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Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune
response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum
cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other
risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in
changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL) has
been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the
formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL
in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides
an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for

atherosclerosis.

1. Introduction

Cardiovascular diseases remain the leading cause of global
morbidity and mortality. As per the WHO estimates 17.3
million people died of CVD in 2008 representing almost
30% of global mortality. It is estimated that this number
will rise to 23.6 million by 2030 with almost 80% of the
death occurring in low and middle income countries. The
most important risk factors of heart disease and stroke are
unhealthy diet, physical inactivity, tobacco use, and harmful
use of alcohol. These result in raised blood pressure, raised
levels of glucose and lipids in blood, overweight, and obesity
which constitute the metabolic syndrome [1].

Higher level of cholesterol in blood has traditionally been
considered as established risk factors for CVD. However,
increased total cholesterol concentrations in plasma do not
accurately predict the risk of coronary heart disease as it
includes the sum of all cholesterol carried not only by
atherogenic lipoproteins, that is, very low-density lipoprotein
[VLDL], low-density lipoprotein [LDL], and intermediate-
density lipoprotein [IDL], but also by antiatherogenic
lipoproteins, that is, high-density lipoprotein, [HDL]. It is

also known that the small, dense LDL cholesterol is more
atherogenic than large, buoyant particles, and oxidation of
LDL increases its atherogenicity. The relationship between
LDL cholesterol and risk for CVD is well established, and
measurement of LDL is routinely used for risk assessment,
as well as risk management [2]. Over the last four decades,
significant progress has been made towards the prevention of
CVD, primarily by the use of statins which result in lowering
the cholesterol levels. However, the increasing epidemic of
metabolic syndrome and Type 2 diabetes mellitus (T2DM)
has slown down this progress. Although the use of statins
has accounted for the significant reduction in the morbidity
and mortality associated with CVD, the risk is not completely
eliminated despite effective lipid-lowering treatment [3]. It
is estimated that the current therapies prevent only 30%
of clinical events, suggesting an urgent need for newer
therapeutic strategies [3].

For many years atherosclerosis was believed to be a
disease of lipid accumulation in the vessel wall. Extensive
research on the pathophysiology of the disease has brought
about a paradigm shift in our understanding of CVD,
and atherosclerosis is now accepted as a multifactorial,
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multiphase chronic inflammatory disease with immunolog-
ical activity at every stage, from initiation to progression
and plaque rupture [4-6]. This review will concentrate on
immune response to lipoproteins, its role in the development
of atherosclerosis, and modulation of immune response to
lipoprotein as therapeutic strategy.

2. Immune Response and Atherosclerosis

Atherosclerosis, which manifests itself as acute coronary syn-
drome, stroke, and peripheral arterial diseases, is a chronic
inflammatory disease of the arterial wall [7]. Immune system
plays an important role in the development, progression, and
the complications associated with atherosclerosis [5]. Both
innate and adaptive immune responses are associated with
the progression of the disease (Figure 1). The retention of
cholesterol in the subendothelial region of the vessel is the
central pathogenic event that starts the atherosclerotic lesion
formation [8]. Lipids, such as cholesterol and triglycerides,
are insoluble in plasma and are carried by lipoproteins that
transport them to various tissues, and LDL is normally
associated with the apolipoprotein (Apo) B-100. An increase
in plasma LDL levels leads to an increased rate of its entry
into the intima, and consequently a higher level of LDL
is observed in the intimal region [9]. The interaction of
positively charged ApoB to negatively charged proteogly-
cans leads to the retention of ApoB-linked lipoproteins
in the vessel wall [10]. These sequestered lipoproteins
are susceptible to modification by oxidation, enzymatic
cleavage, and aggregation [11]. Immune response to these
modified lipoproteins drives the pathogenic evolution of the
plaque by releasing proinflammatory mediators leading to a
chronic inflammatory reaction. Oxidized LDL induces the
formation of foam cells and fatty streaks in the vessel wall
which is the hallmark of initiation of atherosclerosis [12].
Macrophages from the host immune system try to clean up
cholesterol deposits in arteries, but once they are loaded
with the unhealthy form of cholesterol, they get stuck in
the arteries, triggering the body’s inflammatory response.
These cholesterol-loaded macrophages line the artery wall
and become major components of the growing plaque. As the
atherosclerotic lesion evolves, other immune inflammatory
cells such as T cells, dendritic cells, and mast cells accumulate
in the region. Macrophages and dendritic cells are known
to contribute to the innate immune response by generating
free oxygen radicals, proteases, complement factors and
cytokines. Macrophages also produce chemokines including
the T-cell attractant CCL5 (RANTES) to attract other
immune cells into the growing plaque [13, 14]. A fibrous cap
of variable thickness, composed mainly of collagen, covers
the lesion, while the shoulder region consists of activated T
cells, macrophages, and mast cells [7]. The early fatty streaks
develop into a complex lesion consisting of apoptotic and
necrotic cells, cell debris, and cholesterol crystals which form
the necrotic core over a long period of time [15]. Adaptive
immunity recognizes specific epitopes on antigens that are
processed and presented by the antigen-presenting cells to
the T cells, leading to lymphocyte activation and secretion of
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cytokines and antigen-specific antibodies. T cells reacting to
disease-related antigens such as Ox-LDL, HSP60, bacterial,
and viral antigens have been found in the human lesions [16—
18] (Figure 1).

3. ProAtherogenic and
Atheroprotective Inmune Response

Four major subsets of T helper cells are involved in the
adaptive immune response: helper T-cell subsets Thl and
Th2, regulatory T cells, and the Thl7 cells. The CD8*
T cells promote atherogenesis when activated by foreign
antigens, but their precise role in atherogenesis remains
unclear as their depletion is not associated with any change
in the lesion formation [19]. Th1 cells the induce activation
of macrophages, neutrophils, and cytotoxic T lymphocytes
and secrete proinflammatory cytokines such as interferon y
and IL12. They are more prevalent in the lesions of both
human and ApoE~/~ mice suggesting that atherosclerosis
is a Th1-dominant disease [20, 21]. Th2 cells are involved
in allergic diseases such as atopic allergy and asthma
[22]. Their role in atherosclerosis seems to depend on the
stage and site of the disease. Increased concentrations of
Th2 cytokines in lymphoid organs and atheroprotective
anti-oxXLDL IgM antibodies in the serum resulted in a
significant reduction in atherosclerotic plaque development
[23]. However in mice deficient in IL4, the archetypical
Th2 cytokine, atherosclerosis was less severe than in I1L4-
sufficient mice [24]. Th17 cells produce the proinflammatory
cytokine IL17 and promote autoimmune diseases [25, 26].
Significant increase in peripheral Th17 cells, cytokines IL17,
IL6 and IL23, and transcription factor RORy levels was
reported in patients with acute coronary syndrome (ACS)
when compared to control [27]. A functional imbalance
between the Th17/Treg was also reported in patients with
acute coronary syndrome (ACS), suggesting a potential role
for these cells in plaque destabilization and the onset of ACS.

Treg cells are a subpopulation of T cells specialized
in maintaining immune homeostasis and self-tolerance by
suppressing pathogenic immune responses. Treg cells are
heterogeneous and can be subdivided schematically into two
major subsets: natural (n Treg) and induced (i Treg). These
cells are characterized by expression of CD25 (a subunit of
the IL2 receptor) and CD4, on the surface and intracellular
expression of the transcription factor fork head box protein
P3 (FoxP3) [28]. Treg cells can inhibit effector T cells
by contact-dependent suppression of cell proliferation and
downregulate the availability of growth factors to effector
T cells by enhanced consumption of IL2, and by inhibiting
the effector cell functions through secretion of the anti-
inflammatory cytokines TGF-$, IL10, and IL35 [29]. The
clinical manifestation of atherosclerosis can be linked to
inflammation mediated by the Thl cells, while Treg cells
may be involved in the stabilization of disease. Several review
articles have discussed the role of immune response in
atherosclerosis in detail [5, 7, 27, 30—41].
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FIGURE 1: Immune response in atherosclerosis. Macrophages and dendritic cells are the important components of innate immune response
in atherosclerosis. Uptake of modified LDL particles such as oxLDL through scavenger receptors leads to the intracellular accumulation of
cholesterol leading to activation and expression of a series of genes encoding proinflammatory molecules, including cytokines, chemokines,
eicosanoids, proteases, oxidases, and costimulatory molecules. Adaptive immune response is activated when self-antigens, oxidized LDL, and
other disease-related antigens are presented to T cells by the macrophages/dendritic cells. The concomitant release of cytokines determines
the maturation of the T cell recognizing the antigen. Differentiation into Th1 cells results in inflammatory response, while Th2 leads to
activation of antigen-specific B cells. These B cells produce antibodies to the disease-specific antigens. Regulatory T cells induce a tolerogenic
response mediated by Tr1 cells and Th3 cells which secrete IL10 and TGE-p respectively, which inhibit the progression of the disease. Th, T
helper cells; Treg, regulatory T cell; IL, interleukin; VEGE, vascular endothelial growth factor; TNE, tumor necrosis factor; MIF, migration
inhibition factor; Ox-LDL, oxidized low-density lipoprotein; HSP, heat shock protein, CETP, cholesteryl ester transfer protein.



4. Immune Response to Lipoproteins
in Atherosclerosis

The positive role of lipoproteins in the development of car-
diovascular diseases has been reported by several epidemio-
logical studies so much so that atherosclerosis was considered
a lipid-mediated disease. A key early step in atherogenesis
is the formation of the fatty streak, consisting of a suben-
dothelial collection of foam cells, which are cholesterol-laden
macrophages or smooth muscle cells [42]. LDL does not
trigger an immune response in its native state. Formation of
oxidized phospholipids and aldehyde-modified breakdown
fragments of apolipoprotein B-100 (apoB-100) exposes
neoantigens which cause a breakdown in self-tolerance and
induces inflammatory reactions [43, 44]. Oxidation of LDL
generates reactive aldehydes and truncated lipids by cleaving
the fatty acid double bonds in phospholipids, triglycerides,
and cholesteryl esters [45]. Modified phospholipids such as
lysophosphatidyl choline and trimethylamine N-oxide can
trigger potent immune response by activating NKT cells,
macrophages, and endothelial cells [15, 46, 47]. Oxidative
modification of ApoB 100 also causes degradation of ApoB
and release of small peptides which increase vascular perme-
ability [48, 49]. Accumulation of monocytes/macrophages,
smooth muscle cells, and T cells within the arterial wall in
response to proinflammatory molecules constitutes a hall-
mark of developing plaque [5]. Oxidized LDL (OxLDL) has
been identified as one of the most important autoantigens in
atherosclerosis. The Activation of both innate and adaptive
immune responses against OxLDL is the major cause of
inflammation and its pathological consequences [31, 36,
50, 51]. Modified LDL interact with scavenger receptors
while OX LDL binds to CD36 receptor on monocytes and
macrophages and form foam cells [44]. Foam cells are
highly immunogenic and attract the adhesion, migration,
and activation of the cells of the immune system thus
contributing to the development of the disease.

Antigen-presenting cells take up modified LDL and
initiate an adaptive immune response by presenting these
antigens to T cells, which proliferate to amplify the immune
response [52]. Upon renewed exposure to the specific
antigen, these T cells produce cytokines and trigger inflam-
mation.

OxLDL is frequently present in sera of patients with coro-
nary syndrome [53, 54] and also accumulates in atheroscle-
rotic plaques [55]. Apart from the formation of foam cells,
OxLDL exhibits a range of proatherogenic properties. It
acts as a chemoattractant for circulating monocytes and can
stimulate secretion of monocyte chemoattractant protein-
1 by endothelial cells [56]. It is cytotoxic for endothelial
cells cultured in serum-free medium, induces expression
of macrophage colony stimulating factor, promotes the
differentiation of monocytes to macrophages, attracts T
cells into the growing atherosclerotic plaque, induces a
wide variety of proinflammatory cytokines in macrophages,
increases expression of vascular cell adhesion molecule-
1 and is also immunogenic [57, 58]. The existence of a
preexisting, natural immune response against oxidized LDL
phospholipids mediated by IgM produced by B-1-cells has
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also been identified [43]. Immune complexes formed by
modified LDL and corresponding antibodies are potent
macrophage activators and direct overexpression of MHC-
11, costimulatory molecules, and proinflammatory markers,
thus creating an ideal conditions for Thl activation [56—
58]. Activated macrophages also release reactive oxygen
radicals, enhancing the opportunity for LDL modification
[5] which increases the immunogenic load, induce a more
vigorous antibody response, and increase the formation of
LDL immune complexes (Figure 2).

5. Natural Antibodies to Lipoproteins

Natural antibodies are defined as antibodies that are found in
normal individuals in the complete absence of any exogenous
antigenic stimulation and provide first line of defense against
invading pathogens [59]. These antibodies bind to a number
of self-antigens such as cell membrane components (phosph-
tidyl choline, glycolipids, etc.) [59, 60] single-stranded DNA
[61] and cell surface molecules on T-cells such as Thyl [62].
Many of these self-epitopes are also present on pathogens
[63—65]. These natural antibodies are also termed as poly
reactive to explain their cross reactivity with multiple self-
and- non-self-antigens and are required for the immediate
recognition and protection against invading pathogens [59,
66]. Natural antibodies are also involved in the removal of
aging and dead cells, their debris, and self-antigens and thus
protect from autoimmunity [32]. This role of protection
from autoimmunity is very relevant especially under certain
pathological conditions that involve increased accumulation
of self-antigens such as oxidation specific epitopes during
atherosclerosis [31].

Natural IgM antibodies are predominantly produced by
a small subset of long-lived, self-replenishing B cells, termed
B-1 cells which exhibit a conserved repertoire [65]. These
antibodies are encoded in the germline genome and are not
dependent on immunoglobulin gene rearrangement. They
have broad specificities, but display low affinities and do not
require T-cell stimulation of the B lymphocytes to produce
antibodies. Presence of autoantibodies to epitopes of copper-
oxidized LDL (Cu-OxLDL) and malondialdehyde-modified
LDL (MDA-LDL) has been reported in human and animal
models of atherosclerosis [67—69]. Cholesterol-fed ApoE~~
mice were found to have very high autoantibody titers,
particularly IgM, to a wide variety of Ox LDL epitopes [70].
B-cell hybridomas generated from these mice revealed that
most of these autoantibodies were of IgM isotype, recognized
the lipid and ApoB moieties of OxLDL, but not of native
LDL, and had a specific recognition for phosphorylcholine
group [71, 72]. The prototypic and best-characterized anti-
body against OxLDL, EQO6, is identical to T15, a natural anti-
body known to recognize phosphorylcholine (PC) expressed
as a capsular epitopes on Streptococcus pneumonia [43] and
could also block OxLDL uptake by macrophages. Binder
et al. identified the functional role of antiphospholipid
antibodies in atherosclerosis by immunizing LDLr~/~ mice
with heat-inactivated PC containing pneumococci [73]. The
pneumococcal immunization was found to induce high titers
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FiGure 2: Immune response to LDL in atherosclerosis. The low-density lipoprotein (LDL) in the blood diffuses into the intima of the-
vessel wall, where it gets oxidized by enzymes or reactive oxygen to form OxLDL. Modified LDL particles are taken up by macrophages
that accumulate cholesterol and become foam cells. Ox-LDL causes overexpression of VCAM-1 and ICAM-1 by the endothelial cells, which
attracts the monocytes, and T cells move into the vessel wall. Activated macrophages secrete proinflammatory mediators, such as TNFa,
IL-1, MCP-1, and proteolytic enzymes (MMPs). Foam cells can process and present ApoB100 peptides to CD4+ T helper cells via MHC
class II molecules. Antigen presentation to CD4+ THI1 cells triggers their activation, with ensuing release of IFN- and TNF known to have
proatherogenic properties. VCAM, vascular cell adhesion molecule; ICAM, intercellular cell adhesion molecule; TNF, tumour necrosis factor;
IL, interleukin; MCP, macrophage chemoattractant protein; MMP, matrix metalloproteinase, Th, T helper cells; ApoB, apolipoprotein B.

of anti-OxLDL IgM (predominantly of the T15 clonotype)
and significantly reduce atherosclerotic lesion in the aortic
sinus. The uptake of OxLDL by macrophages was found to
be inhibited by the plasma of immunized mice. In a similar
attempt to use PC as a vaccine for atherosclerosis, Caligiuri
et al. immunized mice with PC covalently linked to a carrier
protein, keyhole limpet hemocyanin (KLH). Immunized
mice showed a 40% reduction in lesions compared to control
and sera from PC-KLH-immunized mice decreased, the
uptake of OxLDL compared to sera of PBS-immunized
mice [74]. Further studies in human revealed that patients
recovering from pneumococcal infections contain IgM anti-
bodies to the bacterial polysaccharide that significantly
correlated with levels of anti-OxLDL IgM antibodies in the
same serum sample. These findings suggest that PC-specific
cross-reacting IgMs are also present in humans. Human
IgG1 against a specific OxLDL epitope was reported to
induce rapid and substantial regression of atherosclerotic
lesions, possibly by stimulating lipid efflux and inhibiting
macrophage recruitment [75]. These recombinant human
atheroprotective antibodies could, thus, represent a novel
strategy for rapid regression/stabilization of atherosclerotic
lesions.

The mechanism of protection afforded by these antibod-
ies has not been studied in detail so far [76, 77]. Binding of
OxLDL by IgM antibodies could potentially neutralize most
of their proinflammatory properties, which promote athero-
genesis. The formation of circulating immune complexes of
these IgMs with OxLDL may have protective properties by
preventing LDL from entering vulnerable sites of the artery
wall. A number of in vitro studies have suggested that these
IgM antibodies block the uptake of OxLDL by macrophages
and thus could prevent foam cell formation in vivo [73].
They could prevent the activation of endothelial cells and
monocyte binding by apoptotic cells containing oxidized
lipids [67]. It is still not clear whether passive therapy with
these antibodies alone would be protective. Passive transfer
of antiphosphorylcholine monoclonal antibodies reduced
atherosclerosis supporting the protective role of natural
antibodies [78]. Thus, a number of protective mechanisms
have been suggested for natural antibodies; however, the
relevance of these mechanisms in vivo is still not very clear.

On the other hand existence of proatherogenic natural
antibodies is also a possibility which has not been studied in
detail so far, as some B-1 cell-derived IgMs have been shown
to play a pathogenic role in intestinal ischemia/reperfusion



injury [79]. Understanding the role of natural antibodies in
health disease and autoimmunity is likely to open up novel
therapeutic approaches for the control of atherosclerosis.

6. Antilipoprotein Antibodies: Friend or Foe?

Antibodies to lipoproteins are exemplary in having both
proatherogenic as well as protective function against ath-
erosclerosis (Figure 3).

6.1. Pathogenic Effects of Anti-OxLDL Antibodies. OxLDL
frequently presents in the sera of patients with coronary
artery disease, and the serum concentrations of circulating
oxLDL may correlate with the severity of CAD and acute
coronary syndrome [53, 54, 80, 81]. Analysis of several
studies suggests that, in humans, the humoral immune
response to modified LDL is pathogenic. Adaptive response
is known to generate IgG antibodies, and the predomi-
nance of IgG over IgM antibodies favors the formation of
IgG-containing immune complexes with proinflammatory
properties. Immune complexes formed with modified LDL
and IgG antibodies have been shown to have significantly
stronger proatherogenic and proinflammatory properties
than modified LDL itself [82-85]. Atherosclerotic lesions
also contain immunoglobulins that specifically recognize
OxLDL [86], and these antibodies are believed to be the most
effective parameters for predicting the extent of coronary
atherosclerosis [82]. Their presence is also associated with a
higher risk for coronary restenosis after coronary angioplasty
[83].

Elevated levels of anti-Ox-LDL antibody are related to
hypertension, systemic vacuities, peripheral arterial disease,
endothelial dysfunction, atherosclerosis, and cardiovascular
disease [69, 84, 85, 87-90]. Anti-OxLDL antibodies can also
induce other effects, such as complement activation, and
induction of adaptive immune response leading to inflam-
mation. Different subclasses of anti-Ox LDL antibodies with
a range of pathogenic effects are reported in humans [91].
IgG1 and IgG3 antibodies have been defined as proinflam-
matory, based on their ability to activate the complement
system by the classical pathway and to interact with Fcy
receptors in phagocytic cells [68]. The involvement of IgG1
and IgG3 antibodies in immune complex disease is also
well recognized [92]. However, there are reports showing
negative or no correlation between anti-LDL antibodies and
atherosclerosis [93, 94]. The measurement of free circu-
lating autoantibodies depends on the magnitude of the
antibody response, antibody avidity, and on the amount of
antigen present in circulation. Soluble immune complexes
are formed by the high-avidity antibodies and circulating
Ox-LDL leading to inaccurate estimation of anti-Ox-LDL
antibodies in the serum [52, 95].

6.2. Protective Effects of Ox-LDL Antibodies. Anti-Ox-LDL
antibodies are present in healthy individuals as well as in
patients with atherosclerosis [69, 96]. Several experimental
studies in animals using Ox-LDL immunization have shown
a positive correlation between high titers of anti-Ox-LDL
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antibodies and the degree of protection against atheroscle-
rosis [97-100]. Transfer of B cells from atherosclerotic
apolipoprotein (Apo) E- knockout mice (ApoE—/—) to
young, ApoE—/— mice protected the latter from devel-
oping advanced disease [96]. Passive administration of
recombinant human antibodies against aldehyde-modified
apolipoprotein B-100 peptide sequences was observed to
inhibit atherosclerosis in ApoE—/— mice [101]. These
antibodies were found to modulate the development of
fatty streaks as well as their progression to atherosclerotic
plaque [102]. Anti-Ox-LDL antibodies are present in healthy
individuals as well as in patients with atherosclerosis [69,
96]. Antibodies to Ox LDL seem to play an important role
in regulating the level of OX LDL in human. Circulating
antibodies recognizing ox-LDL have been found in children
with no risk of CVD, and an inverse correlation was
observed between plasma Ox-LDL concentrations with the
levels of anti-Ox-LDL antibodies in healthy subjects [103,
104]. In another study anti-Ox-LDL antibody levels were
inversely related to the intima-media thickness of the carotid
arteries in a healthy population with no clinical signs of
atherosclerosis [105]. These studies support the protective
function of anti LDL antibodies in atherosclerosis which
seem to be native antibodies that neutralize Ox-LDL [104,
105].

These observations raise several pertinent questions; is
it possible that different epitopes on Ox-LDL determine
its protection or pathogenicity? “Can we use anti-Ox-LDL
antibodies for atheroprotection? Can OX-LDL be used as an
immunogen for modulation of immune response without
having any serious adverse effects? Careful consideration of
these aspects will be most essential before they can be taken
as candidates for therapeutic intervention.

7. Vaccine against Atherosclerosis

Over the last few years, considerable efforts have been made
to develop a vaccine using epitopes from lipoproteins and
heat shock proteins [106-110]. Considering atherosclerosis
as an autoimmune disease wherein an immune response
is triggered against the autoantigens, a vaccine which can
restore the tolerance to these antigens would be effective
in reducing the inflammatory response. Antigen-specific
immune modulation is an attractive approach to prevent
chronic inflammatory diseases without affecting the normal
immune function of the host. Two self-antigens which have
emerged as most important ones are related to LDL and
heat shock protein (HSP) [60]. Normally T cells reacting to
these antigens should be eliminated by negative selection,
in the thymus leading to central tolerance. If oxidation of
LDL generates neoantigens, all the T cell clones reactive to
these would not be removed during thymic education [15].
Similarly in the case of HSP60, molecular mimicry between
HSPs of pathogens and human could trigger autoimmune
response leading to chronic inflammation. Peripheral tol-
erance plays a role in maintaining an immune homeostasis
to these self-antigens under normal circumstances. Vaccines
against atherosclerosis that are being currently developed are
different from traditional vaccines for infectious diseases.
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An ideal vaccine is aimed at restoring the self-tolerance to
autoantigens like LDL and heat shock proteins, reducing the
inflammation, and balancing the pro- and anti-atherogenic
immune response [111].

8. Modulation of Immune Response
to Lipoproteins

Lipoprotein oxidation and subsequent formation of sev-
eral new antigenic epitopes renders this molecule highly
immunogenic, leading to both humoral and cellular immune
response. Moreover LDL is a complex particle composed
of a high-molecular-weight protein, apolipoprotein B-100
(ApoB100), neutral and polar lipids, and lipophilic antiox-
idants. Since the different epitopes of ox-LDL induce athero-
genic immune responses, it is an attractive candidate to
explore immune modulation. Immunization against Ox-
LDL has been shown to reduce atherosclerosis by a number
of studies [73, 75, 97, 101, 109, 112-115].

Immunization of hypercholesterolemic rabbits and
LDLr~/~ mice with both MDA-LDL and Cu-Ox-LDL were
found to generate high titers of antibodies and inhibit
atherosclerosis development by 40-70%, suggesting an

induction of atheroprotective immune response [68, 97,
100, 108]. The mechanism of protection afforded by this
immunization is thought to be through IgM antibodies
generated against Ox-LDL that are shown to block the
uptake of Ox-LDL by CD36 receptors on macrophages,
thus reducing foam cell formation [116]. Induction of oral
tolerance to Cu-Ox-LDL and MDA-LDL mediated by Treg
cells and TGF-f3 was also reported to attenuate the initiation
and progression of atherosclerosis in LDLr~/~ mice [109].
Similar effects were also observed on tolerance induction to
HSP60 [110].

The protein sequence of ApoB-100 was studied by
Fredrikson et al. to identify potential antigenic epitopes that
could have atheroprotective effects [112]. Out of the 302
overlapping 20 amino acid peptides synthesized, few were
found to provoke an atheroprotective immune response in
hypercholesterolemic mice [117]. Peptide 45, corresponding
to the amino acid sequence 661-680 of ApoB100 was found
to be one of the most effective atheroprotective peptides
[113]. The presence of autoantibodies against this peptide
sequence was also shown to be associated with reduced risk
for development of myocardial infarction (MI) in humans
[118]. Adoptive transfer of splenocytes from immunized
mice as well as monoclonal antibody against this peptide



was found to passively transfer protection [101]. Treatment
with human recombinant IgG1 antibodies against the same
epitope ameliorated the existing atherosclerotic lesions in
ApoB~/~ and LDLr~/~ mice. The study also demonstrated
reduction in macrophage MCP1 release leading to reduced
inflammatory plaques and increased reverse cholesterol
transport as a possible mechanism of protection [75].
Recently intranasal immunization with ApoB100 peptides
was found to induce protective immune response mediated
by antigen-specific Treg and could confer protection against
the disease in animal models. Our study showed a synergistic
effect of immunization with a combination of ApoB and
HSP60 peptides in preventing early atherosclerosis [106].
Molecular mimicry between PC of Ox-LDL and apoptotic
cells and that of pneumococcus leading to generation of
cross-reactive antibodies which can block uptake of LDL by
macrophages has been reported [73]. Thus, immunizations
with both ApoB peptides as well as oxidized phospholipids
have atheroprotective effects in animal models of diet-
induced atherosclerosis.

9. Conclusion

The search for alternative and more specific ways to reduce
the modification of LDL, which would consequently reduce
the immune response to modified lipoproteins, has received
continued attention from the atherosclerosis research com-
munity. Different epitopes on Ox-LDL is shown to determine
its protection or pathogenicity by various studies. The pos-
sibility of using Ox-LDL as an immunogen for modulation
of response without having any serious adverse effects has
to be elucidated. Anti-Ox-LDL antibodies with neutralizing
activity against modified LDL may be an effective therapeutic
molecule and needs to be deliberated carefully. Another
important criterion for a vaccine is to elucidate its potential
in preventing the progression of an established plaque.
Atherosclerosis is a slow progressing disease in human. Traces
of fatty streaks are also observed in children though the
disease manifests itself at a much later age. Development of a
proper clinical protocol, establishment of surrogate markers,
and identification of right patient population to study the
vaccine efficacy are some of the important criteria to be
explored in the development of a therapeutic vaccine. Careful
consideration of these aspects will be most essential before
they can be taken as candidates for therapeutic intervention.
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