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Abstract

Background: Factor Xa inhibitor is used for preventing venous thromboembolism (VTE) in adult patients receiving
orthopedic operation. However, the role of factor Xa inhibitor, rivaroxaban, in angiogenesis is still unknown.

Methods and results: Streptozotocin (STZ)–induced diabetic mice with model of hind-limb ischemia, were
divided into non-diabetic control, diabetic control, and low- and high-dose rivaroxaban treatment groups, in
order to evaluate the effect of rivaroxaban in angiogenesis. Doppler perfusion imaging showed that blood
flow recovery was significantly increased, and more capillary density occurred in the rivaroxaban treatment
group. In vitro studies, human endothelial progenitor cells (EPCs) treated with rivaroxaban had significant
functional improvement in migration and senescence under hyperglycemic conditions. Rivaroxaban also increased
endothelial nitric oxide synthase (eNOS) as well as vascular endothelial growth factor (VEGF) expressions in
hyperglycemia-stimulated EPCs.

Conclusions: Rivaroxaban promoted vessel formation in diabetic mice and improved endothelial progenitor cell
function under hyperglycemic conditions. These effects may be associated with enhancement of expression of eNOS
and VEGF.
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Background
Diabetes mellitus is a chronic metabolic disease associ-
ated with microvascular and macrovascular complica-
tions [1–3]. Patients with diabetes have impaired
collateral vessel formation in various vascular beds [4].
Recent evidence suggests that bone marrow–derived
endothelial progenitor cells (EPCs) play important roles
in the process of angiogenesis in response to ischemic
conditions [5]; however, patients with diabetes and/or
cardiovascular risk factors have a decreased number and
function of EPCs [6]. These findings serve as an impetus
for the therapeutic targets for high glucose-related
vascular complications in diabetic patients.
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Rivaroxaban is a direct factor Xa inhibitor that pre-
vents venous thromboembolism and reduces the risk
of stroke in atrial fibrillation patients. Low-dose
rivaroxaban with aspirin has been approved for use in
acute coronary syndrome patients [7]. Rivaroxaban
attenuates the leukocyte-platelet-endothelial inter-
action, which leads to the attenuation of microthrom-
bus formation in diabetic animals [8]. Rivaroxaban
has also been shown to inhibit inflammatory media-
tors and promote lesion stability in atherosclerosis
animal studies [9]; however, little is known about the
effect of rivaroxaban on angiogenesis in diabetes.
Therefore, we determined whether or not rivaroxaban

enhances neovascularization in diabetic mice ischemic
tissues and improves EPC function under hypergly-
cemic conditions.
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Materials and methods
Ethics statement
Peripheral blood samples were obtained from healthy
young adult volunteers. The clinical protocol conform
the declaration of Helsinki; the “Institutional Review
Board of Taipei Veterans General Hospital” approved
the study by expedited review and the subjects provided
signed informed consent.
All animal experimental procedures were approved by

the Institutional Animal Care Committee of the Taipei
Veterans General Hospital (approval reference number
IACUC 2011–209). The animal procedures were per-
formed conform the NIH guidelines (Guide for the care
and use of laboratory animals) or the guidelines from
Directive 2010/63/EU of the European Parliament on
the protection of animals used for scientific purposes.
Animal sacrifice was performed by CO2 asphyxiation
followed by cervical dislocation, and all efforts were
made to ameliorate animal suffering.

Animals
Eight-week old mice were purchased from the BioLASCO
Taiwan Co., Ltd (FVB mice). Experimental diabetes was
induced by daily intra-peritoneal injection of streptozoto-
cin (STZ; 40 mg/kg for FVB mice) in citrate buffer for
5 days and checked plasma sugar was higher than
250 mg/dl to make sure the mice in diabetes (DM
group), as described previously in a type I diabetes
mellitus model.

Ischemic hind limb model
The mice without STZ-treated were as non-diabetic
control group. STZ-induced diabetic mice were adminis-
tered with vehicle (0.5 % carboxymethyl cellulose with-
out rivaroxaban), low-dose of rivaroxaban (provided
from Bayer, Germany) (0.5 % carboxymethyl cellulose
with rivaroxaban 1 mg/kg/day) or high-dose of rivaroxa-
ban (0.5 % carboxymethyl cellulose with rivaroxaban
3 mg/kg/day) daily by gavage [10]. After 2-week treat-
ment, unilateral hind limb ischemia was induced by left
femoral artery ligation. The blood flow of hind limb was
measured with a Laser Doppler perfusion imager system
(Moor Instruments Limited, Devon, UK) before, after
surgery, and then weekly. The results were expressed as
the ratio of perfusion in the ischemic versus non-ischemic
limb [11].
Evaluation of angiogenesis in the ischemic limb
The mice were sacrificed in 5 weeks after surgery and
the limbs were fixed overnight in methanol. The ische-
mic muscles were embedded in paraffin, and then were
deparaffinized in order to incubate with rat monoclonal
antibody against murine CD31 (BD PharMingen, San
Diego, CA, USA) [10]. New capillaries were identified
based on morphology and positive staining for CD31 by
using the avidin-biotin-complex technique and Vector Red
Chromogenic substrate (Vector Laboratories, Burlingame,
CA, USA) after counterstaining with hematoxylin [10].
The visible capillaries were counted under 10 ran-
domly fields. The capillary density was expressed as
the number of capillaries/mm2 [12].

Measurement of EPCs mobilization
EPC mobilization was performed with a Calibur flow
cytometer (Becton-Dickinson, San Jose, CA, USA),
fluorescence-activated cell sorting (FACS). Briefly, per-
ipheral blood was incubated with fluorescein isothio-
cyanate (FITC) anti-mouse Sca-1 (eBioscience, San
Diego, CA, USA) and phycoerythrin (PE) anti-mouse
Flk-1 antibodies (VEFGR-2; eBioscience). Isotype-identical
antibodies served as controls (Becton-Dickinson, Franklin
Lakes, NJ, USA). Circulating EPCs were double-positive
gated for Sca-1 and Flk-1 [13], each analysis included
100,000 events. In cell study, hyperglycemia condition was
around 25 mM glucose (glucose 20 mM+medium 5 mM).

Scratch injury model in EPC
Human EPC isolation, cultivation, and characterization
were performed as previously described [10, 14–16]. The
EPC migration was evaluated by a scratch injury model;
confluence EPCs were treated with rivaroxaban (active
power provided by Bayer, Germany) for 24 h and incu-
bated under hyperglycemic conditions for 4 days. After
serum-starvation of EPCs overnight, and a scratch injury
was applied with a scalpel. Then, EPCs sprouting was
examined before and 12/24 h after scratching [10].

Measurement of tube formation assay
EPC tube formation assay was analyzed with the In Vitro
Angiogenesis assay kit (Chemicon, USA). EPCs were
placed onto a matrix with medium for 16 h. Tubule for-
mation was inspected under inverted light microscopy.
Six random fields were used to calculate the average of
complete tubes formed by cells using Image-Pro Plus
software (USA) [10].

Measurement of EPC senescence assay
Cellular aging was analyzed with senescence cell
staining kit (Sigma, USA). EPCs were fixed (2 % for-
maldehyde and 0.2 % glutaraldehyde), then incubated
with fresh X-gal staining solution (1 mg/mL X-gal,
5 mM potassium ferricyanide, and 2 mM MgCl2) in
the absence of CO2. Green-stained cells were counted
and the percentage of β-galactosidase-positive cells was
calculated [12], and senescent cells were expressed as % of
the total cell number.



Fig. 1 (See legend on next page.)
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Fig. 1 Effects of rivaroxaban on blood flow recovery and new vessel formation in STZ-induced diabetic mice after hind limb ischemia. a Representative
results of laser Doppler measurements pre-operatively and 5 weeks after hind limb ischemia surgery in non-diabetic control mice, diabetic control
mice, diabetic mice treatment with low-dose rivaroxaban, and diabetic mice with high-dose rivaroxaban. Color scale illustrates blood flow variation
from minimal (dark blue) to maximal (red) values. Arrows indicate ischemic limb after hind limb ischemia surgery. b Endothelial progenitor cell (EPC;
defined as Sca-1+/Flk-1+ cells) mobilization after tissue ischemia was determined by flow cytometry in mice. (*P < 0.05 compared with baseline; n = 6).
c Mice were sacrificed 5 weeks after surgery and capillaries in the ischemic muscles were visualized by anti-CD31 immunostaining. Results are the
mean ± standard error of mean (SEM). (*P < 0.05 compared with DM control; n = 6)
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Western blotting analysis
The proteins were probed with monoclonal antibodies
against eNOS, phosphorylated eNOS (p-eNOS), VEGF, and
actin (Chemicon, USA). Densitometric analysis was con-
ducted with ImageQuant (Promegam, USA) software [12].
Statistical analysis
Data are expressed as mean ± standard error of mean
(SEM). Statistical analysis was performed with unpaired
Student’s t-test or analysis of variance, followed by Scheffe’s
multiple comparison post hoc test using Statistical Package
of the Social Sciences software (version 14; SPSS, Inc.,
Chicago, IL, USA). P value < 0.05 was considered statisti-
cally significant [10].
Results
Rivaroxaban enhances blood flow recovery in diabetic
mice with hind limb ischemia
To evaluate the angiogenic effect of rivaroxaban, uni-
lateral hind limb ischemia surgery was performed in
non-diabetic and STZ-induced diabetic mice. Com-
pared to non-diabetic mice, the STZ-induced diabetic
mice had delayed blood flow recovery after surgery
(Fig. 1a); however, administration of low- or high-
dose rivaroxaban significantly enhanced flow recovery
in diabetic mice. Anti-CD31 immunostaining showed
decreased capillary density in diabetic mice compared
to control mice, but treatment with rivaroxaban
significantly increased capillary density in muscles in
diabetic mice (Fig. 1b). Rivaroxaban also increased EPC
proliferation after surgery in diabetic mice (Fig. 1c).
Fig. 2 Effects of rivaroxaban on eNOS and VEGF production in
ischemic tissues of mice. Impaired expression of eNOS, p-eNOS, and
VEGF of ischemic tissues in diabetic control mice compared to
non-diabetic control mice. Treatment with rivaroxaban in diabetic
mice promoted eNOS, p-eNOS, and VEGF production of ischemic tissues
compared to diabetic control mice. The expression of VEGF was enhanced
in a dose-dependent effect of diabetic mice treated with rivaroxaban. Each
bar graph shows the summarized data from six separate experiments by
densitometry after normalization. Data are the mean ± SEM. (*P < 0.05
compared with non-diabetic control mice, #P < 0.05 compared with
diabetic control mice; n = 6)
Rivaroxaban increased VEGF and eNOS expression in
diabetic mice with hind limb ischemia
Impaired expression of eNOS and VEGF in the ischemic
muscular tissues of diabetic mice was noted compared
to the non-diabetic mice. Rivaroxaban significantly in-
creased eNOS and VEGF expressions in the ischemic
muscular tissues in diabetic mice (Fig. 2). These results
suggested that rivaroxaban may enhance eNOS and VEGF
production in diabetes.
Rivaroxaban improves hyperglycemia-suppressed EPC
mobilization, tube formation, and senescence in vitro
To evaluate the effect of rivaroxaban on EPCs, the
scratch test for migratory function of EPCs was per-
formed. Compared with the control group, EPCs under
hyperglycemic conditions significantly decreased EPC
migration (Fig. 3); however, treatment with rivaroxaban
significantly improved hyperglycemia-suppressed late
EPC migratory function (Fig. 3b).



Fig. 3 Effects of rivaroxaban on human EPC migration in vitro. a The cell viability assays evaluated the toxicity of rivaroxaban in late EPC proliferation.
b The migratory function of EPCs was evaluated using a scratch injury model. Data are the mean ± SEM. (*P < 0.05 compared with control, #P < 0.05
compared with hyperglycemic conditions, n = 4 for each experiment)
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The tube formation of EPCs was also investigated; the
capillary density was significantly reduced in hypergly-
cemic conditions. Treatment of EPCs with rivaroxaban
significantly increased tube formation of EPCs compared
with the drug treatment group in hyperglycemic condi-
tions (Fig. 4).



Fig. 4 Effects of rivaroxaban on human EPC tube formation in vitro. An in vitro angiogenesis assay for EPCs used ECMatrix gel. Cells were stained
with crystal violet, and the averages of the total area of complete tubes formed by cells were compared using computer software. Data are the
mean ± SEM. (*P < 0.05 compared with control, #P < 0.05 compared with HG group, n = 4 for each experiment)
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Compared with the control, hyperglycemic condi-
tion significantly increased senescence-associated β-
galactosidase-positive EPCs. Treatment of EPCs with
rivaroxaban significantly reduced the percentage of
senescence EPCs in hyperglycemic conditions (Fig. 5).
Rivaroxaban up-regulates eNOS phosphorylation and
enhances VEGF expression in hyperglycemic conditions
To understand the effect of rivaroxaban on eNOS
activation in EPCs, treatment of EPCs with low- and
high-dose rivaroxaban in hyperglycemic conditions signifi-
cantly up-regulated hyperglycemic-impaired eNOS pro-
duction. In addition, rivaroxaban also up-regulated Akt
action and promoted VEGF production in hyperglycemic
conditions. These results suggested that rivaroxaban may
enhance eNOS, Akt, and VEGF production in EPCs after
hyperglycemic stimulation (Fig. 6).
Discussion
This is the first study to report the role of rivaroxaban
in angiogenesis in diabetes. Specifically, we demon-
strated that rivaroxaban enhanced blood flow recovery
in response to tissue ischemia in diabetic mice. The
eNOS and VEGF expression were increased in ischemic
tissues in diabetic mice after rivaroxaban treatment.
Rivaroxaban improved EPC functions, such as migration,
tube formation, and senescence. In addition, rivaroxaban
enhanced eNOS and VEGF activities of EPCs under
hyperglycemic conditions. Our findings suggest that
rivaroxaban has beneficial effects on EPCs under hyper-
glycemic conditions and might provide vascular protec-
tion in clinical settings.
EPCs are known as mediators of endothelial repair. In-

sulin resistance, including nitric oxide (NO) bioavailabil-
ity, and production of reactive oxidative stress (ROS)
potentially interferes with EPC function and decreased



Fig. 5 Effects of rivaroxaban on human EPC senescence in vitro. To determine the onset of cellular aging, acid β-galactosidase was used as a
biochemical marker for acidification (typical for EPC senescence). Data are the mean ± SEM. (*P < 0.05 compared with control, #P < 0.05 compared
with HG group, n = 4 for each experiment)
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levels of circulating EPCs were noted in diabetes
[17–20]; however, there is impaired angiogenesis in
the peripheral vasculature (not only decreased endo-
thelial cell proliferation, but also reduced growth
factor in diabetic patients) [21]. Under hyperglycemic
conditions, down-regulation of VEGF causes impair-
ment of angiogenesis, EPC dysfunction, and defective
lymphatic vascular formation [22, 23]. But Yu et al.
found the function of ex vivo expanded EPCs from
autologous bone marrow transplantation without damage
regardless of glycemic state [24]. Recent studies indicate
that commonly used drugs in diabetes, including ACE
inhibitors, DPP4 inhibitors, GLP-1 agonists, insulin, met-
formin, statins, or thiazolidinediones, may increase the
number of EPCs and improve EPC function [25]. For the
first time, we have demonstrated that the factor Xa inhibi-
tor, rivaroxaban, enhances VEGF and eNOS expression of
EPCs and improves EPC function, including migration,
tube formation, and senescence, in experimental diabetes.
Thus, rivaroxaban might increase angiogenesis under
hyperglycemic conditions.
Factor Xa plays a role in coagulation for the intrinsic
and extrinsic pathways, and along with thrombin [26],
mediates signal transduction through the activation of
protease-activated receptors (PARs) [27]. Factor Xa has
been shown to act as a mitogenic agent [26] in vascular
smooth muscle cells [28] and cytokine production in
endothelial cells [29]. Lange et al. showed that PAR-1
mediates the anti-angiogenic effect of factor Xa [26].
Yavuz et al. reported a dose dependent anti-angiogenic
behavior of Rivaroxaban and only anti-angiogenic effect
was shown in high toxic doses [30]. Here, we demon-
strated that rivaroxaban possesses pro-angiogenic prop-
erties in hind limb ischemia in diabetic mice and
through the increased secretion of growth factor im-
proves angiogenesis in diabetes.
Rivaroxaban may reduce venous thromboembolism

rates in total hip or knee arthroplasty patients [31];
however, some evidence shows that rivaroxaban has
some non-hemostatic functions. Zhou et al. reported
that rivaroxaban stabilizes atherosclerotic plaques in a
mouse model [9]. Low-dose rivaroxaban reduces the risk



Fig. 6 Effects of rivaroxaban on eNOS, p-eNOS, and VEGF production
in cultured human EPCs. a Administration of rivaroxaban (1, 5, and
10 μM) for 24 h, followed by treatment of EPCs under hyperglycemic
conditions. Rivaroxaban up-regulated hyperglycemic impaired e-NOS
phosphorylation, eNOS, and Akt phosphorylation. b In addition,
administration of rivaroxaban also promoted VEGF production
under hyperglycemic conditions. Each bar graph shows the summarized
data from four separate experiments by densitometry after
normalization. Data are the mean ± SEM. (*P < 0.05 compared
with control, #P < 0.05 compared with HG group, n = 4 for
each experiment)
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of death from stroke, cardiovascular causes, or myocar-
dial infarction, in acute coronary syndrome patients [32].
Ishibashi et al. found rivaroxaban might block the
interaction between advanced glycation end products
(AGEs)-RAGE axis and coagulation system to prevent
thromboembolic complications in diabetes [33].
Hollborn and colleagues found that the activated blood

coagulation factor Xa induced chemotaxis of retinal
pigment epithelial cells and stimulated the release of
angiogenic growth factors such as VEGF [34]. The inhib-
ition of factor Xa might suppress coagulation-induced
angiogenesis. It might suggest that rivaroxaban might
have a direct effect on the secretion of VEGF from the
EPCs in this study. In this study, rivaroxaban en-
hanced blood flow recovery and new vessel formation
in experimental diabetes. In in vitro assays, incubation
of cultured EPCs with rivaroxaban up-regulated eNOS
phosphorylation and improved EPC functions. These
findings suggest a vasoprotective effect of rivaroxaban
under hyperglycemic conditions via the NO pathways.
In our study, rivaroxaban seems to have direct effects

on endothelial progenitor cell to secret VEGF in vitro
and promote neovascularization in diabetic mice in vivo.
Although the best way to evaluate the angiogenic effects
of rivaroxaban should use factor Xa knock-out animal
models, our results still suggest the role of rivaroxaban
in angiogenesis in diabetes. The molecular mechanisms
of angiogenic factors of rivaroxaban in angiogenesis
should be further evaluated. We are also interested in
evaluating the correlation between the EPCs function
and ABI value in diabetes, non-diabetes and healthy
groups in our near future human study.
Conclusion
The present study showed that rivaroxaban improves
blood flow recovery and increases neovascularization in
diabetic mice with hind limb ischemia. Rivaroxaban also
promotes the functions of EPCs, including migration,
tube formation, and senescence, and via NO-related
pathways. These findings demonstrate that rivaroxaban
may also play a therapeutic role in patients with diabetic
foot or peripheral artery disease.
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