sig-
nals the FL coherence scale and hence, the cross-over to the
quantum critical regime. This is illustrated in Fig. 3A: when t/U
approaches (t/U )c , the self-energy increases, and T ∗ (indicated
by arrows on the figure) decreases. More precisely, we extract the
quasiparticle residue Z and the coherence scale E by fitting the
functional form [5] to the low-energy data using weighted least
squares. Fig. 3B shows that Z and E vanish at the QCP. The sus-
ceptibility to SG order is given by (37, 38) χsg ∝χ2/(1− J 2χ2)
with χ the local susceptibility. As shown in Fig. 3, we find that
1− Jχ also vanishes close to the QCP, indicating the boundary
of the SG phase. Within our numerical accuracy, we cannot how-
ever exclude that 1− Jχ vanishes at a slightly larger value of t/U
than E , possibly indicating a small intervening region of metallic
SG (62).

In order to analyze the QCP, we attempt to scale the self-
energy for t/U close to (t/U )c , for our lowest temperature
T/t = 0.01, with an ansatz of the form

ImΣ(iωn)≈ ImΣ(0) + f
(ωn

ω∗

)
, [6]

which applies for ωn and ω∗ smaller than the high-energy cut-
off J but ωn/ω

∗ otherwise arbitrary. We determine numerically
ImΣ(0), ω∗, and the scaling function f by requesting that optimal
data collapse is obtained, using a minimization procedure. We
obtain a remarkable collapse of the data, presented in Fig. 4A,
with ω∗ presented in Fig. 3B.

For ω<ω∗, the ansatz [6] has to reproduce [5], which implies
Z ∝ω∗ (for ω∗→ 0), and E ∝ (ω∗)2; hence, E ∝Z 2, as illus-
trated in Fig. 3B, Inset. Note however that the ω∗ obtained from
the data collapse does not perfectly vanish close to the QCP,
which may be due to numerical uncertainty, or possibly to a
weakly first-order transition or to an intervening metallic SG
phase as mentioned above. In the quantum critical regime (i.e.,
for ω>ω∗), the self-energy is very well described by an MFL
form ImΣ(ωn)∝Σ(0) + aωn lnωn/b (Fig. 4A, Inset). However,
the low-temperature behavior obtained in the large-M limit (26)
(i.e.,

√
ωn) cannot be excluded given our data. Indeed, the CT-

INT algorithm is faced with a sign problem at low T , which
prevents us from reaching the very low-temperature regime
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Fig. 3. (A) Imaginary part of the self-energy at the first Matsubara point
−ImΣ(iω0 = iπT) vs. temperature T , for a range of t/U. Solid gray lines
stand for the FL prediction of ImΣ(iω0)∝ T from the lowest temperature.
Arrows indicate the FL coherence temperature T* for each value of t/U.
The solution at t/U = 1.0 remains in the FL regime over the entire range of
temperature considered. (B) Quasiparticle residue Z and coherence scale E
as obtained by fitting [5] to the self-energy data, ordering criterion for the
SG phase 1− Jχ, and the energy scale determined from scaling plot (ω*)2

vs. t/U. (Inset) log E vs. log Z2 illustrating a dependency E∝ Z2 close to the
QCP. Gray line with slope 1 is plotted to guide the eye.

required to settle this question. This conclusion holds both for
the scaling function f and for a direct analysis of the self-energy
at t/U = (t/U )c .

The value of the self-energy at zero-frequency ImΣ(0) is
of crucial importance for transport properties. In Fig. 4C, we
show ImΣ(0) extracted from the scaling analysis, for various
U close to the QCP. We find that ImΣ(0)∝T at low tem-
perature at the QCP. This is confirmed in Fig. 4D: ImΣ(iω)
obtained (by interpolation) for fixed imaginary frequency iω is
linear with temperature, with a slope weakly dependent on the
frequency.

Let us finally turn to the direct current (DC) resistivity in
the quantum critical region. The Kubo formula reduces to the
polarization bubble (vertex corrections vanish in this quantity in
Dynamical Mean Field Theory [DMFT]):

σDC =
2πe2

~

∫
dω

β

4 cosh2(βω/2)

∫
dε φ(ε)A(ε,ω)2. [7]

This expression only relies on vanishing vertex corrections, which
is valid in DMFT as well as in other contexts, such as large-N

SYK models.† In this expression, ε is the energy of a bare single-
particle state within the band, A(ε,ω) =−(1/π)ImGR(ε,ω) is
the energy-(momentum-)resolved spectral function, and φ(ε) is
the transport function φ(ε) =

∑
k

(∂εk/∂kx )2δ(ε− εk), which we

take to be the sum-rule preserving expression on the Bethe lat-
tice (e.g., ref. 10): φ(ε) =φ(0)[1− (ε/2t)2]3/2. To obtain σDC, we
perform an analytic continuation of the Monte Carlo data using
Padé approximants (64) to obtain the real-frequency self-energy
Σ(ω) = Σ′(ω) + iΣ

′′
(ω) and the spectral function: πA(ε,ω) =

−Σ
′′

(ω)/[(ω+µ− ε−Σ′(ω))2 + Σ
′′

(ω)2]. The resulting resis-
tivity ρDC = 1/σDC vs. temperature T is plotted in Fig. 4C,
clearly consistent with T -linear resistivity within numerical
accuracy.

The origin of this behavior can be directly related to the T -
linear behavior of the scattering rate Σ

′′
(0). Indeed, observing

that the latter is a much smaller scale than the bandwidth at low
T , the integral over ε can be approximated as∫

dε φ(ε)A(ε,ω)2 ∼ φ [ω+µ−Σ′(ω)]

2π|Σ′′(ω)| . [8]

Due to the Fermi factor only, |ω|.T is relevant for the fre-
quency integral, so that the right-hand side of this expression can
be replaced by its Fermi surface contribution ω= 0 (SI Appendix,
section D). Observing that µ−Σ′(0) = 0, we finally obtain

σDC =
e2φ(0)

~

∫
βdω

4 cosh2(βω/2)

1

|Σ′′(ω)| ∼
e2φ(0)

~T
. [9]

ρ0 = (~/e2)/(φ(0)/t) can be taken as the order of magnitude of
the MIR resistivity (10), so that we obtain at the QCP ρDC/ρ0∼
T/t down to the lowest value of T we could reach.

We would like to emphasize that both the mechanism and the
physical meaning of this T -linear resistivity are different from
the ones reported in ref. 27 and in the SYK M →∞ lattice
models (41–45). There, the scattering rate had a ∼

√
T tem-

perature dependence and dominated the band dispersion in
the incoherent metal regime T >T ∗, resulting in the resistiv-
ity being proportional by the square of the scattering rate and
larger than the MIR value. Here, in contrast, the scattering rate
is T linear (Planckian) and small at low T , and the band disper-
sion dominates, resulting in linear resistivity down to low T . The
present mechanism is also distinct from the generic bad metal
behavior of lattice models at very high T comparable with the
bandwidth (7, 8, 10, 11, 14): there, the scattering is constant,
and the T -linear behavior is associated with the T dependence
of thermodynamic quantities such as the kinetic energy ∼ 1/T ,
which play the role of an effective carrier number. We have
checked (SI Appendix, section E) that in contrast the kinetic
energy of our model is constant in the range of T of interest.

In this work, we considered the insulator to metal transition
and quantum melting by charge fluctuations of the SG ground
state of the SU (2) random-bond Heisenberg model. At the QCP
separating the SG from the FL, we find a non-FL state with long-
lived spin correlations 〈~S(t) · ~S(0)〉∼ 1/t [as in the large-M limit
of the SU (M ) SY model] and a T -linear resistivity arising from
a T -linear (Planckian) scattering rate ImΣ(ω= 0,T )∝T . In the
temperature range accessible in this work, this quantum criti-
cal regime is compatible with a marginal Fermi phenomenology
Σ(ω)∼−ω logω. The Planckian scattering rate and MFL behav-
ior are driven by local quantum critical fluctuations from the

†In a theory in which momentum dependence (in contrast to frequency dependence)
can be neglected in both the self-energy and the vertex, the vertex corrections to the
conductivity vanish because the current is odd in momentum.
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Fig. 4. (A) Imaginary part of self-energy with the scattering rate subtracted −(ImΣ(iωn)− ImΣ(0)) vs. the scaled frequency ω/ω* for various values of
t/U near the QCP at T/t = 0.01, demonstrating the collapse onto the universal scaling function f(ω/ω*) (gray solid curve). Color scheme follows B. (Inset)
Imaginary part of self-energy −ImΣ(iωn) vs. Matsubara frequencies ωn at the QCP t/U = 0.312 and lowest accessible temperature T/t = 0.01. Also shown
are low-frequency fits of self-energy to the MFL form c + aωn logωn/b (orange) and the SYK form c + a

√
ωn + bωn (green). (B) Scattering rate −ImΣ(0) vs.

temperature T/t at various values of t/U near the QCP. At the QCP (t/U = 0.312, green), the scattering rate is T linear (linear fit in gray), in contrast to the
quadratic behavior in the FL regime (blue). (C) Resistivity ρDC/ρ0 vs. temperature T/t at the QCP computed with the analytically continued Green’s function.
The unit of resistivity is the MIR value ρ0 = ~/e2φ(0), where φ is the transport function. (D) Imaginary part of self-energy at fixed, interpolated values of
Matsubara frequency −ImΣ(iω= fixed, T) vs. temperature T/t at the QCP t/U = 0.312, for various fixed values of frequency.

QCP. Fully establishing this behavior down to zero temperature
may require a new generation of quantum impurity solvers, such
as real-time diagrammatic Monte Carlo (65, 66). Another open
question is whether our results for the scattering rate also apply
to the doped case recently considered in ref. 62. Also, finding
the RG fixed point associated with our metal insulator transition
QCP remains an open question.

Data Availability. The data analyzed in this article are available at
the Figshare repository (67).
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