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Transcriptional response to hepatitis C virus
infection and interferon-alpha treatment in the
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Abstract

Hepatitis C virus (HCV) is widely used to investigate host–virus
interactions. Cellular responses to HCV infection have been exten-
sively studied in vitro. However, in human liver, interferon (IFN)-
stimulated gene expression can mask direct transcriptional
responses to infection. To better characterize the direct effects of
HCV infection in vivo, we analyze the transcriptomes of HCV-
infected patients lacking an activated endogenous IFN system. We
show that expression changes observed in these patients predomi-
nantly reflect immune cell infiltrates rather than cell-intrinsic path-
ways. We also investigate the transcriptomes of patients with
endogenous IFN activation, which paradoxically cannot eradicate
viral infection. We find that most IFN-stimulated genes are induced
by both recombinant IFN therapy and the endogenous IFN system,
but with lower induction levels in the latter, indicating that the
innate immune response in chronic hepatitis C is too weak to clear
the virus. We show that coding and non-coding transcripts have
different expression dynamics following IFN treatment. Several
microRNA primary transcripts, including that of miR-122, are signif-
icantly down-regulated in response to IFN treatment, suggesting a
new mechanism for IFN-induced expression fine-tuning.
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Introduction

Hepatitis C virus (HCV) infections are a major cause of liver-related

morbidity and mortality. An estimated 160 million persons are

chronically infected worldwide and are at risk to develop liver

cirrhosis and hepatocellular carcinoma (Lavanchy, 2011). Because

of their substantial impact on human health, HCV infections have

been extensively studied. HCV is now one of the most widely used

model systems to investigate host–virus interactions (Colpitts et al,

2015). HCV is transmitted through blood and infects and replicates

in hepatocytes. Due to the lack of a small animal model and of the

difficulties inherent to working with human samples, HCV–host cell

interactions have been mainly studied in a cell culture system,

specifically in Huh7-derived hepatoma cells infected with the JFH1

isolate of the virus (Lindenbach et al, 2005; Wakita et al, 2005;

Zhong et al, 2005; Walters et al, 2009; Colpitts et al, 2015). Experi-

ments in this in vitro system have identified a large number of host

factors that are required for viral replication or that have antiviral

properties (Colpitts et al, 2015). This experimental system also

brought important insights into the virus–host interactions that may

contribute to pathogenesis, for example, revealing cell cycle pertur-

bations in HCV-infected cells (Walters et al, 2009). However, few of

these findings have been evaluated in the human liver.

Studying HCV infections in vivo presents important challenges.

An intrinsic difficulty comes from the immune response, which is a

strong confounding factor in analyses of human liver biopsies. Gene

expression differences between HCV-infected and uninfected livers

are the result of direct HCV-induced cell-autonomous adaptive

responses in infected cells and of more global changes that result

from the immune response in the liver. The chronic phase of HCV

infections is characterized by a largely ineffective cellular immune

response combined with a highly variable interferon-lambda-

mediated innate immune response (Heim & Thimme, 2014). A

significant proportion of patients are characterized by an endoge-

nous activation of the interferon (IFN) system, in which hundreds

of classical IFN-stimulated genes (ISGs) are strongly induced (Heim

& Thimme, 2014). The presence of the endogenous IFN system acti-

vation can mask more subtle changes that occur as a direct conse-

quence of viral infection and replication in HCV-infected cells. The

confounding effect of the immune answer is aggravated by the fact

that the percentage of HCV-infected hepatocytes rarely exceeds 50%
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and often is below 20%, whereas ISG expression can be observed in

up to 95% of cells (Wieland et al, 2014). To better understand the

molecular consequences of HCV infection in vivo, it is thus impor-

tant to disentangle the direct cellular response to viral infections

from the transcriptional signature of the immune response, and in

particular of the endogenous IFN system activation.

The endogenous activity of the IFN system is also highly relevant

for therapeutic choice in chronic hepatitis C (CHC). Until the recent

introduction of direct antiviral drugs for the treatment of CHC,

recombinant pegylated IFN-alpha 2 (pegIFN-a) had been an essen-

tial component of the standard of care for CHC for over 25 years,

and it is still used in many parts of the world. Treatment with

pegIFN-a and ribavirin achieved cure rates between 30 and 80%,

depending on the viral genotype, pre-treatment patient history, and

stage of liver fibrosis (Heim, 2013). The success of the treatment is

also highly dependent on the genetic background of the patients.

Genome-wide association studies revealed significant associa-

tions between polymorphisms in the IFNL4 gene and response to

pegIFN-a/ribavirin (Bibert et al, 2013; Prokunina-Olsson et al,

2013; Terczynska-Dyla et al, 2014). The recently discovered IFNL4

protein has strong antiviral properties and stimulates ISG production

through binding to the IFN-lambda receptor (Hamming et al, 2013;

Prokunina-Olsson et al, 2013). The IFNL4 gene harbors several

genetic variants in human populations, including a frameshift muta-

tion that abrogates the production of the IFNL4 protein (Terczyn-

ska-Dyla et al, 2014). Paradoxically, the IFNL4-producing genotype

is associated with poor response to pegIFN-a/ribavirin, whereas

mutated alleles coding for an IFNL4 variant with strongly reduced

biological activity or even a complete loss of function are associated

with very good spontaneous and treatment-induced resolution rates

(Terczynska-Dyla et al, 2014). These observations are consistent

with earlier findings that patients who have a strong endogenous

induction of ISGs during the chronic phase of HCV infection do not

respond to therapeutically injected pegIFN-a (Chen et al, 2005;

Asselah et al, 2008; Sarasin-Filipowicz et al, 2008). It is presently

not known why the activation of the endogenous IFN system in the

liver in patients with the IFNL4-producing genotype is ineffective

against HCV, whereas pegIFN-a-induced ISG expression results in

viral eradication in so many patients.

In this study, we aimed to disentangle the direct and indirect

effects of HCV infection on gene expression patterns, by performing

a detailed characterization of the gene expression changes associ-

ated with HCV infection, endogenous IFN system activation, and

pegIFN-a treatment in the human liver. With this objective, we

generated and analyzed high-throughput transcriptome sequencing

profiles from liver biopsies derived from different categories of

HCV-infected and non-infected patients, prior to and during treat-

ment. First, to unveil HCV-induced cell-autonomous effects and to

separate them from IFN-induced changes in the transcriptome, we

selected liver biopsies from CHC patients without hepatic ISG induc-

tion, and compared them with uninfected control biopsies. Second,

we examined the transcriptomic changes associated with the

endogenous activation of the IFN system in a subset of CHC

patients. Finally, we analyzed the gene expression changes resulting

from pegIFN-a/ribavirin treatment, by comparing transcriptome

data from liver biopsies obtained before treatment and at different

time points during the first week of therapy. We found that the tran-

scriptional profiles associated with endogenous IFN activation and

with pegIFN-a/ribavirin treatment share a core set of IFN-stimulated

genes, although quantitative differences can be found in gene acti-

vation levels.

Throughout our study, we investigated the differential expression

patterns of both protein-coding genes and non-coding RNAs, aiming

to clarify the regulatory mechanisms underlying the transcriptomic

changes induced by HCV infection and pegIFN-a treatment. In

particular, we evaluated the roles of microRNAs (miRNAs) in the

regulation of the hepatocellular and immunological host response to

HCV infection. Interestingly, we found that the primary transcripts

of several miRNAs [including miR-122, which is required for HCV

replication (Jopling et al, 2005)] are down-regulated following

pegIFN-a treatment in the human liver. Consistently, we observe a

subtle up-regulation of the corresponding miRNA target genes, indi-

cating that the expression changes observed for the precursor tran-

scripts are reflected in the mature miRNA levels. Although these

findings warrant further validation, we propose that the down-regu-

lation of miRNA primary transcripts, in particular for miR-122, may

contribute to efficiency of HCV clearance by pegIFN-a/ribavirin
treatment.

Results

Expression patterns of interferon-stimulated genes define two
classes of CHC patients

Previous studies focusing on the response to interferon (IFN) treat-

ment in chronic hepatitis C (CHC) revealed the existence of a subset

of patients with high endogenous levels of interferon-stimulated

genes (ISGs; Sarasin-Filipowicz et al, 2008). This distinction

between two categories of CHC patients is highly relevant when

seeking to determine the molecular consequences of HCV infec-

tion in the human liver, which otherwise can be confounded by

the endogenous activation of the IFN system. We thus analyzed

the expression levels of ISGs in the examined CHC patients. To

do this, we mined a previously published dataset of ISGs (Dill

et al, 2014) and extracted a set of genes that are strongly up-regu-

lated in the human liver upon pegIFN-a treatment, requiring a

minimum expression fold change of 2 across all studied time

points. We thus obtained a set of 20 strong ISGs and we assessed

their expression levels in 28 liver biopsies (including control non-

infected samples, termed hereafter non-CHC) in our dataset

(Fig 1A, Dataset EV1).

A hierarchical clustering approach applied on centered and

scaled gene expression levels confirmed the existence of two main

groups of patients (Fig 1A). The first group, characterized by overall

low-ISG transcript levels, comprised 21 samples, including all six

non-CHC liver biopsies and 15 of the CHC samples. Importantly, no

clear distinction was found between the non-CHC and the CHC

samples in this group. The second group, consisting of seven CHC

samples, displayed higher expression levels across the 20 analyzed

ISGs (Fig 1A). Importantly, we note that this separation between

two groups of patients cannot be explained by the HCV genotype

carried by the CHC patients, as all four genotypes were found in the

seven patients with high-ISG levels (Fig 1A). Similarly, analysis of

the inflammation and fibrosis METAVIR scores (Bedossa & Poynard,

1996) and of the HCV viral load indicated that these factors cannot

ª 2017 The Authors EMBO Molecular Medicine Vol 9 | No 6 | 2017

Tujana Boldanova et al HCV infection and IFN-a in human liver EMBO Molecular Medicine

817



explain the patient grouping (Fig 1A and B). To verify that the clus-

tering of CHC samples was not dependent on the set of genes used

as markers, we performed a principal component analysis on 360

genes associated with Gene Ontology (GO) categories related to

response to interferon (Materials and Methods). This analysis con-

firmed that our sample sub-classification is robust with respect to

the choice of the ISG input dataset (Appendix Fig S1).

Gene expression changes induced by HCV in the absence of the
endogenous IFN system activation

We first aimed to investigate the gene expression changes induced

by HCV infection, without the confounding effect of the activation

of the endogenous IFN system, and without the confounding effects

of strong inflammation or fibrosis. We thus compared gene expres-

sion levels between six non-CHC and a subset of seven CHC low-

ISG samples with METAVIR scores ≤ A2F3, using the Wald test for

differential expression implemented in DESeq2 (Love et al, 2014)

and a sample randomization procedure to minimize outlier effects

(Materials and Methods). We identified 179 robustly differentially

expressed protein-coding genes, at a false discovery rate (FDR)

threshold of 10% and requiring an absolute fold change above 1.5

(Fig 2A, Dataset EV2). With the same parameters, we discovered 14

long non-coding RNAs (Materials and Methods) and 43 genes with

unclear classification (including pseudogenes and other classes of

non-coding RNAs; Materials and Methods) that were robustly dif-

ferentially expressed between the two sample categories (Fig 2A).

Most differentially expressed protein-coding genes were up-

regulated in the CHC low-ISG patients compared to controls, reach-

ing a maximum fold change of 8.

We next examined the protein-coding genes with the highest

absolute fold change between the two groups of samples (Fig 2B).

The strongest up-regulated genes included genes typically expressed

in immune system cells, including IGHG1, IGHG3, CD27, and CD5

(Fig 2B). Genes specifically associated with defense against viral

infections, such as OASL, were also strongly up-regulated (Fig 2B).

A gene ontology (GO) analysis for up-regulated protein-coding genes

revealed strong enrichment for biological processes related to

lymphocyte and leukocyte activation, including more specific terms

such as T-cell and B-cell activation (Dataset EV3). In contrast,

down-regulated genes were enriched for processes related to the

protein activation cascade, response to stimulus or complement acti-

vation, although these patterns were driven by only a few genes

(Dataset EV3).

We then analyzed the expression patterns of these genes in the

broad collection of human tissue transcriptomes of the GTEx consor-

tium (Mele et al, 2015). In agreement with the GO association with

immune system cells, up-regulated genes were most highly

expressed in the whole blood, in the lymphocytes, or in the spleen

(Fig 2C), while down-regulated genes generally reached maximum

expression in the liver or in adipose tissue (Fig 2C). Moreover, an

analysis of the transcription factor binding motifs over-represented

in the promoters of the genes up-regulated in low-ISG patients

revealed the presence of several transcription factors associated

with immune system cells, including members of the ETS family,

the E2A, NFKB, and SPIB transcription factors (Appendix Fig S2A).

No motif enrichment was found for genes down-regulated in CHC

low-ISG samples. Taken together, these results indicate that the

gene expression changes observed in this class of HCV-infected

patients largely result from the recruitment of immune system cells

into the liver.

To further explore the regulatory mechanisms driving differential

gene expression patterns, we examined the behavior of microRNA

(miRNA) target genes. Experiments in Huh7 hepatocellular carci-

noma cells recently showed that HCV functionally sequesters miR-

122, thus reducing its binding to endogenous target genes and lead-

ing to their up-regulation (Luna et al, 2015). To assess whether this

observation also holds in vivo, we analyzed the expression fold

change of predicted miRNA targets in CHC low-ISG samples

compared to non-CHC samples (Fig 2D). We analyzed a set of

microRNAs expressed in normal and/or HCV-infected human livers

(Hou et al, 2011) and a set of evolutionarily conserved miRNA
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Figure 1. Endogenous levels of interferon-stimulated levels in human
liver.

A Expression levels of 20 interferon-stimulated genes (ISGs) in 28 liver
biopsies from HCV-infected and non-HCV-infected patients, in the absence
of treatment. These ISGs were previously detected as consistently
stimulated by pegIFN-a across five time points between 4 and 144 h, in
chronic hepatitis C (CHC) patients (Dill et al, 2014). The heatmap represents
the Z-score (centered and scaled values) of log2-transformed RPKM (reads
per kilobase of exon per million mapped reads) expression levels,
normalized based on housekeeping genes (Materials and Methods). The
samples (columns) and genes (rows) were hierarchically clustered based on
pairwise Euclidean distances. The HCV genotype and the METAVIR scores
for inflammation (A0 to A3) and fibrosis (F0 to F4) are displayed for each
patient. Blank rectangles correspond to non-infected samples.

B Barplot of the HCV viral load for each patient, ordered as in (A). Blank
spaces correspond to non-infected samples.

EMBO Molecular Medicine Vol 9 | No 6 | 2017 ª 2017 The Authors

EMBO Molecular Medicine HCV infection and IFN-a in human liver Tujana Boldanova et al

818



125 up
54 down

−4 −2 0 2 4

0
2

4
6

8
10

12

log2 fold change

−l
og

10
 F

D
R

protein−codingA

4 up
10 down

−4 −2 0 2 4

0
2

4
6

8
10

12

log2 fold change

lncRNAs

new candidates
known lncRNAs

14 up
29 down

−4 −2 0 2 4

0
2

4
6

8
10

12

log2 fold change

other transcripts

B
98

6
C

51
a

C
17

3
C

36
9

C
25

0a
C

14
5

A
58

4
A

76
4

A
72

0
C

55
2

A
74

8
A

72
7

B
21

5

non−CHC CHC low ISG

FAM124B
ORM1

CHRDL2
DHODH

SERPINA3
BTBD16

FGG
STARD5
ACAT1

CLEC1B
IGLV2−23

IGLC2
IGLV3−19
PTPN7
CXCR3

SLC34A2
IGLC3

CCDC64B
CCR7
WNK2
EHF

IGKV3−20
CD5

IGHV4−39
UBD

CCL19
SGPP2
KCNJ16
IGHG3
CD27
CD79A
OASL
MMP9
TRIM31
MUC6
MS4A1
IGHG1

B
top differentially expressed genes

0
20

40
60

80
10

0

tis
su

e 
w

. m
ax

 e
xp

re
ss

io
n

(%
 g

en
es

)
all up down

11806 120 50N =

Expression pattern (GTex)C

liver
spleen
lymphocytes
whole blood
brain
adipose
other

no
 m

iR

4377
an

y 
m

iR
7368

m
iR

−1
22

171

m
iR

−1
92

/2
15

142

le
t−

7a
−i

/m
iR

−9
8

852

m
iR

−1
99

ab
−3

p

366N =

−0
.5

0.
0

0.
5

lo
g2

 fo
ld

 c
ha

ng
e

conserved miRNA targets (TargetScan)D

−1.7 0.7 3.2

Z−score log2 RPKM

Differential expression, CHC low-ISG vs. non−CHC patients

Figure 2. Differential expression between non-CHC and CHC low-ISG patients.

A Volcano plot for the differential expression analysis between non-CHC patients and CHC patients with low levels of endogenous ISG activation (CHC low ISG). The
x-axis represents the log2-fold expression change in CHC low-ISG patients compared to non-CHC patients. The y-axis represents the false discovery rate (with a
�log10 transformation) of the differential expression test. Protein-coding genes, candidate long non-coding RNAs (lncRNAs), and other gene categories (including
pseudogenes and transcripts with unclear coding potential; Materials and Methods) are represented separately. Genes with false discovery rate (FDR) < 10% and
with fold expression change ≥ 1.5 are shown.

B Heatmap of the expression patterns of the top differentially expressed protein-coding genes. We set a fold change threshold of 3 for up-regulated genes and of 0.5 for
down-regulated genes. The heatmap represents the Z-score of the log2-transformed RPKM (reads per kilobase of exon per million mapped reads) gene expression
levels, normalized based on housekeeping genes (Materials and Methods).

C Barplots representing the expression patterns of three categories of genes (all expressed genes, genes up-regulated in CHC low-ISG samples, and genes down-
regulated in CHC low-ISG samples compared to control non-CHC samples), in the GTEx tissue transcriptome collection. For each expressed gene, we scored the tissue
or cell type in which its maximum expression level was reached (Materials and Methods). The height of the rectangles represents the percentage of genes that
reaches maximum expression in each of the tissues.

D Boxplots of the intensity of the expression change (log2-fold) between non-CHC patients and CHC low-ISG patients, for different categories of protein-coding genes
defined based on the miRNAs that are predicted to target them. Only miRNAs with high expression in normal or HCV-infected liver were analyzed (Hou et al, 2011).
Evolutionarily conserved miRNA target predictions were extracted from TargetScan v7.1 (Agarwal et al, 2015; Materials and Methods). From left to right: genes that
are not conserved targets of any expressed miRNA; genes that are targeted by at least one expressed miRNA; genes that are targeted by miR-122-5p, miR-192/215,
let7a-i/miR-98, and miR-199a/199b, respectively. Horizontal bars represent median values. Boxes represent the inter-quartile (25–75%) ranges of the distribution.
Boxplot whiskers extend to the most extreme data point found within 1.5 times the inter-quartile distance from the box. Outlier points are not shown.
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targets predicted computationally with TargetScan (Agarwal et al,

2015; Dataset EV4; Materials and Methods). We found that miR-122

targets had significantly higher fold changes (median 0.045) than

targets of other expressed miRNAs (median �0.025, Wilcoxon rank

sum test, P-value 1e-3) and than genes not targeted by this set of

liver miRNAs (median �0.15, Wilcoxon rank sum test, P-value

< 1e-10; Fig 2D). These observations are compatible with the

reported subtle de-repression of miR-122 target genes in the pres-

ence of HCV infection (Luna et al, 2015). However, we also found

that miR-122 targets have comparable expression fold changes with

the targets of other highly expressed miRNAs, such as miR-192,

let-7, or miR-199 (Fig 2D). Similar conclusions were reached when

analyzing a set of miRNA targets identified in Huh7 cells using high-

throughput sequencing of RNA isolated by crosslinking immunopre-

cipitation (Luna et al, 2015; Appendix Fig S2B, Dataset EV4). Over-

all, the fold expression change was positively correlated with the

number of distinct miRNA families that are predicted to target each

gene (Appendix Fig S2C). This observation cannot be simply

explained by the previously reported sequestration of miR-122 by

HCV, but may reflect the expression or functional characteristics of

genes targeted by multiple miRNA families. Our results thus reveal

a potential confounding factor in the up-regulation of miR-122

targets following HCV infection.

Gene expression patterns associated with endogenous IFN
system activation

We next investigated the gene expression changes driven by the

combined effect of HCV infection and endogenous IFN system

activation. To do this, we contrasted gene expression levels between

non-CHC and CHC high-ISG samples (Materials and Methods).

Using the same parameters as above, we observed numerous dif-

ferentially expressed genes in the high-ISG patients, including 503

protein-coding genes, 80 candidate long non-coding RNAs, and 125

other genes (Fig 3A, Dataset EV2). The observed expression fold

changes and significance levels spanned a wider range than for the

comparison between non-CHC and CHC low-ISG patients (Figs 2A

and 3A). As expected, the most highly up-regulated protein-coding

genes were known ISGs, including LAMP3, IFI27, and RSAD2

(Fig 3B). The up-regulated long non-coding RNAs included a previ-

ously described interferon-inducible transcript, NRIR (Kambara

et al, 2014; Fig 3C).

Gene ontology analyses showed a strong enrichment for genes

involved in immune system processes, in particular response to

virus and type I interferon signaling pathway (Dataset EV3).

Interestingly, the GO categories found to be enriched among the

genes up-regulated in CHC low-ISG patients were generally also

over-represented in this second comparison, although the enrich-

ment was much weaker than the one observed for the interferon

pathway (Dataset EV3). In agreement with these observations, we

found that interferon-stimulated response element (ISRE) motifs

and IFN-regulatory factor (IRF) motifs were strongly over-

represented in the promoters of the genes up-regulated in CHC

high-ISG samples (Appendix Fig S3). However, we also observed a

significant enrichment for NFKB and ERG motifs (Appendix Fig

S3), indicating the presence of immune cells in these high-ISG

samples. The promoters of down-regulated genes were enriched in

binding sites for two liver-specific transcription factors, HNF4a

and HNF1, indicating that most down-regulated genes are hepato-

cyte-specific genes (Appendix Fig S3). As in the comparison

between non-CHC and CHC low-ISG samples (see above), we

found no evidence for a specific de-repression of miR-122 target

genes (Fig 3D).

Overall, genes differentially expressed between CHC low-ISG and

non-CHC samples were recovered in the comparison between CHC

high-ISG and non-CHC samples (Fig 4). Specifically, we found that

114 (64%) of the 179 protein-coding genes that differed (up or

down) between CHC low-ISG and non-CHC samples were also dif-

ferentially expressed between CHC high-ISG and non-CHC samples

(Fig 4A). The remaining genes that were only differentially

expressed in low ISG compared to non-CHC patients generally

displayed consistent fold changes in both comparisons, but did

not pass the FDR threshold when comparing CHC high-ISG and

non-CHC samples (Fig 4B–D). In contrast, most of the genes that

were uniquely up-regulated or down-regulated in CHC high-ISG

patients compared to controls had only weak expression changes

in the comparison between CHC low-ISG and control samples

(Fig 4B, E and F). These observations are consistent with the

presence of a unique expression signature associated with the

group of high-ISG patients (Fig 1A). To further define this expres-

sion signature, we directly compared the two groups of CHC

samples (Appendix Fig S4, Dataset EV2). We found numerous

genes with significant expression changes, including 176 protein-

coding genes and 21 lncRNA candidates (Appendix Fig S4). As

expected, we observed a strong enrichment for biological

processes associated with defense response to virus and type I

interferon signaling pathway among the genes up-regulated in

high ISG (Dataset EV3).

Gene expression patterns associated with HCV infection in vivo
and in vitro

We next sought to compare the transcriptional responses following

HCV infection in vivo and in vitro. A previous genome-wide analysis

of differential gene expression in HCV-infected Huh-7.5 cells

revealed that numerous genes involved in cell death, cell cycle, and

cell growth/proliferation are mis-regulated following viral infection

(Walters et al, 2009). Although our unsupervised gene ontology

analyses did not reveal enrichments for cell cycle-associated cate-

gories among the genes differentially expressed in CHC samples

(Dataset EV3), we found significant intersections between the sets

of genes that are differentially expressed following HCV infection

in vivo and in vitro. Specifically, out of 698 protein-coding genes dif-

ferentially regulated in HCV-infected Huh-7.5 cells (Materials and

Methods), we found that 25 (3.6%) were differentially expressed

between control and CHC low-ISG samples and 48 (6.9%) were dif-

ferentially expressed between control and CHC high-ISG samples

(FDR < 0.1, Dataset EV5). The extent of the overlap was signifi-

cantly higher than expected by chance given the total number of dif-

ferentially expressed genes, in both cases (chi-square test, P-value

< 1e-9). The common differentially regulated genes included several

genes associated with cell death and cell cycle, such as UBD,

TNFRSF9, BIRC3, JUN, and FOS (Dataset EV5). Differentially

expressed genes shared between HCV-infected Huh-7.5 cells and

high-ISG liver biopsies include classical ISGs, such as MX1, ISG15,

and IFIT1 (Dataset EV5), as expected given the previously reported
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Figure 3. Differential expression between non-CHC and CHC high-ISG patients.

A Volcano plot for the differential expression analysis between non-CHC patients and CHC patients with high levels of endogenous ISG activation (CHC high ISG). The
x-axis represents the log2-fold expression change in CHC high-ISG compared to non-CHC patients. The y-axis represents the false discovery rate (with a �log10
transformation) of the differential expression test. Protein-coding genes, candidate long non-coding RNAs (lncRNAs), and other gene categories (including
pseudogenes and transcripts with unclear coding potential; Materials and Methods) are represented separately. Only genes with false discovery rate (FDR) < 10% and
with fold expression change > 1.5 are shown.

B Heatmap of the expression patterns of the top differentially expressed genes between non-CHC and CHC high-ISG patients. To select the top differentially expressed
genes, we set a fold change threshold of 5 for up-regulated genes and of 1/3 for down-regulated genes. The heatmap represents the Z-score of the log2-transformed
RPKM (reads per kilobase of exon per million mapped reads) gene expression levels, normalized based on housekeeping genes (Materials and Methods).

C Example of a lncRNA (NRIR; Kambara et al, 2014) significantly up-regulated in high-ISG patients. The boxplots represent the distribution of expression levels
(log2-transformed RPKM) for the three categories of samples. Each point represents an individual sample. Horizontal bars represent median values. Boxes represent
the inter-quartile (25–75%) ranges of the distribution. Boxplot whiskers extend to the most extreme data point found within 1.5 times the inter-quartile distance from
the box.

D Boxplots of the intensity of the expression change (log2-fold) between non-CHC patients and CHC high-ISG patients, for different categories of protein-coding
genes defined based on the miRNAs that are predicted to target them. Only miRNAs with high expression in normal or HCV-infected liver were analyzed (Hou
et al, 2011). Evolutionarily conserved miRNA target predictions were extracted from TargetScan v7.1 (Agarwal et al, 2015; Materials and Methods). From left to
right: genes that are not conserved targets of any expressed miRNA; genes that are targeted by at least one expressed miRNA; genes that are targeted by miR-
122-5p, miR-192/215, let7a-i/miR-98, and miR-199a/199b, respectively. Horizontal bars represent median values. Boxes represent the inter-quartile (25–75%)
ranges of the distribution. Boxplot whiskers extend to the most extreme data point found within 1.5 times the inter-quartile distance from the box. Outlier
points are not shown.
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induction of interferon-stimulated genes in these cells (Walters et al,

2009).

Gene expression changes induced by pegIFN-a treatment

We next analyzed the gene expression changes induced by

pegIFN-a/ribavirin treatment in the human liver, by comparing

the expression profiles of control and post-treatment biopsies at

five different time points ranging from 4 to 144 h post-treatment

(Materials and Methods). We considered genes to be differentially

expressed if they displayed an absolute fold change of at least 2,

at a FDR rate of 5% and an RPKM value above 1 in at least one

of the compared samples (Materials and Methods). With these

stringent criteria, we observed numerous expression changes at
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Figure 4. Differential expression between CHC and non-CHC patients.

A Venn diagram depicting the intersection between protein-coding genes that are differentially expressed (FDR < 10%, minimum absolute fold change 1.5) between
non-CHC patients, CHC patients with low endogenous ISG levels (CHC low ISG) and CHC patients with high endogenous ISG levels (CHC high ISG). Up-regulated
and down-regulated genes are analyzed separately.

B Comparison of the log2-fold expression change for the two differential expression analyses: x-axis, CHC low-ISG compared with non-CHC patients; y-axis, CHC
high-ISG compared with non-CHC patients. Blue: genes significant in both comparisons; red: genes significant only for high-ISG patients; orange: genes significant
only for low-ISG patients. Only protein-coding genes are displayed.

C, D Similar to (B) for genes that are down-regulated (C) or up-regulated (D) only in the comparison between non-CHC and CHC low-ISG patients. The vertical dotted
lines represent the absolute fold change threshold of 1.5 (0.58 in log2 scale). The numbers depicted at the top of the plot represent the number of genes in each
expression fold change interval (below 1/1.5, between 1/1.5 and 1, between 1 and 1.5, and above 1.5). x-Axis: log2-fold expression change in high-ISG patients
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E, F Similar to (B) for genes that are down-regulated (E) or up-regulated (F) only in the comparison between non-CHC and CHC high-ISG patients. The vertical dotted
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all time points, in particular for protein-coding genes, but also

affecting other categories of transcripts (Fig 5, Dataset EV6). As

previously reported (Dill et al, 2014), most differentially expressed

protein-coding genes were observed at 16 h post-treatment, followed

by the 4-h time point (Fig 5A). We observed a different temporal

dynamics for differentially expressed non-coding transcripts, for

which the number of detected up-regulated genes was highest at the

4-h time point and decreased afterward (Fig 5A). Strikingly, for

all gene categories the vast majority of down-regulated genes

were observed 16 h after treatment, with only few detected cases

elsewhere (Fig 5A).

At all time points, we found strong enrichments in GO categories

related to the type I interferon signaling and response to virus path-

ways among the genes that were up-regulated following pegIFN-a
treatment (Dataset EV7), as expected. Consistently, we observed

that interferon-stimulated response element (ISRE) motifs and IFN-

regulatory factor (IRF) motifs were strongly enriched in the promot-

ers of up-regulated protein-coding genes, at all time points

(Appendix Fig S5A–E). For down-regulated genes, we found signifi-

cant (FDR < 0.1) enrichments in functional categories related to

small-molecule biosynthetic process and lipid metabolism, but only

for the 16-h time point (Dataset EV7).

We next compared the sets of differentially expressed genes

observed for the different time points. We observed that almost

60% of the up-regulated protein-coding genes passed our differential

expression thresholds at a single time point (Fig 5B). For up-regu-

lated lncRNAs and other non-coding genes, the time point-specificity

was even stronger (Fig 5B). However, we were able to identify a

core set of 59 genes that are up-regulated at four or more time

points, including 30 genes up-regulated at all analyzed time points

(Dataset EV8). Interestingly, three lncRNAs were found to be signifi-

cantly up-regulated at all time points (Dataset EV8, Appendix Fig

S5F–H). However, two of these lncRNAs [including NRIR, a lncRNA

previously proposed to act as a negative regulator of interferon

response (Kambara et al, 2014)] are found downstream of inter-

feron-stimulated protein-coding genes (CMPK2 and BST2), and our

RNA-seq data suggest that their induction may be at least in part

due to leaky transcription from the upstream gene (Appendix Fig

S5F and G). No such neighborhood effects were observed for the

third lncRNA, which is found upstream of RHOT1 (Appendix Fig

S5H). In contrast to the tendency of up-regulated genes to be shared

across time points, down-regulated genes were time point-specific in

more than 80% of cases, for all three categories of genes (Fig 5B),

and only two genes (including CD1C and a newly annotated long
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Figure 5. Transcriptional response to IFN-a treatment.

A Numbers of differentially expressed genes following pegIFN-a/ribavirin treatment in liver biopsies of CHC patients. Gene expression changes were tested between
paired biopsies from the same patients, before and after treatment. Protein-coding genes, lncRNAs, and other gene categories (including pseudogenes, and transcripts
with unclear coding potential) are displayed separately. We retained genes with a false discovery rate (FDR) < 0.05, a minimum absolute fold change of 2 and
expression level (RPKM) > 1 in at least one sample.

B Barplot representing the proportion of genes that are up-regulated (left) or down-regulated (right) upon pegIFN-a treatment at 1, 2, 3, 4, or 5 time points. Different
categories of genes are color-coded.
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non-coding RNA) were down-regulated at four time points (Dataset

EV8).

Comparison between pegIFN-a treatment and endogenous IFN
system activation

The endogenous induction of hundreds of ISGs in patients with

CHC has little impact on viral replication, whereas treatment of

patients with recombinant pegIFN-a achieves high cure rates

specifically in patients without an activation of the endogenous

IFN system in the liver (Heim, 2013; Heim & Thimme, 2014). To

investigate the molecular differences between these two modes of

IFN system activation, we compared the transcriptional response

to pegIFN-a treatment with the one elicited by the endogenous IFN

system activation. We first extracted the genes that are signifi-

cantly up- or down-regulated following pegIFN-a treatment, at

each time point, and analyzed their expression differences between

CHC low-ISG and CHC high-ISG patients (Fig 6, Dataset EV9). We

found that the vast majority of genes that are up-regulated upon

pegIFN-a treatment are also induced in high-ISG patients (Fig 6,

Dataset EV9). In numerous cases, these differences were also

statistically significant (FDR < 10%) in the comparison between

low-ISG and high-ISG patients (Fig 6). However, the level of gene

induction was significantly stronger in the pegIFN-a treatment

analysis (Fig 6A), as were the absolute levels of gene expression

in the corresponding samples (Fig 6C). In other words, the ISG

expression levels reached after pegIFN-a/ribavirin treatment are

higher than the ones observed in patients with high endogenous

ISG levels. In contrast, genes that were down-regulated upon

pegIFN-a treatment were only rarely down-regulated in high ISG

compared to low-ISG patients (Fig 6B and D). Similar conclusions

were reached when extracting genes that are significantly differen-

tially expressed between low-ISG and high-ISG patients and

analyzing their expression patterns following pegIFN-a treatment

(Appendix Fig S6). We analyzed the global similarity in expression

patterns between high-ISG samples and post-treatment samples,

using a principal component analysis and a hierarchical clustering

analysis applied to pegIFN-a-affected genes (Appendix Fig S7).

Both clustering methods indicated that high-ISG samples are glob-

ally similar in expression patterns to the later time points in the

pegIFN-a treatment (48, 96 and 144 h). Taken together, these

observations suggest that the endogenous IFN system activation

and its external stimulation with pegIFN-a/ribavirin treatment

have qualitatively similar effects on the gene expression patterns

on the human liver transcriptomes. However, numerous quantita-

tive differences in the two transcriptional responses can be

observed, with stronger ISG induction levels following pegIFN-a/
ribavirin treatment.

To further investigate the inability of the endogenous IFN system

activation to cure HCV infections, we analyzed the expression

patterns of a set of genes proposed to act as antiviral effectors,

selected based on their capacity to inhibit HCV replication in human

cell lines (Schoggins et al, 2011; Metz et al, 2012, 2013; Materials

and Methods). We analyzed the expression of these genes in our

samples (Fig 7, Dataset EV10). We found that their expression

levels in pegIFN-a/ribavirin-treated samples and in high-ISG

samples were strongly positively correlated (Fig 7A). However, a

number of these candidate ISGs were indeed significantly more

stimulated by pegIFN-a than by endogenous IFNs in high-ISG

patients (Fig 7A, Dataset EV10). In particular, six genes (IRF1, IRF2,

IRF7, IRF9, OASL, IFITM3) that were reported as antiviral effectors

in at least two publications (Schoggins et al, 2011; Metz et al, 2013)

did not differ significantly between low-ISG and high-ISG samples.

However, with the exception of IRF2, all of them appeared to be

induced in high-ISG patients compared to controls or low-ISG

patients, albeit at weak levels. Thus, we could not identify ISGs that

are exclusively induced by pegIFN-a and that could be bona fide

anti-HCV effector genes.

We extended this analysis to include genes not annotated as

antiviral effectors, by extracting all protein-coding genes that were

strongly differentially expressed following pegIFN-a/ribavirin treat-

ment (minimum absolute fold change 2, FDR < 0.01, for at least two

time points), but which did not differ significantly between low-ISG

and high-ISG samples (FDR ≥ 0.1). We found 100 such protein-

coding genes, including 85 up-regulated and 15 down-regulated

genes (Appendix Fig S8). Note that no genes displayed statistically

significant opposite patterns (e.g., up-regulated by pegIFN-a treat-

ment, but down-regulated in high ISG compared to low-ISG

samples). This dataset included some genes with known antiviral

functions, such as APOBEC3A and OASL, which is potentially rele-

vant for the inability of patients with high endogenous ISG levels

to spontaneously clear the viral infection. Overall, a tendency for

up-regulation or down-regulation for these genes was also

observed in high-ISG samples compared to low-ISG samples, but

at lower levels and with more variability among individuals

(Appendix Fig S8).

Down-regulated microRNA host genes following
pegIFN-a treatment

Our analysis of the dynamics of differentially expressed genes

following pegIFN-a treatment revealed that numerous non-coding

transcripts are down-regulated, in particular at the 16-h time point

(Fig 5A). We noticed that these down-regulated genes include

several miRNA “host” genes (defined as non-coding transcripts that

have sense exonic overlap with annotated miRNAs; Materials and

Methods). In total, 11 miRNA host genes were significantly differen-

tially expressed (FDR < 0.05) for at least one time point, and all

instances were down-regulated rather than up-regulated (Fig 8A).

Strikingly, these down-regulated precursors include the “host” gene

of miR-122, which enhances HCV replication in human hepatocytes

(Jopling et al, 2006; Fig 8A and B). The estimated decrease in

expression levels is likely not due to differential processing of the

mature miRNA out of the primary transcript, as consistent dif-

ferences between baseline and post-treatment biopsies were

observed along the entire gene length (Fig 8B, Appendix Fig S9).

Among the other miRNAs whose precursor genes are down-regu-

lated upon pegIFN-a treatment, miR-146a is a striking example, with

significant down-regulation (at 10% FDR) for three out of the five

analyzed time points (Fig 8A).

Our RNA-seq dataset does not allow us to determine whether the

observed down-regulation of miRNA primary genes affects the pool

of mature miRNAs in the cells. We thus assessed the expression

levels of mature miRNAs using qPCR, for three miRNAs whose

primary transcripts were down-regulated upon pegIFN-a treatment:

miR-122-5p, miR-146a-5p, and miR-331-3p (Materials and Methods).
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For all three miRNAs, this data indicates that the mature miRNAs

are indeed down-regulated after pegIFN-a treatment at the 16-h time

point (also at the 96-h time point for miR-122-5p and miR-146a-5p;

Appendix Fig S10, Dataset EV12). To further test this hypothesis

(albeit indirectly), we reasoned that a decrease in mature miRNA

expression levels should positively affect the expression of their

target genes. We thus analyzed the behavior of predicted miRNA

target genes in response to pegIFN-a/ribavirin treatment, at the 16-h
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Figure 6. Common transcriptional signatures of IFN-a treatment and endogenous IFN activity.

A, B Differential expression patterns of the genes that are significantly up-regulated (A) or down-regulated (B) (FDR < 0.05 and minimum absolute fold change 2)
following pegIFN-a/ribavirin treatment at different time points, in the comparison between CHC low-ISG and CHC high-ISG patients. x-Axis: log2-fold expression
change in pegIFN-a-treated compared to control biopsies. y-Axis: log2-fold expression change in high-ISG patients compared to low-ISG patients. Blue dots: genes
also significantly differentially expressed in the low ISG versus high-ISG comparison (FDR < 0.1); red dots: genes significant only in the pegIFN-a analysis; black
dots: genes not tested in low ISG versus high-ISG comparison due to low or highly variable expression levels (Materials and Methods). The numbers of the genes in
each category are depicted on the plot area, with the same color code.

C, D Histogram of the difference in expression levels (log2-transformed RPKM) between samples treated with pegIFN-a/ribavirin and CHC high-ISG samples, for the
genes that are significantly up-regulated (C) or down-regulated (D) (FDR < 0.05 and minimum absolute fold change 2) following pegIFN-a/ribavirin treatment at
different time points. The differences were computed between expression levels averaged across all relevant samples.
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Figure 7. Regulation of antiviral effectors by IFN-a treatment and endogenous IFN activity.

A Comparison between expression levels (log2-transformed RPKM values) in samples obtained after pegIFN-a/ribavirin treatment and in high-ISG patients (in the
absence of treatment), for genes predicted to act as antiviral effectors based on experiments in Huh-7.5 cells (Schoggins et al, 2011; Metz et al, 2013). Only genes that
are significantly up-regulated (FDR < 0.05, no fold change threshold) following pegIFN-a/ribavirin treatment are shown. Blue: genes that are also significantly
differentially expressed (FDR < 0.1) between low-ISG and high-ISG patients. Red: genes that are not significant in the comparison between low-ISG and high-ISG
patients (FDR ≥ 0.1). Black: genes not tested in the comparison between low-ISG and high-ISG patients due to low or variable expression levels (Materials and
Methods).

B Expression patterns of six putative antiviral effector genes that are not significantly different between low-ISG and high-ISG patients (FDR ≥ 0.1). We selected genes
reported in both publications (Schoggins et al, 2011; Metz et al, 2013) which were significantly up-regulated following pegIFN-a/ribavirin treatment in our samples,
but not between low-ISG and high-ISG patients. All resulting genes are shown. y-Axis: log2-transformed RPKM levels. x-Axis: different categories of samples. Gray:
control, non-CHC patients; green: CHC low-ISG samples; orange: CHC high-ISG samples; red: biopsies obtained after pegIFN-a/ribavirin treatment, at different time
points. The dots represent individual samples. Boxplots are super-imposed over the individual expression levels. Horizontal bars represent median values. Boxes
represent the inter-quartile (25–75%) ranges of the distribution. Boxplot whiskers extend to the most extreme data point found within 1.5 times the inter-quartile
distance from the box.
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time point (for which most miRNA host down-regulation events

were observed; Fig 8A). As above, we analyzed microRNAs

expressed in normal and/or HCV-infected human livers (Hou et al,

2011) and their conserved targets predicted computationally with

TargetScan (Agarwal et al, 2015; Materials and Methods). Strik-

ingly, out of 79 miRNA families with at least 100 conserved target
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Figure 8. Down-regulation of miRNA host genes following IFN-a treatment.

A Dot-chart representing the expression changes of 11 miRNA host genes following pegIFN-a treatment, at different time points. Red: significant changes, FDR < 0.05;
orange: FDR between 0.05 and 0.1; black: FDR > 0.1.

B RNA-seq coverage profiles along the miR-122 host gene, for pre-treatment and post-treatment biopsies at the 16-h time point, for the three analyzed individuals
(here termed I1, I2, and I3). Gray: normalized read coverage for baseline/pre-treatment biopsies. Black: normalized read coverage for post-treatment biopsies. Red:
positive difference between post-treatment and pre-treatment biopsies. Green: negative difference between post-treatment and pre-treatment biopsies.

C Dot-chart of the median fold expression change following pegIFN-a/ribavirin treatment at the 16-h time point, for predicted targets of miRNAs whose hosts are
down-regulated (red dots) or of other miRNAs (black dots). We show 79 miRNA families with at least 100 conserved target genes. As a control, we show the median
fold expression change for all genes predicted to be targets of any liver-expressed miRNAs or of genes not predicted to be targeted by these miRNAs (blue dots). The
horizontal bars represent 95% confidence intervals of the median, constructed with a bootstrap resampling approach (Materials and Methods). Only miRNAs with
high expression in normal or HCV-infected liver were analyzed (Hou et al, 2011). Evolutionarily conserved miRNA target predictions were extracted from TargetScan
v7.1 (Agarwal et al, 2015; Materials and Methods). miRNAs highlighted in red correspond to primary miRNA transcripts significantly down-regulated at the 16-h time
point; miRNAs highlighted in orange correspond to primary miRNA transcripts significantly down-regulated at other time points.

ª 2017 The Authors EMBO Molecular Medicine Vol 9 | No 6 | 2017

Tujana Boldanova et al HCV infection and IFN-a in human liver EMBO Molecular Medicine

827



genes, the three highest median expression fold changes at the 16-h

time point were found for miRNAs whose precursor genes were

down-regulated following treatment: miR-122, miR-331, and miR-

146a/b (Fig 8C). High median fold changes were also observed for

miR-22, as well as for miR-24, miR-214, and miR-192 to a lower

extent (Fig 8C). We note that this pattern is specific to the 16-h time

point; that is, the miRNAs whose primary transcripts are down-

regulated do not stand out from the bulk of liver-expressed miRNAs

at other time points (Appendix Figs S11 and S12). This result is

consistent with our analysis of the temporal dynamics of interferon-

induced gene expression, as the strongest changes following

pegIFN-a treatment were also observed at the 16-h time point, for

most gene categories (Fig 5).

Discussion

Hepatitis C virus (HCV) is one of the most widely used model

systems to investigate host–virus interactions. The adaptive changes

to HCV infections have been studied extensively in cell culture

systems. For example, a comprehensive analysis of gene expression

in HCV-infected Huh-7.5 cells reported over 800 genes with > 2-fold

changes in expression (Walters et al, 2009). Adaptive changes were

described in lipid biosynthetic pathways, endoplasmatic reticulum

stress response, autophagy, and cell cycle regulation. However, due

to the difficulties inherent to human liver tissue sampling, few of

these findings have been validated in vivo. To investigate whether

the observations obtained in cell culture systems can be confirmed

in the human liver, we have collected and analyzed transcrip-

tome data from liver biopsies derived from control and chronic

hepatitis C patients, in the absence of and during treatment with

pegIFN-a/ribavirin.
In the liver, cell-intrinsic adaptive changes to HCV infections are

difficult to distinguish from changes induced by the immune

response. In experimentally infected chimpanzees, transcriptome

analysis revealed a strong induction of hundreds of ISGs in all

animals (Bigger et al, 2004). Due to a genetic polymorphism in the

IFNL4 gene, ISG induction in humans is variable (Prokunina-Olsson

et al, 2013; Terczynska-Dyla et al, 2014). In this study, in order to

reduce the strong confounding influence of the endogenous IFN

system, we analyzed gene expression patterns separately for

patients with or without endogenous IFN activation. We found that

gene expression changes between uninfected liver samples and low-

ISG samples mainly reflect the presence of immune cell infiltrates in

the latter group. However, even in biopsies from patients without

ISG induction (low-ISG patients) we could not detect expression

changes of genes involved in cellular responses to HCV described in

cell culture. For example, a previous large-scale analysis of differen-

tial gene expression in HCV-infected Huh-7.5 cells revealed that

numerous genes involved in cell death, cell cycle, and cell growth/

proliferation are mis-regulated following viral infection (Walters

et al, 2009), while our differential expression analyses did not reveal

enrichments for these functional categories of genes. We therefore

used a targeted approach and specifically analyzed genes previously

reported to be changed in HCV-infected Huh-7.5 cells (Walters et al,

2009). Specifically, we could identify a core set of 25 genes that are

differentially expressed following HCV infection both in Huh-7.5

cells and in liver samples from patients without IFN system

activation. This common gene set included several cell cycle-asso-

ciated genes, such as UBD, ITIH1, and BIRC3 (Dataset EV5; Walters

et al, 2009). Thus, we were able to identify a significant number of

genes that respond to HCV infection both in vivo and in vitro.

How might we explain the differences in HCV-induced expres-

sion patterns in vivo and in vitro? It has been estimated that the

number of HCV virions per infected cell is between 1 and 8 in the

human liver, but can be as high as 500–1,000 in the Huh-7.5 cell

culture model (Stiffler et al, 2009). It is thus conceivable that some

of changes described in cell culture are due to the high viral concen-

tration and do not occur in vivo. However, it is also possible that

our analysis was underpowered to detect HCV-induced cell-intrinsic

changes in gene expression. Changes in infected hepatocytes could

be masked by unchanged gene expression in non-infected hepato-

cytes and non-parenchymal liver cells (endothelial cells, biliary

epithelial cells, stellate cells, fibroblasts, and Kupffer cells). Non-

parenchymal cells provide about one-third of the liver mass, and the

number of infected hepatocytes can vary from 1 to 55% (Wieland

et al, 2014). To minimize the information dilution from uninfected

cells, we preferentially included in our study samples from patients

with high viral load, because the proportion of infected cells signifi-

cantly correlates with serum viral load (Wieland et al, 2014). Never-

theless, we cannot exclude that because of these limitations we

could not detect some genuine HCV-induced cell-intrinsic changes

of gene expression.

We also addressed a long-standing conundrum in the field

regarding the inability of the endogenous IFN system activation to

eradicate HCV infections. Ever since the discovery that a substantial

proportion of patients with CHC have a strong induction of

hundreds of ISGs in the liver (Chen et al, 2005; Asselah et al, 2008;

Sarasin-Filipowicz et al, 2008) it remained unclear why the endoge-

nous IFN system is ineffective against HCV, whereas therapies with

recombinant (pegylated) IFN-a were curative in many patients. Two

alternative explanations were discussed: Either some critical ISGs

are exclusively induced by pegIFN-a, or pegIFN-a induces the same

ISGs but at a higher level than the endogenous IFNs. At first sight,

our results indicate that the number of significantly changed ISGs is

much higher after pegIFN-a compared to those induced by endoge-

nous IFNs (in high-ISG samples), suggesting that pegIFN-a indeed

induces additional ISGs that are not stimulated by endogenous IFNS.

However, most of these “additional” genes were up-regulated in

high-ISG samples as well, albeit to a lesser degree and therefore not

passing the significance threshold. Such quantitative differences

were also observed for a number of candidate anti-HCV effector

ISGs identified in large screens (Schoggins et al, 2011; Metz et al,

2013). Most of them were significantly stronger induced by pegIFN-a
compared to endogenous IFNs, but their expression levels were

highly positively correlated between samples treated with pegIFN-a/
ribavirin and samples with high endogenous ISG levels (Fig 7,

Dataset EV10). We present six candidate antiviral effectors [IRF1,

IRF2, IRF7, IRF9, OASL, IFITM3, reported in both publications cited

above (Schoggins et al, 2011; Metz et al, 2013)] that do not differ

significantly between low-ISG and high-ISG patients. However, with

the exception of IRF2, these genes also appear to be slightly induced

in high-ISG samples compared to low-ISG or non-infected samples,

although at lower levels (Fig 7). Of note, IRF2 stands out because it

is induced by pegIFN-a at the 4-h time point, but appears to down-

regulated by endogenous IFNs (Fig 7). However, IRF2 is unlikely to
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be an antiviral effector sensu stricto. IRF2 is a transcriptional regula-

tor involved in IFN induction and in IFN signaling (Ikushima et al,

2013). Our in vivo analysis therefore could not reliably identify a set

of ISG effectors uniquely up-regulated by pegIFN-a that could be

responsible for the superior antiviral efficacy of the treatment. Thus,

our current analysis for the first time provides strong evidence that

quantitative rather than qualitative differences in gene induction are

responsible for the failure of the endogenous IFNs and the success of

pegIFN-a in viral eradication.

We also addressed the contribution of non-coding RNAs to gene

regulation in response to HCV infections and to pegIFN-a treat-

ments. Most prominent of them is miR-122, because it is an essen-

tial host factor for HCV replication (Jopling et al, 2005). The

fascinating role of the highly abundant miR-122 in HCV replication

and virus–host interaction has recently been enriched by the obser-

vation that binding of miR-122 by HCV can regulate host gene

expression by reducing (sponging) the amount of miR-122 available

for gene repression (Luna et al, 2015). Detailed functional experi-

ments in Huh7 cells brought evidence that HCV infection leads to

significant de-repression of miR-122 target genes due to this spong-

ing effect (Luna et al, 2015). At first sight, our in vivo transcriptomic

analysis appeared to confirm this observation, as miR-122 target

genes had higher expression levels in HCV-infected compared to

control biopsies, more so than genes targeted by all other miRNAs

and than genes that are not targets of miRNAs (Figs 2 and 3).

However, a closer look revealed the same pattern for other miRNAs

highly expressed in the liver (e.g. miR-192, let-7). Because HCV

does not bind these other miRNAs, this observation cannot be

simply explained by a sponging effect.

An unexpected observation from our analysis of the transcrip-

tional response to pegIFN-a/ribavirin treatment was that 11 long

non-coding transcripts that act as precursors for miRNAs (miRNA

“host” genes) are significantly down-regulated following treatment.

Strikingly, the primary transcript of miR-122 is part of these down-

regulated transcripts. Moreover, the genes targeted by these down-

regulated miRNAs had the highest median expression fold changes

following treatment. We note that only subtle differences were

observed for the miRNA target genes, which is suggestive of an

expression fine-tuning mechanism, although a miRNA-mediated

regulatory process is unlikely to be responsible for major expres-

sion changes following pegIFN-a treatment. Nevertheless, this

observation indicates that the expression changes observed for the

primary transcripts are reflected in the mature miRNA levels, as

also indicated by our qPCR analysis for three candidate miRNAs.

This finding is in agreement with previous evidence that IFN-beta

treatment decreases mature miR-122 levels (Pedersen et al, 2007)

and that miR-122 levels are lower in patients with endogenous IFN

system activation (Sarasin-Filipowicz et al, 2009). Interestingly,

besides miR-122, several other miRNAs whose host genes are

down-regulated have been associated with HCV infections and/or

interferon treatment. For example, miR-146a was previously

reported to inhibit type I interferon production (Hou et al, 2009;

Ho et al, 2014). Its down-regulation following pegIFN-a/treatment

might thus allow for a sustained activation of ISGs and thus more

effective antiviral response. Another example is miR-192, which

was previously proposed as a predictor for the response to IFN

treatment (Motawi et al, 2015). Finally, it is tempting to speculate

that the down-regulation of miR-122 levels might contribute to the

efficiency of the pegIFN-a/ribavirin treatment in eliminating HCV

infections.

In conclusion, this comprehensive gene expression analysis with

liver biopsy samples (obtained before and during treatment with

pegIFN-a) from patients with HCV infection revealed that HCV has

no strong effect on the homeostasis of infected cells, that the endoge-

nous IFN response is qualitatively similar to pegIFN-a treatment but

too weak to clear the infection, and that IFN down-regulates miRNA

primary transcripts, thereby fine-tuning ISG expression.

Materials and Methods

Patient selection

The study included 25 patients with chronic hepatitis C (CHC) and

six control patients (not infected with HCV) who underwent a diag-

nostic liver biopsy in the outpatient clinic of the Division of

Gastroenterology and Hepatology, University Hospital Basel. The

patients agreed to participate in the study and written informed

consent was obtained (approved by the ethics commission of the

cantons Basel-Stadt and Basel-Land; approval number EKBBM189/

99). All patients with CHC were screened for potential response to

treatment using a previously published classification method based

on the expression values of IFI27, RSAD2, ISG15, and HTATIP2 (Dill

et al, 2011). Patients with high probability of achieving sustained

virologic response (SVR) were identified, and in case of planned

IFN-based treatment, they were asked to undergo a second liver

biopsy. Both biopsies were performed in the morning. Nineteen

patients agreed to undergo a second biopsy, as follows: after 4 h

(five patients), 16 h (three patients), 48 h (three patients), 96 h

(three patients), or 144 h (five patients) of the first therapeutic injec-

tion of pegylated interferons (pegIFNs). PegIFNs/Ribavirin doses

were set according to HCV genotype and body weight based on stan-

dard recommendations. PegIFNs were administered subcutaneously

once weekly at the initial dose of 1.5 lg/kg body weight of pegIFN-

a-2b (Essex Chemie) or 180 lg of pegIFN-a-2a (Roche). Serum HCV

RNA was quantified using the COBAS AmpliPrep/COBAS TaqMan

HCV Test and the COBAS Amplicor Monitor from Roche. Diagnosis

of control patients was based on clinical, laboratory, and histopatho-

logical assessment. For 18 patients, microarray-based expression

analyses of the biopsy material were previously published (Dill et al,

2014). One additional patient was included for the 16-h time point.

Patient characteristics are summarized in Dataset EV1.

RNA-seq data generation

Total RNA was extracted from fresh-frozen bulk liver biopsy tissue

using TRIzol reagent (Invitrogen) and subsequently subjected to

DNase treatment using DNA-freeTM DNA Removal Kit (Ambion)

according to manufacturer’s instructions. RNA concentration was

determined using NanoDrop 2000 spectrophotometer (Thermo

Scientific), and RNA quality/integrity was assessed with an Agilent

2100 BioAnalyzer using RNA 6000 Nano Kit (Agilent Technologies).

All 46 RNA samples included in this study had RNA integrity

number (RIN) values of > 7 (7.1–9.4; median 8.9), with 42 out of 46

samples having RIN values ≥ 8. We generated RNA sequencing

(RNA-seq) data using the Illumina TruSeq Stranded mRNA protocol,
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with polyA selection. The libraries were sequenced on an Illumina

HiSeq 2500 machine, as single-end reads.

RNA-seq data processing

The RNA-seq reads were trimmed to remove 30 end adapter

sequences, keeping a maximum read length of 81 bp. The reads

were aligned on the hg38 primary assembly (excluding patches and

haplotypic sequences) of the human genome, downloaded from the

Ensembl (Cunningham et al, 2015) database release 76. The align-

ments were done using TopHat (Kim et al, 2013) release 2.0.10 and

Bowtie (Langmead & Salzberg, 2012) release 2.1.0. We allowed

intron sizes between 40 bp and 1 million bp for spliced read align-

ments, with a minimum anchor size of 8 bp and a maximum of one

mismatch for each aligned read segment.

Gene model reconstruction with RNA-seq

We used Cufflinks (Trapnell et al, 2010) release 2.2.1 to reconstruct

de novo gene models from TopHat unique read alignments. Reads

with multiple reported alignments were excluded from the dataset

prior to de novo reconstruction. We kept isoforms with a minimum

frequency above 0.05. Intra-intronic transcripts (corresponding to

retained introns or unspliced pre-mRNAs) were kept if their

frequency was above 0.25. We allowed intron sizes between 40 bp

and 500,000 bp. Neighboring transcribed regions were collapsed if

they were closer than 40 bp. We performed the gene model recon-

struction separately for each RNA-seq sample and then merged

them into a single set of gene models using the cuffmerge tool in

Cufflinks. We note that de novo reconstructed gene models may be

fragmented, meaning that a single locus can be split into several

predicted gene models, in particular for low expression levels.

Long non-coding RNA dataset

We used genomic annotations from the Ensembl (Cunningham

et al, 2015) database release 82 as a basis for our analyses, to which

we added de novo gene models reconstructed with Cufflinks. We

determined the protein-coding potential of de novo gene models

based on the codon substitution frequency (CSF) score approach

(Lin et al, 2007, 2011) and on sequence similarity with known

protein databases [SwissProt (UniProt, 2015)] and protein domains

[Pfam-A (Finn et al, 2014)], as previously described (Necsulea et al,

2014). For the CSF approach, to determine the codon substitution

frequencies expected for coding and non-coding regions, we aligned

Ensembl-annotated protein-coding sequences and intronic regions,

for 9,000 1-1 orthologous gene families for 42 vertebrate species

extracted from the Ensembl Compara database (Vilella et al, 2009).

We then counted all observed codon substitutions and constructed

coding and non-coding substitution matrices. We downloaded

whole-genome alignments for human and 99 other vertebrate

genomes from the UCSC Genome Browser (Rosenbloom et al, 2015)

and we computed the CSF score in 75-bp sliding windows along the

entire human genome, as described previously (Necsulea et al,

2014). We then extracted all genomic regions with positive CSF

scores. As positive CSF scores can appear spuriously on the opposite

strand of protein-coding regions (Cabili et al, 2011), for regions with

positive CSF scores on both strands we considered only the strand

with the highest score. Gene models were classified as potentially

protein-coding if had positive CSF scores over at least 90 bp or 25%

of their exonic length. In addition, we searched for sequence simi-

larity between exonic sequences and known proteins from and

protein domains from the SwissProt (UniProt, 2015) and Pfam-A

(Finn et al, 2014) databases, using blastx (Altschul et al, 1990). We

kept SwissProt proteins with high confidence annotations (protein

existence score 1, 2, or 3). We retained blastx hits with e-values

below 0.001. Gene models were classified as potentially protein-

coding if they had significant blastx hits with SwissProt or Pfam-A

protein sequences over at least 90 bp or 5% of their exonic length.

De novo reconstructed gene models classified as non-coding with both

approaches were kept for further long non-coding RNA analyses.

To avoid annotating alternative untranslated regions or introns

of protein-coding genes as independent long non-coding RNAs, we

further filtered the set of de novo-predicted lncRNAs based on their

distance to Ensembl-annotated protein-coding genes. We retained

lncRNA candidates that had no sense overlap with Ensembl-anno-

tated protein-coding genes and that were at least 10 kilobases (kb)

away from protein-coding gene coordinates. Sense intronic overlaps

with other non-coding transcripts were accepted. We discarded loci

with an exonic length below 200 bp (for multi-exonic loci) or

500 bp (for mono-exonic loci). We further excluded loci overlapping

with RNA repeats or with UCSC-annotated retro-transposed gene

copies over more than 10% of their length.

In addition to de novo-predicted lncRNA candidates, we analyzed

Ensembl-annotated transcripts corresponding to gene biotypes

“lincRNA”, “processed_transcript”, or “antisense”. For both

Ensembl-annotated and de novo-predicted lncRNAs, we further

required support from at least 50 uniquely mapped RNA-seq reads,

across all RNA-seq samples pooled together. In total, we analyzed

8,912 candidate lncRNAs, including 4,246 candidates detected de

novo and 4,666 Ensembl-annotated lncRNAs. The de novo annotated

lncRNA coordinates are provided with our GEO submission (acces-

sion number GSE84346).

Gene expression estimation

We computed expression levels for protein-coding genes and candi-

date long non-coding RNAs derived from Ensembl annotations or

predicted de novo with RNA-seq. For genes that had multiple

isoforms, we combined exon coordinates from all isoforms into a

single “flattened” gene model and computed a single expression

level for each gene. For protein-coding genes, only protein-coding

isoforms were kept, discarding retained introns and other poten-

tially non-functional isoforms. We used two approaches to estimate

gene expression levels. First, we estimated gene-based RPKM (reads

per kilobase of exon per million mapped reads) values by counting

uniquely mapped RNA-seq reads that overlapped with exon coordi-

nates over at least 5 bp. RNA-seq reads that were mapped to sense-

overlapping exonic regions were added to the read count of all

corresponding genes. The total number of mapped reads for each

sample (corresponding to the M denominator in the RPKM computa-

tion) was computed after discarding ambiguously mapped reads

and reads that aligned to the mitochondrial genome. We normalized

expression levels among samples using a previously described

median-scaling procedure, based on the least-varying genes in terms

of expression ranks (Brawand et al, 2011). Second, we used
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Cufflinks to estimate gene expression levels using all TopHat-

aligned reads, assigning reads with multiple alignments to each gene

depending on gene expression levels estimated with unique reads

(default multiple read correction procedure in Cufflinks). All gene

expression estimates are provided with our GEO submission (acces-

sion number GSE84346).

Differential gene expression

We assessed differential gene expression using methods in the

DESeq2 (Love et al, 2014) package (release 1.10.0) in R/Bioconduc-

tor (release 3.2.2), starting from the numbers of unambiguous read

counts assigned to each gene. To test for differential gene expression

following pegIFN-a/ribavirin treatment, we used a likelihood ratio

test to compare two generalized linear models: a full model with

two explanatory variables (the control/treated condition and the

individual) and the reduced model with the individual as a single

explanatory variable. To test for differential gene expression

between groups of patients (normal liver, CHC high ISG, or CHC

low ISG), we compared a model with one explanatory variable (the

patient group) and the null model, according to which the patient

group has no effect. For the comparison between normal liver, CHC

high-ISG and CHC low-ISG patients, we further selected the samples

based on their METAVIR score for inflammation and fibrosis (A1/

F1, A1/F2, and A2/F2 samples were kept for further analyses). We

also excluded one sample (identifier A707), which had high expres-

sion levels for inflammatory markers despite its A2/F2 METAVIR

classification. The sets of patients analyzed for each test are

provided in Dataset EV1. P-values were corrected for multiple test-

ing using the Benjamini–Hochberg method, as implemented in

DESeq2. Note that for some genes, the resulting false discovery rate

(FDR) is set to “NA”, if the expression levels are too low or too vari-

able to ensure reliable differential expression estimates (Love et al,

2014). For further analyses, we selected genes for which the RPKM

level was above 1 in at least one of the compared samples.

Resampling to control for outlier effects in differential
expression analyses

The level of endogenous IFN system activation can vary among

patients classified as high ISG (Fig 1). In addition, our dataset

included different number of patients in the control (6), low-ISG (7),

and high-ISG (7) categories, which may affect the statistical power of

the analysis. To avoid outlier effects in our differential expression

analyses for these comparisons (contrasting non-CHC, low-ISG, and

high-ISG patients), we resampled six out seven patients for the low-

ISG and high-ISG categories and we performed differential expres-

sion analyses with the reduced number of samples. All possible

patient combinations were tested separately. We then selected gene

expression differences based on their average false discovery rates

(FDR) and average log2-fold expression change level across all

resampling replicates. The analyses presented in the manuscript

correspond to this resampling correction. Similar conclusions were

reached when differential expression analyses were performed with

all samples (results provided in Dataset EV2). For these comparisons,

we considered that genes are differentially expressed if the FDR was

below 0.1 and the absolute fold change above 1.5. We voluntarily

chose slightly less restrictive FDR and fold change thresholds for

these analyses than for the pegIFN-a treatment analysis, to avoid a

loss of sensitivity associated with this resampling procedure.

Gene ontology enrichment

We performed gene ontology enrichment analyses using the GOrilla

webserver (Eden et al, 2009). We contrasted a focus set of genes

(e.g. genes that were up-regulated in a set of patients or at one time

point during treatment) with a background set of genes expressed at

in the same samples. We set the false discovery rate for the GO

enrichment analysis at 0.1. Only protein-coding genes were used for

this analysis. We also downloaded GO associations for each

Ensembl-annotated gene from the Ensembl 82 database, using

BioMart. For the principal component analysis (PCA) presented in

Appendix Fig S1, we selected genes associated with the categories:

“type I interferon production”, “response to type I interferon”,

“response to interferon-gamma”.

Transcription factor binding enrichment analysis

We used HOMER (Heinz et al, 2010) to assess the enrichment of

transcription factor binding motifs in the promoter regions of dif-

ferentially expressed protein-coding genes, compared to the genomic

background. We searched for motifs in a 500-bp region, starting

400 bp upstream of the transcription start site and ending 100 bp

downstream. For each analysis, we display the enriched motif, its

frequency among the tested genes and the enrichment with respect

to the background.

microRNA expression

To evaluate the involvement of miRNA regulation in the gene

expression differences observed between patient categories or

following treatment, we first obtained a dataset of miRNAs

expressed in the relevant samples. We downloaded miRNA expres-

sion values evaluated with RNA sequencing and measured as TPM

(tags per million mapped reads) from a previous publication (Hou

et al, 2011). This dataset included expression levels for normal

liver, hepatitis B virus (HBV)-infected and HCV-infected liver, and

hepatocellular carcinoma from HBV and HCV-infected livers. For

comparability with our samples, we retained only expression levels

from normal liver and HCV-infected, non-carcinoma samples. We

summed the TPM values across all relevant samples and ranked

miRNAs based on their combined expression values. For miRNA

target analyses, we retained miRNAs with a combined TPM value of

at least 100.

microRNA target prediction

We used two sources for miRNA target predictions. First, we

extracted computational target predictions from the TargetScan v7.1

human dataset (Agarwal et al, 2015). To enrich in reliable target

predictions, we kept only gene–miRNA associations that had a

cumulative context++ score (Agarwal et al, 2015) below 0. We

analyzed separately miRNA-target gene relationships for which at

least one conserved binding site was predicted. Second, we used

target predictions determined experimentally with HITS-CLIP in

Huh7 cells (Luna et al, 2015). This dataset included binding sites
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for 50 miRNAs expressed in Huh7 cells. We filtered this dataset to

keep only binding sites found in the 30 UTR region, and we

excluded 6mer binding sites. For the TargetScan dataset, we

analyzed only miRNAs that were expressed in normal and HCV-

infected liver, as defined above. All data are provided in Dataset

EV4. For the analysis of miRNA targets and their expression

patterns, we always exclusively analyzed genes that are expressed

at an RPKM level of at least 1 in at least one of the relevant

samples. For the analysis presented in Fig 8, we computed confi-

dence intervals for the median expression fold change (following

pegIFN-a/ribavirin treatment at the 16-h time point) with a boot-

strap approach, by resampling the same number of genes 100

times with replacement. We then extracted the 2.5 and 97.5%

quantiles of the resulting distribution, which are displayed as con-

fidence intervals in Fig 8.

Definition of microRNA host genes

Our RNA-seq dataset allows us to estimate expression levels for all

long, poly-adenylated transcripts, thus in principle including

miRNA primary transcripts. We extracted coordinates of miRNA

transcripts from Ensembl 82 (Cunningham et al, 2015), and we

analyzed their overlap with exons of Ensembl-annotated or de

novo-detected non-coding RNA genes. We found a total of 70

lncRNAs that had exonic overlap with miRNAs, which we classi-

fied as potential “miRNA host genes” and included in further anal-

yses (Dataset EV11). We did not include in this analysis genes

with intronic overlap with miRNAs.

Antiviral effector datasets

We specifically analyzed the expression patterns of a subset of ISGs

that were previously proposed to act as antiviral effectors through a

large-scale over-expression screening approach in Huh-7.5 cells

(Schoggins et al, 2011). We extracted the list of genes whose over-

expression had a negative on HCV replication in this experimental

setup, at both 48-h and 72-h time points, and matched them with

current Ensembl annotations by gene names. Genes that appeared

as having both positive and negative effects on HCV replication (de-

pending on the time points) were excluded. We added to this list of

genes a dataset of ISG antiviral effectors previously described (Metz

et al, 2013), including genes whose antiviral properties were

predicted with a knockdown approach (Metz et al, 2012). The gene

lists are provided in Dataset EV10.

Differentially expressed genes in HCV-infected Huh7 cells

We also analyzed a set of genes previously shown to be differen-

tially expressed following HCV infection in Huh-7.5 cells (Walters

et al, 2009). We matched the list of genes with Ensembl 82 annota-

tions using the RefSeq accession number provided in this dataset

(Walters et al, 2009). The gene lists and their differential expression

patterns are provided in Dataset EV5.

Tissue expression patterns from GTEx

We analyzed the spatial expression patterns of the various gene lists

identified in our study, using the gene expression dataset of the

GTEx consortium, release v6 (Mele et al, 2015). We downloaded

the pre-computed median RPKM values per tissue from the GTEx

server. We used this dataset to estimate the tissue in which each

gene reaches its maximum expression, for genes for which the maxi-

mum RPKM value in GTEx tissues was at least 1.

Mature microRNA expression

Mature microRNA expression data were generated starting from the

same total RNA preparations that were used for RNA-seq experi-

ments. Equal amount of input total RNA was used in each reaction.

RNA was diluted to 4 ng/ll in water and cDNA was generated from

8 ng of total RNA using TaqManTM Advanced miRNA cDNA Synthe-

sis Kit (Applied BiosystemsTM cat# A28007) according to manufac-

turer’s instructions. Briefly, mature miRNAs were first extended on

both ends via 30 polyA tailing and 50 RNA-adaptor ligation. Next, a
reverse transcription (RT) reaction was performed using universal

RT primers (supplied with the kit) that recognize the universal

sequences present on both the 50 and 30 extended ends of the mature

miRNAs. One-sixth of RT reaction product was then used to pre-

amplify the cDNA using the universal primers (supplied with the kit)

that recognize the universal sequences added to all mature miRNAs

on the 50 and 30 ends. Expression of mature miRNAs miR-122,

The paper explained

Problem
Hepatitis C virus (HCV) infections are a major cause of morbidity and
mortality, which affect an estimated 160 million people worldwide.
Despite numerous studies, the molecular impact of HCV infection and
of the traditional interferon (IFN)-based treatment on the human liver
is not yet fully understood. A subset of HCV patients, which are char-
acterized by high endogenous levels of interferon-stimulated genes,
paradoxically do not respond well to interferon therapy. To date, it
remains unclear why the endogenous activation of interferon-stimu-
lated genes is unable to clear the virus in these patients.

Results
We compared gene expression patterns in the liver for a variety of
HCV-infected patients, before and after IFN-based treatment. In
patients that do not show an endogenous activity of the IFN system,
gene expression patterns predominantly reflect the presence of
immune cell infiltrates in the liver. We also investigated the transcrip-
tomes of patients with endogenous IFN activation. We find that the
differences in expression patterns between endogenous IFN activity
and recombinant IFN therapy are quantitative rather than qualitative.
Most IFN-stimulated genes are induced by both recombinant IFN
therapy and the endogenous IFN system, but with lower induction
levels in the latter. This indicates that the innate immune response in
chronic hepatitis C is too weak to clear the virus. Moreover, we found
that a specific class of non-coding genes, which generate microRNAs
with regulatory roles, are down-regulated following recombinant IFN
therapy. These include the primary transcript of miR-122, a host
microRNA that is required for HCV infection.

Impact
Our results shed light on the gene expression differences between
types of HCV-infected patients, which may underlie some patients’
inability to respond to interferon therapy. The differential regulation
of miR-122 by pegIFN-a/ribavirin therapy may contribute to the effi-
ciency of the treatment.
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miR-146a, and miR-331 was then analyzed by quantitative

polymerase chain reaction (qPCR) using TaqMan� Fast Advanced

Master Mix (Applied BiosystemsTM, cat# 4444556) and corresponding

TaqMan� Advanced miRNA Assays (Applied BiosystemsTM, cat#

A25576): hsa-miR-122-5p (assay ID: 477855_mir), hsa-miR-146a-5p

(assay ID: 478399_mir), and hsa-miR-331-3p (assay ID: 478323_mir).

For qPCR, pre-amplified cDNA was diluted 1:10 with water and 5 ll
of the diluted product (corresponding to 800 pg of input RNA) was

used per reaction. An RT reaction without any template, RT reactions

without the reverse transcriptase enzyme and qPCRs without any

template served as negative controls. All qPCRs were performed in

triplicate.

Statistics and graphics

All data analyses and graphical representations were done in R. The

principal component analyses were performed with functions imple-

mented in the ade4 library.

Data availability

All raw and processed RNA-seq data, including de novo gene anno-

tations obtained with Cufflinks and all expression estimations, are

available in the GEO database (accession number GSE84346).

Expanded View for this article is available online.
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