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Abstract: The objective of the present study is to develop an optimized method where headspace-ion
mobility spectrometry is applied for the detection and discrimination between four petroleum-
derived products (PDPs) in water. A Box–Behnken design with a response surface methodology was
used, and five variables (incubation temperature, incubation time, agitation, sample volume, and
injection volume) with influences on the ion mobility spectrometry (IMS) response were optimized.
An IMS detector was used as a multiple sensor device, in which, each drift time acts as a specific
sensor. In this way, the total intensity at each drift time is equivalent to multiple sensor signals.
According to our results, 2.5 mL of sample incubated for 5 min at 31 ◦C, agitated at 750 rpm,
and with an injection volume of 0.91 mL were the optimal conditions for successful detection and
discrimination of the PDPs. The developed method has exhibited good intermediate precision and
repeatability with a coefficient of variation lower than 5%, (RSD (Relative Standard Deviation): 2.35%
and 3.09%, respectively). Subsequently, the method was applied in the context of the detection and
discrimination of petroleum-derived products added to water samples at low concentration levels
(2 µL·L−1). Finally, the new method was applied to determine the presence of petroleum-derived
products in seawater samples.

Keywords: petroleum-derived products; seawater; spills; ion mobility spectrometry; IMS sum
spectrum; chemometric; sensors; detection; discrimination

1. Introduction

Different technological and industrial developments over the past decades have
brought about an increment in petroleum exploitation as well as the materialization of
new petroleum-derived products (PDPs) [1]. The number of extraction, transport, or
treatment processes where petroleum is involved has, therefore, increased noticeably, and
as a consequence, oil and fuel spills have become more frequent [2–4]. Spills may be
a consequence of the accidental collision of crude oil tankers or undesired leaks from
underwater pipelines, among other reasons. However, they may also be a consequence of
intentional inappropriate waste management by refineries or other industries, or even the
result of negligent practices, such as inadequate tank cleaning procedures in an attempt to
avoid cleaning taxes [5–7].

PDPs contain thousands of hazardous chemicals that pose a potential threat to flora,
fauna, and human health [8,9]. Additionally, the natural processes that degrade them
require very long times to reach completion because of PDP’s complex chemical composi-
tion and physical structure. This means that they remain in the environment for lengthy
periods of time. Chemical toxicity is not the only serious consequence of spills, most PDPs
exhibit dense and opaque physical characteristics so that, when on the sea surface, they
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prevent sunlight from reaching the biological marine environment, which represents a
clear threat to sea-living creatures [10]. Furthermore, part of the water used in agriculture
is recycled water from PDP polluted sources, which means that a proportion of these
polluting substances could be absorbed by agricultural produce, and later on, be ingested
by animals or people with harmful consequences [11,12].

The negative consequences of spills have made of them a growing concern for society
and, therefore, different control and removal methods have been developed to minimize
their impact on the environment [13,14]. The first stage of spill control consists of contain-
ment and recovery, followed by strategies that focus on shoreline cleaning and elimination
of any remaining oil/fuel [15]. For these latter purposes, chemical dispersants or physical
methods such as compression or centrifugation are employed [16,17]. However, the correct
identification of the PDPs involved in each particular spill is a key factor in ensuring the
correct management. The fast and accurate identification of the specific PDPs involved
brings about two important advantages. Firstly, this allows for the correct selection of
the removal method in order to minimize toxicity, exposure and the remaining amount.
Secondly, it allows for the tracing of the spill to a particular source, which contributes to
avoiding future spills, as well as to the implementation of the necessary legal measures,
when applicable [18,19].

PDPs are a mixture of primarily aliphatic, aromatic hydrocarbons and heterocycles
that come from crude oil [20–22]. Although they all come from a common source, the
different refining processes that they undergo (cracking, alkylation, catalytic reforming, or
distillation) may drastically change their composition. Additionally, a number of additives
are added at different stages in order to modify their chemical and/or physical properties
and, finally, some of their fractions may be blended to elaborate specific commercial
products of interest. All of these factors make PDP difficult compounds to successfully
identify by means of ordinary forensic methods.

Most of the methods developed for the identification and discrimination of PDPs in
water are based on two main analytical techniques: (i) gas chromatography (GC) [23–26],
which provides information after the separation of the individual chemical compounds,
and (ii) infrared spectroscopy (IR) [27,28], which permits identification based on the whole
spectra of the PDP samples. Both techniques are based on the identification of individual
compounds and they been proven to be effective for this purpose. Nowadays, the use of fin-
gerprints represents an important improvement in environmental research studies [29–33],
since the methodologies that have been developed are rapid, reliable, and easy-to-use,
which are essential characteristics to confront highly toxic events such as PDP spills. In fact,
headspace-mass spectrometry (HS-MS), has been successfully used for the detection and
discrimination of PDPs that have suffered a weathering process [34,35] or PDPs in water
samples [29].

On the other hand, ion mobility spectrometry (IMS) has been successfully applied for
a large variety of purposes, such as food fraud detection [36–39], fire debris analysis [40,41],
and also to uncover drugs and explosives [42–44]. As regards environmental issues, IMS
has mainly been used to detect bacterial contamination [45–47], to characterize biodegraded
PDPs [48] and, in combination with extraction techniques, to identify polycyclic aromatic
hydrocarbons in water [49,50]. IMS exhibits a very low limit of detection (within the µL·L−1

range), and it does not require complex sample preparation methods [51]. It is usually
coupled to headspace (HS) techniques and the methods based on this analytical technique
do not usually require solvents, thus, their residues are minimal and could be considered as
environmentally friendly [52]. Lastly, IMS operates at atmospheric pressure, which means
that IMS can be used for the real-time monitoring of the analysis procedures and, therefore,
could be applied for the detection of PDPs spills in water. On the other hand, the IMS
technique can be used as a multiple sensor device, in which each drift time in the detector
acts as a specific “sensor” and the total volatile compounds intensity collected at each drift
time is equivalent to multiple sensor signals [36,40,48,53–55].
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The aim of this research is to develop a method based on HS-IMS for the detection
and discrimination of PDPs in water. For this purpose, a Box–Behnken design (BBD) with
response surface methodology (RSM) was applied to the five variables that were previously
selected. IMS was used as a multiple sensor device with all the advantages that this entails.
Ion mobility sum spectra (IMSS) has been proposed as a novel approach to determine the
optimum conditions that are required for the best discrimination between different PDPs
in water. The second goal of this investigation consists of applying the developed method,
i.e., IMSS combined with certain chemometric tools to PDP-added water samples in order
to determine how suitable it is for detecting and discriminating PDP spills in seawater
samples in a reliable, rapid, and easy-to-use manner.

2. Materials and Methods
2.1. Samples
2.1.1. Water Samples

Water samples of different origin and type (seawater and freshwater) were analyzed
by HS-GC-IMS and their blank spectra were obtained. For this reason, no differences
between fresh water and seawater were considered. The seawater both for the pure water
samples, as well as for the PDP-added samples used to optimize the method, were collected
from Cadiz Bay (Valdelagrana Beach). Two 500 mL replicas of pure seawater were collected
in opaque jars and kept at 4 ◦C until analysis. Finally, the optimized method was tested on
unaltered seawater samples collected from different points at the beach shores of the Cadiz
Bay. The locations of seawater collection spots are included in Table 1. The preservation
conditions of the unaltered seawater samples were the same as for the initial pure water
used for the optimization of the process.

Table 1. Natural seawater samples collected to optimize the analytical method: location and identifi-
cation acronym included.

Acronym Location

RS_1 Seawater sample from El Rinconcillo Beach. Algeciras. Spain (36◦09’48.7” N
5◦26’22.8” W). Collected on: 28/02/2018.

RS_2 Seawater sample from the port near El Rinconcillo Beach. Algeciras. Spain
(36◦09’45.1” N 5◦26’06.9” W). Collected on: 13/01/2018.

RS_3 Seawater sample taken between grounded boats. La Caleta Beach. Cadiz. Spain
(36◦31’54.7” N 6◦18’21.9” W). Collected on: 14/03/2018.

RS_4 Seawater sample from Punta Candor Beach. Cadiz. Spain (36◦38’32.1” N
6◦23’34.5” W). Collected on: 29/01/2018.

RS_5 Seawater sample from La Calita Beach in Puerto Sherry. El Puerto de Santa
Maria. Spain (36◦34’60.0” N 6◦16’05.1” W). Collected on: 15/04/2018.

RS_6 Seawater sample from Puerto Sherry. El Puerto de Santa María. Spain
(36◦34’50.0” N 6◦15’03.4” W). Collected on: 08/02/2018.

RS_7 Seawater sample from Cadiz harbor. Cadiz. Spain (36◦32’01.6” N 6◦17’31.5” W).
Collected on: 23/03/2018.

2.1.2. PDP Samples

The main PDPs that are most frequently found in industrial and seaport spills were
added to the water samples in order to optimize the detection and discrimination of the
method. A total of 16 PDPs that could classified into 4 different groups were selected:
gasoline (n = 4), diesel (n = 4), lubricant (n = 4), and kerosene (n = 4). A description of the
sample sources can be seen in Table 2. It can be observed that the samples were collected
on different dates and from different places in order to ensure a wide variety of samples.
Their physical and chemical properties were previously determined by our research team
in order to correctly classify them into the appropriate group [56].
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Table 2. Petroleum-derived products used for this research.

Group Acronym Description

Gasoline
(Gas)

Gas_95_1 Gasoline 95 octane. Collected on: 28/06/2018. REPSOL Gas Station
El Puerto de Santa Maria. Spain.

Gas_95_2 Gasoline 95 octane. Collected on: 29/06/2018. Carrefour Gas
Station Jerez de la Frontera. Spain.

Gas_98_1 Gasoline 98 octane. Collected on: 19/09/2018. REPSOL Gas Station
Cordoba. Spain.

Gas_98_2 Gasoline 98 octane. Collected on: 20/07/2018. Carrefour Gas
Station Jerez de la Frontera. Spain.

Diesel
(Dies)

Dies_1 Automotive diesel fuel (A)-diesel e+ neotech. Collected on:
27/05/2018. REPSOL Gas Station Torre del Mar. Spain.

Dies_2 Automotive diesel fuel (A)-diesel e+ neotech. Collected on:
20/06/2018. REPSOL Gas Station Torre del Mar. Spain.

Dies_3 Industrial diesel fuel (B)-diesel e+. Collected on: 05/05/2018.
REPSOL Gas Station Port Caleta de Velez. Spain.

Dies_4 Industrial diesel fuel (B)-diesel e+. Collected on: 10/06/2018.
CEPSA Gas Station Port Caleta de Velez. Spain.

Lubricant
(LUB)

LUB_1 Engine lubricant 2T. Cepsa Store. Spain. Collected on: 17/05/2018.
LUB_2 Engine lubricant 2T. Racing Store. Spain. Collected on: 10/08/2018.
LUB_3 Boat lubricant. Cadiz Port. Spain. Collected on: 14/07/2018.

LUB_4 Boat lubricant. Cadiz Port. Spain. Origin unknown.
Collected on: 24/05/2018.

Kerosene
(Ker)

Ker_1 Aviation kerosene. Collected on: 17/06/2018.
Malaga airport. Spain.

Ker_2 Aviation kerosene. Collected on: 25/07/2018.
Malaga airport. Spain.

Ker_3 Aviation kerosene. Collected on: 02/06/2018. Airfield La
Axarquia-Leoni Benabu. Malaga. Spain.

Ker_4 Aviation kerosene. Collected on: 22/07/2018. Airfield La
Axarquia-Leoni Benabu. Malaga. Spain.

2.1.3. Petroleum Products in Water Samples

For the optimization of a method to discriminate between different PDPs in water, four
50 µL·L−1 solutions using Gas_95_1, Dies_1, LUB_1 and Ker_1 to ensure the discrimination
between the four groups were prepared. According to Spanish law (Royal Decree 60/2011
by the Spanish Ministry of the Environment Rural and Marine Affairs), the maximum level of
PDP content in water should not exceed 8 µL·L−1 to guarantee a safe environment [57]. For
this reason, and in order to ensure successful discrimination, much higher concentrations
(50 µL·L−1) were used for the optimization process. Later on, in order to test the efficacy
of the developed method, a number of PDP-added samples were elaborated by adding
16 different PDPs to pure water samples at 8, 4, 2, 0.8, and 0.4 µL·L−1 concentration levels.

2.2. HS-GC-IMS Acquisition

The pure water and the PDP-added water samples were analyzed by headspace-gas
chromatography-ion mobility spectrometry (HS-GC-IMS) Flavour Spec (G.A.S., Dortmund,
Germany). No pretreatment was applied to vials, instead, they were immediately placed
into the autosampler oven. 3H Tritium beta radiation was the ionization methodology
used and a nitrogen generator (G.A.S., Dortmund, Germany) was selected to provide the
99.999% pure nitrogen employed as the drift and carrier gas. The GC column was a 20 cm
multicapillary MCC OV-5 (G.A.S., Dortmund, Germany).

A Box–Behnken design was applied to optimize the conditions related to HS. Refer to
Section 2.2.1. for selection and description.

The GC-IMS conditions were as follows: EPC1 (drift gas) was fixed at top flow
(250 mL/min) to avoid the noise from no-ionized compounds in the analysis. EPC2 (carried
gas) was set according to the following ramp: 5 mL/min (t = 0 min), 10 mL/min (t = 5 min),
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and 25 mL/min (t = 10 min). Total analysis time: 15 min. The system temperature was set
as follows: T1: 45 ◦C; T2: +5 ◦C over the HS temperature; T3: 80 ◦C and T4: 80 ◦C.

2.2.1. Optimization of the Conditions

The different variables that affect the IMS spectra signal are mostly related to the
particular conditions employed to generate the HS of the volatile compounds. According
to the literature, the most influential variables are incubation temperature, incubation time,
agitation, volume of injection, and volume of the sample [58]. Therefore, these were the
variables that we optimized by means of a BBD with RSM. Each variable was analyzed
at three different levels, as shown in Table 3, where (−1) represents low level, (0) middle
level, and (1) high level.

Table 3. Selected variable values and their coded and non-coded levels for the Box–Behnken design–
response surface methodology (BBD-RSM).

Variable −1 0 1

Incubation time (min) 5 15 25
Incubation temperature (◦C) 30 50 70

Agitation (rpm) 250 500 750
Injection volume (mL) 0.5 0.75 1
Sample volume (mL) 0.5 1.5 2.5

The studied ranges were chosen according to the aim of this study: the development
of a rapid analytical method to detect and discriminate PDPs in water samples. Thus, the
incubation time was set between 5 and 25 min. The incubation temperature, agitation, and
volume of injection were limited by the conditions allowed by the GC-IMS, and the sample
volume was limited to 2.5 mL in order to achieve a balance between the reliable headspace
and a short analysis time.

BBD, in conjunction with RSM, was applied to optimize the conditions in order to
discriminate the PDPs in the water samples. The BBD design consisted of 46 experiments
with 6 repetitions in the central point (Table A1). All the trials were performed in a
random order.

2.3. Data Treatment
2.3.1. IMS Sum Spectrum

A two-dimensional data matrix is usually obtained from a HS-GC-IMS analysis, where
the GC information is represented on the Y-axis as the retention time, and the IMS informa-
tion is shown on the X-axis as the drift time. This matrix provides fundamental information
for the identification of individual compounds, but the data treatment is time-consuming
and requires specific analytical skills. They are, therefore, difficult to use in routine control
analyses, such as those typically performed in environmental forensic investigations.

For this reason, IMS sum spectrum (IMSS) has been proposed as an alternative.
Initially, each compound’s drift time was normalized by means of the software application
to the signal of the reaction ion peak (RIP). RIP is the signal produced by the water in the
air that has been ionized by tritium beta radiation. It represents the total number of ions
available for ionization, and therefore, it is used as the reference signal. Then, the total
intensities at each drift time were equaled, assuming no chromatographic information was
used, and the IMS detector acted as the sensor. The resulting IMSS includes the intensity
levels corresponding to 4500 drift times, from 0.000 to 4.500 (RIP relative). The spectra
have been reduced to the zone that includes the compounds of interest. This is why the
IMSS were reduced from 1.020 to 2.000, with a total of 980 drift times (Figure 1). In all
cases, the IMSSs were normalized by assigning one unit to the maximum intensity. The
IMSS of all the samples was obtained by means of LAV HS-GC-IMS software (G.A.S.,
Dortmund, Germany).
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2.3.2. Data Analysis

Statgraphic Centurion XVI. I (Statgraphics Technologies, Inc., The Plains, VA, USA)
was used for the development of the BBD-RSM, based on a total of 46 experiments, for the
determination of the optimum conditions.

Once the optimum conditions were determined, a number of PDP-added samples, as
well as pure water samples, were analyzed under such conditions. The IMSSs obtained
from each one of the analyses, as well as the specific chemometric tools, were used to
determine the useful information to detect and discriminate each PDP added to the samples.
Thus, hierarchical cluster analysis (HCA) as a non-supervised methodology, and linear
discriminant analysis (LDA) as a supervised tool, were carried out by means of the statistical
computer package IBM SPSS Statistics 22 (Armonk, NY, USA).
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3. Results and Discussion
3.1. Optimization of the Method

The first aim of this research was the optimization of a method based on IMSS to
discriminate between different PDPs in water samples. Based on their impact on the
HS-IMS responses, five variables were selected: incubation time, incubation temperature,
agitation, injection volume, and sample volume. A BBD-RSM was applied to evaluate the
effect from each variable on the response and to determine the optimum conditions for
identifying the different PDPs in the water samples. Each sample’s IMSS characteristics
were used for the optimization of the method to ensure the discrimination of the different
PDPs added to the water samples, as already explained in Section 2.2.1.

It was observed that water samples do not produce any kind of signal, while the
mixed PDP-added samples at 50 µL·L−1 produced specific signals in the detector. For this
reason, it was decided that the purpose of the optimization was to maximize the differences
between the responses from the four different types of PDP-added samples. Therefore,
only the 46 experiments that were performed on these four sample types were applied
the BBD.

For this purpose, gasoline, diesel, lubricant and kerosene solutions at 50 µL·L−1 in
water were analyzed under the optimal conditions that had been previously determined
for each one of the 46 experiments. An IMSS was obtained for each one of the 184 analyses
(46 experiments × four solutions). These were normalized and reduced to the drift range
where the compounds could be detected (from 1.020 to 2.000 (RIP relative)). Then, the
differences between the IMSS response intensities at each one of the drift times were
calculated. The sum of the drift time differences between Gas-Dies, Gas-Lub, Gas-Ker,
Dies-Lub, Dies-Ker and Lub-Ker IMSS responses was used as the signal to be optimized.

An analysis of variance (ANOVA) was used to evaluate the influence from each factor
and from the possible interactions between them on the successful discrimination of each
one of the four PDPs in the water samples. The correlation between the actual differences in
IMSS response intensities and the predicted values was evaluated by means of Equation (1).

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + β12X1X2 + β13X1X3 + β14X1X4 + β15X1X5 + β23X2X3+
β24X2X4 + β25X2X5 + β34X3X4 + β35X3X5 + β45X4X5 + β11X1

2 + β22X2
2 + β33X3

2 + β44X4
2 + β55X5

2 (1)

In this equation, Y is the predicted sum of the differences between the samples, which
depends on a number of independent variables and quadratic coefficients. The variables
are as follows: β0 is the model constant; X1 is the incubation time; X2 is the incubation
temperature; X3 is the agitation; X4 is the injection volume; X5 is the sample volume. On
the other hand, the coefficients are the following: βi is the linear coefficient and βij is
the cross-product coefficient. The coefficients of the different parameters in the quadratic
polynomial equation, as well as their significance (p-values), are shown in Table 4.
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Table 4. ANOVA of the quadratic model for the discrimination of the different petroleum-derived
products (PDPs) in the water samples.

Variable Factor Coefficient F-Value p-Value

Incubation temperature X1 −1294.850 107.740 0.000
Incubation time X2 −85.321 0.470 0.500

Agitation X3 65.092 0.270 0.606
Injection volume X4 254.135 4.150 0.052
Sample volume X5 1212.570 94.490 0.000

Incubation temperature: Incubation
temperature X1

2 −284.903 2.850 0.104

Incubation temperature: Incubation time X1X2 −47.107 0.040 0.852
Incubation temperature: Agitation X1X3 −192.386 0.590 0.448

Incubation temperature: Injection volume X1X4 −59.996 0.060 0.812
Incubation temperature: Sample volume X1X5 −326.713 1.710 0.202

Incubation time: Incubation time X2
2 −102.797 0.370 0.548

Incubation time: Agitation X2X3 −58.636 0.060 0.816
Incubation time: Injection volume X2X4 −81.193 0.110 0.748
Incubation time: Sample volume X2X5 −304.884 1.490 0.233

Agitation: Agitation X3
2 217.615 1.660 0.209

Agitation: Injection volume X3X4 7.701 0.000 0.976
Agitation: Sample volume X3X5 60.019 0.060 0.812

Injection volume: Injection volume X4
2 123.217 0.530 0.473

Injection volume: Sample volume X4X5 −123.500 0.250 0.625
Sample volume: Sample volume X5

2 −554.015 10.760 0.003

The factors that exhibited a p-value lower than 0.05 were considered to be significant
factors, since they affected the response at the selected level of significance (95%). In this
case, the incubation temperature, sample volume, and the quadratic term of the sample
volume were determined as the influential variables.

The incubation temperature presented a negative coefficient (b1 = −1294.850), which
implies that the four groups were more efficiently discriminated when the incubation
temperature was at the low limit of the studied range. On the other hand, the sample
volume exhibited a positive coefficient (b5 = 1212.570), which means that the discrimination
between the four groups was more successful when the sample volume was at the high
limit of the studied range. The effect of the variables and their interaction on the response
variable were visually represented in a standardized Pareto chart (Figure 2).
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In order to evaluate the statistically significant agreement between the measured and
the estimated response, the squared correlation coefficient (R2) was used and, in this case,
a value of R2 = 0.903 was obtained. Furthermore, a lack-of-fit analysis of variance was
conducted to determine the linearity of the model and the result was 0.91 (F = 0.95), which
means that the developed model was linear and that the differences between the predicted
and the actual values were not significant.

Finally, a three-dimensional surface plot of the quadratic response (Figure 3) was
produced by applying the polynomial equation (Equation (1)). The combined effect from
two of the influential variables (namely, the incubation temperature and sample volume)
on the differences between the quadratic response from the four types of PDP-added water
samples was evaluated.
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The differences in response intensities between the four groups occur when the
incubation temperature is near the minimum level studied and the sample volume is near
the maximum level studied. According to the BBD-RSM model, the optimum conditions
that resulted in the maximum discrimination between the four PDPs in water samples were
as follows: 2.5 mL of sample, 5 min incubation time at 31 ◦C, with agitation at 750 rpm and
a 0.91 mL injection volume.

The optimum incubation time and the incubation temperature were close to the lowest
values studied. Shorter incubation times were not tested, as greater variations of the signal
from the samples would be expected because of the headspace generation conditions. As
regards the incubation temperature, no lower temperatures were allowed by the equipment
used. On the other hand, the maximum discrimination was achieved at the highest levels
within the range studied, which, on the other hand, were the maximum values allowed by
the HS-GC-IMS system used.

3.2. Repeatability and Intermediate Precision of the Method

The repeatability and intermediate precision of the method were evaluated as ex-
plained below. The intermediate precision was determined as the proximity between
the measured differences on different days and the repeatability was determined as the
proximity between the differences measured in different experiments completed on the
same day. A total of 12 experiments were conducted under the same optimum conditions
on each one of the four sample types. Therefore, a total of 36 samples were analyzed as
follows: 12 gasoline-added samples, 12 diesel-added samples, 12 lubricant-added samples,
and 12 kerosene-added samples. All of them at 50 µL·L−1.

The coefficient of variation (CV) between the sum of intensity differences was calcu-
lated as a measurement of their similarities. The intermediate precision and repeatability



Sensors 2021, 21, 2151 10 of 16

of the method was calculated, and the results obtained were 2.35% and 3.09%, respec-
tively. Both values were below the acceptable limit (5%). It was, therefore, considered
that the repeatability and intermediate precision of the developed method was within
acceptable limits.

3.3. Analysis of the PDPs in Water Samples

Once the method had been optimized, the applicability of this technique to discrimi-
nate between different PDPs in water samples had to be evaluated. Although 50 µL·L−1

concentration levels had to be used for optimization of the method, lower concentration
levels should be used to validate the method and the highest PDP/water concentration
level allowed by Spanish legislation, which is 8 µL·L−1, was included. In fact, not only
the PDPs in the water samples had to be successfully discriminated, but the method
should also prove its suitability to detect the presence of such PDPs in water at much
lower concentrations. Two replicas of pure seawater samples were analyzed to obtain a
homogeneous group.

The first samples to be analyzed were those with the maximum PDP content level
allowed by Spanish law. A total of 18 samples (two replicas of pure seawater with the addi-
tion of any of the 16 PDPs included in Table 2 at 8 µL·L−1) were analyzed by HS-GC-IMS,
according to the previously established optimum conditions. The IMSS of each one of the
PDP-added samples was obtained and reduced to the drift range of interest (1.020 to 2.000
(RIP relative)). Then, the results were normalized to the maximum. Specific chemometric
tools were applied to determine if the differences between IMSS responses could be used
to successfully discriminate between the different PDPs added to the water samples.

Some clear trends in the IMSS response differences could be visually observed. Thus, a
non-supervised method was selected to evaluate such trends and to classify them according
to the presence or absence of the PDP in the water and even according to the type of PDP.
A HCA along with the furthest neighbor method and squared Euclidean distance was
applied. The IMSS of the two replicas of each of the 18 samples were analyzed using this
HCA method. The results were graphically represented in a dendrogram (Figure 4).
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Two clear groups could be observed (A and B). Group B is divided into two clusters
(B1 and B2). Cluster B1 comprises all the samples containing gasoline and a tendency to
further classify them according to gasoline octane grade was observed. Cluster B2 includes
four out of the eight lubricant-added samples.

Group A was also divided into two clusters (A1 and A2). Cluster A1 was formed by
five subclusters. Subcluster A1.1 contains four out of the eight diesel-added samples, and
two of the eight lubricant-added samples. Subcluster A1.2 was exclusively formed by all
of the pure water samples. Subcluster A1.3 includes the remaining two lubricant-added
samples. Subcluster A1.4 was solely formed by four of the eight kerosene-added samples,
while subcluster A1.5 contains the remaining four diesel-added samples. Finally, Cluster
A2 grouped together the four remaining kerosene-added samples.

The suitability of the method to detect PDP contamination was confirmed, since a
clear tendency to classify the samples according to the presence or absence of PDPs could
be observed. Furthermore, even though some misclassifications of PDPs with similar
compositions could be observed, a tendency to group the samples according to the type of
PDP was revealed, particularly in the case of gasoline.

In order to determine the drift time zones that were relevant for the discrimination
of the samples, so that a total and complete discrimination between the samples could
be achieved, a supervised technique, i.e., LDA was used. All of the 36 IMSSs were used
for this purpose and 67% of them were selected to create the model, whereas the rest
of the IMSSs were used to validate it. By means of the stepwise method, five groups
were created as follows: pure water, gasoline-added, diesel-added, lubricant-added and
kerosene-added samples.

All (100%) of the groups were successfully classified. The samples are represented in
Figure 5, according to their first two discriminant functions (F1 and F2). It can be observed
that F1, with positive scores, is the main responsible for the discrimination of the kerosene-
added samples. Diesel-added samples scored around 0 for F1, while the rest of the samples
presented negative scores. On the other hand, F2 allowed for the discrimination of the pure
water samples, with positive scores, from the rest of the samples, with scores of almost zero
or even negative scores in the case of gasoline-added samples. It can be seen that based
on the IMS spectroscopic data, the lubricant-added samples and the diesel-added samples
presented the closest values between them. Based on the LDA results, the PDPs could be
detected and even identified according to their PDP type.

In order to test the suitability of the developed method, the PDP maximum content
(8 µL·L−1) currently established by Spanish legislation as representing non-contaminated
seawater was included. Therefore, the suitability of the developed method to detect
and discriminate PDPs in water samples at a concentration of 8 µL·L−1 was tested and
confirmed. Then, the method was tested for lower concentration levels. For that purpose,
64 PDP-altered samples were elaborated by adding each one of the 16 PDPs described in
Table 2 at concentrations of 4 µL·L−1, 2 µL·L−1, 0.8 µL·L−1, and 0.4 µL·L−1. The samples
were analyzed and each one of their IMSSs were reduced.

An LDA was applied to the samples with the same concentration level in order to
verify if pure water and PDP-added samples could be successfully discriminated. Although
all the samples containing PDPs at concentrations of 4 µL·L−1 and 2 µL·L−1 were fully and
successfully discriminated, when their PDP concentration level went down to 0.8 µL·L−1,
some of the lubricant or diesel-added samples were misclassified (Table 5). It was then
observed that even at concentrations as low as 0.4 µL·L−1, 100% of the PDPs were success-
fully detected, with 100% discrimination between the pure water group and the rest of the
groups. However, the misclassification between the different PDPs increased. Therefore,
2 µL·L−1—which represents 25% of the lowest legal limit in Spain—was established as the
lowest concentration limit that this method can handle efficiently.
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Table 5. LDA data corresponding to the total and percentage of successful pure water and PDP-added
sample classifications.

Concentration
(µL·L−1) Pure Water Gas Die Lub Ker

8 4 (100%) 8 (100%) 8 (100%) 8 (100%) 8 (100%)
4 4 (100%) 8 (100%) 8 (100%) 8 (100%) 8 (100%)
2 4 (100%) 8 (100%) 8 (100%) 8 (100%) 8 (100%)

0.8 4 (100%) 8 (100%) 7 (87.5%) 100 (100%) 8 (100%)
0.4 4 (100%) 8 (100%) 7 (87.5%) 7 (87.5%) 8 (100%)

Considering such minimum concentration level requirements, only the samples con-
taining any of the PDPs of interest at concentrations of 8 µL·L−1, 4 µL·L−1, and 2 µL·L−1

were used to elaborate the discrimination functions that would allow for the detection
and identification of each PDP added to the water. Therefore, an LDA of pure water and
PDP-added samples at concentrations of 8 µL·L−1, 4 µL·L−1, and 2 µL·L−1 was conducted.
A total of 100 samples were analyzed using the stepwise cross-validation method. Success-
ful classification of 96% of the samples was achieved. Only three diesel-added samples
at 2 µL·L−1 were misclassified as lubricant-added samples, while one lubricant-added
sample at 2 µL·L−1 was misclassified as a diesel-added sample. It could be observed that
these errors took place at low concentration levels and between groups with similar PDP
compositions. The resulting model, i.e., five discrimination functions for water, Gas, Die,
Lub and Ker, will allow for the detection of PDP in water samples at concentration levels
between 2 µL·L−1 and 8 µL·L−1.

3.4. Application to Natural Samples

Once the suitability of the method for the detection and discrimination of PDP-added
samples at concentrations as low as 2 µL·L−1 was tested and confirmed, the method was
tested against unaltered seawater samples (Table 2). The five discriminant functions previ-
ously obtained were applied to the unaltered seawater sample IMSS response intensities
at the drift times that had been selected for the pure samples. Seven of the unaltered
seawater samples were collected and analyzed in duplicate and most of the samples were
classified in the pure water group. Nevertheless, the samples from Algeciras and Cadiz
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ports showed IMSS response intensities that agreed with those previously obtained for
diesel and lubricant-added water samples. This suggests that diesel and lubricant were
present in the samples at concentration levels higher than 2 µL·L−1.

4. Conclusions

In the present study, a method based on HS-IMS—in which IMS was used as a multiple
sensor device to discriminate PDPs in water samples—was optimized. According to our
results, the optimum conditions were 2.5 mL incubated for 5 min at 31 ◦C and agitated at
750 rpm. The optimized method exhibited good repeatability and intermediate precision
with RSDs lower than 5% for both factors.

The developed method was confirmed as being suitable for the discrimination of any
of the 16 PDPs included in this study and added to seawater samples at concentrations
as low as 2 µL·L−1. Naturally, full discrimination between pure seawater and PDP-added
samples was also achieved at concentrations as low as 0.4 µL·L−1, which represents 5% of
the maximum concentration allowed by Spanish legislation.

In summary, the developed method based on HS-GC-IMS, in which IMSS is used
in combination with a number of chemometric tools, has proven to be a practical ap-
proach that can be employed in environmental forensic investigations for the detection and
discrimination of PDPs in seawater.
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Appendix A

Table A1. Box-Behnken design matrix with the values of the six variables for each experiment and measured and pre-
dicted responses.

Experiment Incubation
Time (min)

Incubation
Temperature (◦C)

Agitation
(rpm)

Injection
Volume (mL)

Sample
Volume (mL)

Measured
Response

Predicted
Response

Relative
Error (%)

1 15 50 750 0.75 0.50 1995.15 1927.07 3.47
2 15 50 250 0.50 1.50 3136.79 2913.67 7.38
3 15 50 500 0.75 1.50 3006.22 2999.02 0.24
4 15 50 500 1.00 0.50 2072.53 2066.15 0.31
5 15 50 250 0.75 0.50 1838.73 1922.00 4.43
6 15 50 750 0.50 1.50 3059.73 2771.06 9.90
7 15 30 500 1.00 1.50 3432.70 3422.67 0.29
8 15 50 750 1.00 1.50 3022.98 3032.90 0.33
9 5 50 500 1.00 1.50 2975.55 2919.55 1.90
10 15 50 500 0.50 0.50 1648.85 1688.52 2.38
11 15 50 250 1.00 1.50 3084.64 2960.11 4.12
12 15 30 250 0.75 1.50 3287.25 3184.06 3.19
13 25 50 750 0.75 1.50 2736.63 2717.00 0.72
14 5 50 500 0.75 0.50 1588.39 1654.55 4.08
15 25 50 250 0.75 1.50 2640.63 2710.54 2.61
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Table A1. Cont.

Experiment Incubation
Time (min)

Incubation
Temperature (◦C)

Agitation
(rpm)

Injection
Volume (mL)

Sample
Volume (mL)

Measured
Response

Predicted
Response

Relative
Error (%)

16 5 50 500 0.50 1.50 2637.91 2584.23 2.06
17 15 70 750 0.75 1.50 1778.89 1954.30 9.40
18 15 50 500 0.75 1.50 2874.66 2699.02 6.30
19 15 50 500 0.75 1.50 2874.66 2699.02 6.30
20 25 70 500 0.75 1.50 1786.34 1791.53 0.29
21 5 50 750 0.75 1.50 2759.58 2860.95 3.61
22 25 50 500 0.50 1.50 2366.48 2580.10 8.64
23 15 70 500 1.00 1.50 2189.53 2067.82 5.72
24 5 70 500 0.75 1.50 1715.84 1723.96 0.47
25 15 30 500 0.75 2.50 3472.08 3696.63 6.26
26 5 50 500 0.75 2.50 3517.25 3472.00 1.29
27 15 70 250 0.75 1.50 2012.62 2081.60 3.37
28 5 30 500 0.75 1.50 3283.33 3171.70 3.46
29 15 70 500 0.75 2.50 2230.74 2075.06 7.23
30 15 50 500 0.75 1.50 2454.59 2699.02 9.49
31 15 50 500 1.00 2.50 3057.82 3155.22 3.14
32 25 50 500 0.75 0.50 1751.32 1874.11 6.77
33 25 30 500 0.75 1.50 3448.04 3133.49 9.56
34 25 50 500 1.00 1.50 2541.73 2753.04 7.98
35 15 50 250 0.75 2.50 2836.79 3074.55 8.04
36 15 30 500 0.75 0.50 2085.95 2157.35 3.37
37 25 50 500 0.75 2.50 3070.42 2781.79 9.86
38 15 50 750 0.75 2.50 3113.24 3199.66 2.74
39 15 70 500 0.50 1.50 1745.15 1873.68 7.10
40 15 50 500 0.75 1.50 2361.75 2499.02 5.65
41 15 30 500 0.50 1.50 2868.33 3108.54 8.04
42 15 30 750 0.75 1.50 3438.30 3441.54 0.09
43 15 50 500 0.50 2.50 2881.15 3024.59 4.86
44 15 70 500 0.75 0.50 1498.05 1489.21 0.59
45 15 50 500 0.75 1.50 2622.25 2699.02 2.89
46 5 50 250 0.75 1.50 2546.31 2737.23 7.23
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