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Abstract
To deal with the large number of maliciousmobile applications (e.g. mobile malware), a

number of malware detection systems have been proposed in the literature. In this paper,

we propose a hybrid method to find the optimum parameters that can be used to facilitate

mobile malware identification.We also present a multi agent system architecture compris-

ing three system agents (i.e. sniffer, extraction and selection agent) to capture and manage

the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive

neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations

using data captured on a real-worldAndroid device and the MalGenome dataset demon-

strate the effectiveness of our approach, in comparison to two hybrid optimizationmethods

which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).

Introduction
The ubiquity and popularity of mobile devices is likely to increase in the foreseeable future. For
example, according to the GlobalWeb Index, 80% of Internet users own at least a smartphone
and the online mobile shopping showed 150% increase in 2015 compared to 2014 [1]. Due to
the widespread use of mobile devices and the amount of personal information stored on these
devices, they have become the targets of cybercriminals such as malware authors and hackers
[2–5]. Android devices are one of the most targeted platforms due to its market share, and
open nature of the operating system [6–9]. One popular mitigation strategy used by mobile
device users is anti-malware app. However, a recent systematic evaluation of popular free
Android cloud-based anti-malware apps concluded:

that no single cloud anti-malware app can be solely relied upon to mitigate known malware.
The findings were also concerning, particularly that malware threats are becoming more
sophisticated and targeted, using various attack vectors to escalate permissions and exfiltrate
data [10]
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Not surprisingly, mobile security and malware detection has been the subject of recent
research. In order to detect malware, one could deploy an intrusion detection system (IDS)
which can be either anomaly-based or signature-based (also called behavioral-based).The sig-
nature-based approach relies on a predefined pattern or malware signature. While such
approach is popular, they are ineffective in detecting unknownmalware [11,12]. Unlike signa-
ture-based detection, the anomaly-based approach seeks to differentiate between normal and
abnormal conditions. For example, abnormal conditions include specificmalware characteris-
tics (e.g. malware code and its logical structure) or behaviors, identified during the analysis of
such applications (i.e. malware analysis).

Malware analysis, a process of understanding how a particular piece of malware functions
by dissecting and studying the code and its behavior with the aims of mitigating the threat [13],
can be broadly categorized into static or dynamic analysis. Techniques such as machine learn-
ing have been utilized to differentiate normal and abnormal patterns in suspicious applications.
For example, Dimitrios et al. [14] evaluated the suitability of five machine learning classifiers,
namely: Radial Basis Function (RBF), Bayesian Networks, K-Nearest Neighbors (KNN) and
Random Forest in detecting anomalies on mobile devices. Similarly, Feizollah et al. [15] ana-
lyzed the performance of machine learning classifiers in detectingAndroid malware and find-
ings as high as 99.94% detection rate for KNN. Despite the amount of efforts on the topic,
mobile malware detection remains a topic of active research (and the focus of this paper).

In recent times, a number of studies have seek to evaluate the effectiveness of computational
intelligence-based solution for improved performance [16]. For example, FUGE [17] uses
fuzzy theory and genetic method in cloud job scheduling algorithm. Findings from the authors’
evaluations suggested the approach is efficient in terms of execution time, execution cost, and
average degree of imbalance. Similarly, FR-TRUST [18] uses fuzzy theory to compute a peer
trust level, and has been demonstrated to provide a high—ranking accuracy. In the study of
malware, however, there are relatively few research works that use the fuzzy inference system
because this is a complex NP problem. It is unlikely that efficient algorithms for solving this
problem are deterministic; hence, the interest in heuristic algorithms.

We introduce an integrated method to detect mobile malware in this paper. Specifically, we
use neural network function and regression to generalize the relationships between inputs
based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). The particle swarm optimiza-
tion was also combined in our approach in order to optimize the malware predictionmodel.
We then seek to evaluate the effectiveness of our approach and compare its performance with
other hi-tech soft computing hybrid approaches.

The rest of this paper is structured in sections as follows: review of the related work (see Sec-
tion 2), research methodology (see Section 3), proposed ANFIS framework (see Section 4), and
evaluation of findings (see Section 5). Finally, the last section concludes this study.

Related Work
Malware detection approaches are categorized into anomaly-based and signature-based detec-
tion [19]. The signature-basedmethod finds malware by comparing collected information
frommonitored users and system activities to an existing list of knownmalicious files database
(i.e. malware signatures) [20]. While this approach has worked in the past, it is largely ineffec-
tive against newmalware whose signature does not yet exist, or malware that uses “oligo-
morphic”, “polymorphic” and “metamorphic” to avoid detection by encrypting or modifying
parts of the code [21]. Such an approach also requires user to constantly update the signature
database. Anomaly-based approach monitors and analyzes network traffic, system, user activ-
ity levels, etc. for a particular pattern of behavior. An intrusion is flaggedwhen there is a
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deviation from the normal behavior patterns [22]. Machine learning classifiers, such as support
vector machine, neural network, genetic algorithm, fuzzy logic, and decision tree, have been
used in malware detectionmodels [23]. To optimize malware detectionmodel, selection of par-
ticular features is important in the machine learning classification process.

Malware analysis can be static or dynamic [24]. In static analysis, a program is examined by
inspectionwithout execution the actual application. Such process is normally performedman-
ually by malware analysts to understand the logical structure, flow and data content stored
within the binary itself, behavior of the suspicious application, etc. [25,26], [27]. For instance
using Android Application Package (APK) file, [28] and [29] used file permissions as key refer-
ence points to detect malware on Android devices. However, Android malware such as Droid-
KungFuUpdate can avoid from being detected by not requesting access to suspicious
permissions [30]. Do, Martini and Choo [31] in a recent work demonstrated how data can be
exfiltrated from an Android device using inaudible sound waves via the device’s speaker, which
requires no permission.With the constant evolution of (mobile) malware and significant
increase in the number of applications, it would be impossible to manually analyze all suspi-
cious applications. In dynamic analysis, application activities such as network traffic and sys-
tem calls are analyzed while the application is running. For example, Crowdroid [32] collected
the device’s kernel system calls to determine the application patterns. However, collecting sys-
tem calls is a complicated task which requires device to be rooted. This can result in devices
beingmore vulnerable to malicious exploitation. Yerima et. al [33] analyzed requested permis-
sions of 2000 applications and determined that more than 93% of malware applications request
for network connectivity (e.g. to communicate with the command and control server and to
exfiltrate data). This indicated that, malicious applications tend to use network more than nor-
mal applications. Hence, we focus on analyzing mobile network traffic.

A variable selection process through the ANFIS was used to find the most significant
parameters in malware detection. The aim was to find a subset of the logged variables that
shows good prognostic abilities [34–36], and one can filter irrelevant variables by use of former
knowledge. Donald A. [37] proposed genetic algorithm (GA) based variable selection for opti-
mization, which aim to decrease the error between true values and predictionmodel by choos-
ing the suitable explanatory variables (input). the ANFIS [38,39] was employed as a powerful
tool for the variable selection in this paper. ANFIS has also been used in several engineering
fields for modelling [40–43], predictions [44–46] and control [47–50]. The main idea of neuro-
adaptive learningmethods is to perform the fuzzy modelling procedure for data learning
[51,52]. The ANFIS forms the fuzzy inference system with pairs (input/output) of data [53].
This approach enables fuzzy logic to adapt the membership function parameters to best track
the given input/output data by the fuzzy inference system.

Metaheuristic optimization algorithms have become popular choice for solving complex
problem [54]. As pointed out by one of the reviewers that combining ANFIS and Particle
Swarm Optimization (PSO) for prediction problems has been widely studied and understood
[55–57]. Pooranian and Shojafar [58], for example, proposed combining PSO with the gravita-
tional emulation local search (GELS) to solve the independent task scheduling problem in grid
computing. Jiang also proposed a PSO based ANFIS approach to improve accuracy in model-
ling customer satisfaction, and demonstrated that such an approach achieves better perfor-
mance than fuzzy regression (FR), ANFIS and Genetic Algorithm (GA) based ANFIS
approaches [59]. Other combinations of PSO and ANFIS have been proposed in forecasting
such as in short-termwind power [60], and spur dike’s parameters [61]. In order to increase its
accuracy and performance, this paper applied three optimization techniques to ANFIS which
are ANFIS-PSO (ANFIS-particle swarm optimization), ANFIS-DE (ANFIS-differential evolu-
tionary) and ANFIS-ACO (ANFIS-ant colony optimization). These hybrid algorithms help
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improve the ANFIS performance by tuning the membership function towards zero error
analysis.

Research Methodology
This section describes our experiment setup, which consists of two phases, namely: data collec-
tion, and feature selection, extraction and labelling phase.

Data Collection
We gathered and analyzed network traffic developed by Android apps. In this phase, different
approaches were used to capture malware and normal network traffic (Fig 1).

Twenty popular (and reputable) apps from four different app categories were downloaded
from Google Play and installed on a mobile device running Android operating system Jelly
Bean version 4.1.2 (see Table 1). Prior to installation, we checked the authenticity of the apps.
The network traffic from running these apps was captured in a real-time network environment,
where each app was run for 30 minutes.

Of the 1260malware data samples from 49 families in theMalgenome [30] dataset, we captured
the network patterns of 1,000 samples. The samples were analyzed in real-timewith public mal-
ware-detection sandbox, namely: Anubis Iseclab [62] and automatic Android program analysis,
SanDroid [63], since the malware data samples in the dataset were generated by these platforms.

Fig 1. Data collectionphase.

doi:10.1371/journal.pone.0162627.g001

Table 1. Normal application categorization.

App Total Description

Social 3 Enables user to interact with other users or find people who share common interest
such as hobbies, religion, politics, and alternative lifestyles

Communication 6 Enables user to make (free) phone call, video call, send multimedia message,
attach file using network connection

Game 10 Enables user to play for enjoyment with certain situation either for educational or
amusement purpose. It can be grouped with network connection or connected with
social website.

Tool 1 Enables user to customize phone feature

doi:10.1371/journal.pone.0162627.t001
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Feature Selection, Extraction and Labelling
In this multi agent system architecture (Fig 2), three system agent is proposed to capture and
manage the pcap file for data preparation phase. The details of each agent and its role are given
in the next section.

Sniffer Agent. In the sniffer agent, the pcap file is capture from the network connection
betweenmobile apps and internet. Sniffer module using tShark (a network protocol analyzer)
[64], to retrieved all related information (see Fig 3). Later the sniffed data is fed to extraction
agent.

ExtractionAgent. Extraction agent consist of filter module which filter the collected net-
work traffic using Java andWireshark routine to clear the captured packets from unwanted

Fig 2. Multi agent.

doi:10.1371/journal.pone.0162627.g002

Fig 3. Sample of captured packets.

doi:10.1371/journal.pone.0162627.g003
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data. For example, we only use TCP packets in the network traffic data and remove UDP and
Domain name system (DNS) packets from it. The pseudocodeof this module is shown in Fig 4.

SelectionAgent. This agent is one of the most important agents in this model. This agent
has two modules which is Feature Module and LabelModule. Feature Module choose a num-
ber of features to be used as main attributes to classify mobile malware. The features were cho-
sen from a wide range of features in unbiased packet level features of the TUIDS intrusion
dataset. The main challenge in this phase was to identify the best applicable features in particu-
lar, which result in higher detection accuracy and avoiding an overfitting model. The dataset
needs to be filtered and refined from numerous excessive features. Some of the features are
linked, which can complicate the process of malware detection. Furthermore, features with
redundant information from other features may reduce the detectionmodel accuracy and
increase computational time and complexity of the model. In this study, a specificmethod to
select the best attributes frommachine learning toolWeka [65] called ClassifierSubsetEvalwas
applied.

We choose seven connection-based features to analyze, as shown in Table 2. The extracted
features were stored as a sequence of comma separated values (CSV) file. Next, after dataset
was extractedwith selected features, it was passed to Label module which labeled the dataset
according to Fig 5. This phase remove noise in dataset and to ensure experiment validity. The
final dataset from a combination of normal and infected data consists of three hundred thou-
sand rows of data with seven features, prior to splitting into 70% training and 30% testing data-
set. In order to avoid overfitting issue, we train our model with a wide range of examples and
split datasets.

Proposed Approach
We introduce an approach in this paper that combines adaptive neuro fuzzy inference system
(ANFIS) and particle swarm optimization (PSO).We used PSO to improve performance of

Fig 4. Pseudocode of filter module.

doi:10.1371/journal.pone.0162627.g004
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Table 2. Input and output parameters.

Inputs/Output Parameters Description

input 1 Maximum_Frame Themaximum number of frame in last P packets.

input 2 Frame_STD StandardDeviation for frame in P packets

input 3 Count_ACK The number of Acknowledge packet in the last P packets.

input 4 Minimum_Frame Theminimumnumber of frame in last P packets.

input 5 Average_Dest_Port Average number of unique destination port in the last P packets.

input 6 Average_Frame The average frame flowing in the last P packets.

input 7 Average_Source_Port Average number of unique source port in the last P packets.

output 1 0,1 Uninfected = 0, Infected = 1

doi:10.1371/journal.pone.0162627.t002

Fig 5. Decision tree for data labeling.

doi:10.1371/journal.pone.0162627.g005
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ANFIS by adjusting the membership functions and minimizing the error. Forecasts from
ANFIS can be used to reconstruct future behavior of the malware.

Particle swarm optimization (PSO)
PSO is an approach for optimizing “continue” and “discontinue” decisionmaking functions,
which develop by Dr. Kennedy and Dr. Eberhart in 1995 [55]. PSO has been used to model ani-
mals’ sociological and biological behavior (like groups of birds searching for food) [66]. The
PSO has also been employed in population-based search approach, in which a particle of a pop-
ulation is present for each individual potential solution or swarm. In this method, the position
of particle is changed constantly in a search space until reaching to the optimum solutions and
computational restrictions are reached.

Former experiential research shows the efficiency and advantages of the mentionedmethod
for optimization [67], [68].

For example, in an optimization issue with D variables, a swarm of N particles is estab-
lished in a way that every particle will be allotted to an arbitrary position in the hyperspace
with D measurements. Position of each particle for this situation is associated with a possible
answer for the optimization matter. Both v and x are flight speed of a particle over a solution
space and its position (direction). A scoring capacity is allocated to every individual x in the
swarm, which gains a wellness value. The latter is an indication of its competence to address
the issues.

A particle’s best prior position is represented by Pbest, and Gbest signifies the best swarm
particle. Each particle can log its own Pbest and find its Gbest. Subsequently, all particles that
move over the D-dimensional solution space should follow the rules updated for new positions
until they achieve optimum position. The subsequent deterministic and stochastic update rules
show how a particle’s position and velocity are updated (Eq 1):

viðtÞ ¼ oviðt � 1Þ þ r1ðxPbesti � xiðtÞÞ þ r2ðxGbest � xiðtÞÞ ð1Þ

xiðtÞ ¼ xiðt � 1Þ þ viðtÞ ð2Þ

In the above equation, random variables are shown by q1 and q2 and x represents an inertia
weight.

Positive acceleration constants are represented by C1 and C2 and the random variables are
outlined as q1 = r1c1 and q2 = r2c2, with (r1, r2,U(0,1)). The stochastic and weights of growing
speed terms that lead to a particle reaching to the Gbest and Pbest have speeding up constants
of C1 and C2. A particle can move a long distance from the target locales when the qualities are
few, while huge qualities cause the abrupt particles development to target locales. In line with
the average practice in [69], both C1 and C2 constants are equal to 2.0 in this study. In Eq 2, the
best likely amendment of dormancy x provides a harmony between the nearby and worldwide
examinations, which reduces the amount of emphases on finding an ideal arrangement. A
latency rectification capacity called the IWA or “idleness weight approach” was used in this
exploration work [69,70]. The x (latency weight) is changed amid the IWA according to the
associated relationship:

o ¼ omax �
omax � omin

Itrmax
Itr ð3Þ

In Eq 3, xmax and xmin represent the primary and ultimate inertia weights, the current num-
ber of iteration is represented by Itr and the maximum number of iteration is represented by
Itrmax.
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ANFIS
The term adaptive neuro-fuzzy inference system was introduced by Jang, 1993 refer to combi-
nation of Fuzzy Logic and ArtificialNeural Network to produce a powerful processing tool
[71]. For every input, two fuzzy if-then rule were generate in this study with maximum equal
to 1 and minimum equal to 0. Fig 6 shows the ANFIS arrangement and inputs.

Assume two inputs fuzzy if-then rules of Takagi and Sugeno’s type [72] were adopted:

if i is A and j is C and k is E and l is G then f1 ¼ p1iþ q1jþ r1kþ s1l þ t ð4Þ

Layer 1 contains membership functions (MFs) of input variables and feed input values for
the next layer. Each node in 1st layer is adaptive as: o = μ(i), where μ(i)i are membership
functions.

The bell-shapedmembership functions (Fig 7) is presented in Eq 5 for which the lowest and
highest amounts are 0 and 1, respectively.

f ðx; a; b; cÞ ¼
1

1þ x� c
a

� �2b ð5Þ

The function is subject to the following parameters, namely a, b and c. Each of these param-
eters define as follows: a is half width of the curve; b defines the gradient together with a; and c
is the midpoint of the membership function as shown in Fig 7.

In the 2nd layer (the membership layer), the weight of MFs is considered. The first layer
provides the input values for layer 2. The nodes in the second layer are fixed node. The output
is the product from all incoming signals and be described as,

wi ¼ mðiÞi � mðiÞiþ1
ð6Þ

Output of every node indicates the weight strength of a rule.
In layer 3 which is the rule layer, every node does the pre-condition matching of the fuzzy

rules, that calculate each rule’s activation level as well as the normalized firing strength. This is
a fixed layer as well, and each node computes the proportion of ith rule of the firing strength to

Fig 6. ANFIS structure.

doi:10.1371/journal.pone.0162627.g006
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the sum of ith firing strengths of all rules as:

w�i ¼
wi

w1 þ w2

; for i ¼ 1; 2 ð7Þ

The outputs of this layer are named as normalizedweights or firing strengths.
In layer 4 or defuzzification layer, all the adaptive nodes provide the resulting output values

from the inference of rules.

O4

i ¼ w
�

i � f ¼ w
�

i p1iþ q1jþ r1kþ s1l þ t ð8Þ

Here, the parameters set is shown as {pi, qi, ri, si, t}.
Layer 5 or the output layer summarizes the inputs output from layer 4. This layer also trans-

forms the results of fuzzy classification into a crisp. Here, the single node is fixed node and the
whole incoming signals is sum up to produce overall output as below,

O5

i ¼

X

i

w�i � f ¼

X

i
wi � f

X

i
wi

ð9Þ

The PSOmethod was used in this paper to help ANFIS adjust the membership function
parameters [70]. The main advantage of PSO technique is its friendly way of calculation in a
network topology of given size. The membership functions were triangular in this study.

ANFIS-PSOalgorithm
Fig 8 depicts the diagram of the sequential PSO and ANFIS combination [73]. In PSO, swarm
starts with a group of random solutions, each of which is called a particle, and*si represents the
particle’s position. Likewise, a particle swarmmoves in the problem space, where*vi expresses
the particle’s velocity. A function f is evaluated at each time step through input*si . Every parti-
cle records its best position related to the best fitness gained to this point, in*pi vector.

*pgi
tracks the most appropriate position identified by any neighborhoodmember. In universal

Fig 7. Three parameters in bell membership function; (a, b and c).

doi:10.1371/journal.pone.0162627.g007
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version of PSO,*pgi represents the most appropriate point in the entire population. A new
velocity is achieved for any particle i in each iteration according to the best positions of individ-
ual,*piðtÞ, and

*pgi ðtÞ neighborhood.The new velocity can be presented by:
*viðt þ 1Þ ¼ w*viðtÞ þ c1

*
;1 :ð

*pi ðtÞ �
*xi ðtÞÞ þ c2

*
;2:ð

*pgi ðtÞ �
*xi ðtÞÞ ð10Þ

In Eq 10, w represents the inertia weight. The positive acceleration coefficients are shown by
c1 and c2.

*
;1 and

*
;2 represent uniformly-distributed random vectors in [0,1], in which a ran-

dom value is tried for every dimension.*vi limit in the [-*vmax,
*vmax] series is reliant on the prob-

lem. Provided that the velocity exceeds the mentioned limit, in some cases it is rearranged
within its suitable limits. The position of every particle alters depending upon the velocities as

Fig 8. Diagram of sequential combination of PSO and ANFIS.

doi:10.1371/journal.pone.0162627.g008
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follows
*siðt þ 1Þ ¼

*siðtÞ þ
*viðt þ 1Þ ð11Þ

According to Eqs 10 and 11, the particles incline to gather nearby the best. PSO use for
designing a FS, or parameter optimization is expressed as:

Ri : if x1ðkÞ is Ai1 And . . .And xnðkÞ is Ain ; Then uðkÞis ai ð12Þ

Here, αi is a crisp value, k represents the time step, the input variables are x1(k), . . ., xn(k),
Aij is a fuzzy set and u(k) signifies the output variable for system.

For the FS in Eq 12 which comprises r rules and n input variables, its free parameters are
defined through a position vector:

*s ¼ ½m11; b11; . . . ;m1n; b1n; a1; . . . . . . ;mr1; br1; . . . ;mrn; brn; ar� 2 <<
D

ð13Þ

mrj ¼ xjðkÞ; brj ¼ bfix; j ¼ 1; . . . ; n ð14Þ

Following the process of rule creation and initialization, the preliminary antecedent part
parameters are outlined. According to Eqs 13 and 14, the ith solution vector*si is created as:

*si ¼ ½si1 si2 . . . siD� ¼ ½m11 þ Dmi
11
; bfix þ Dbi

11
; . . . ;m1n þ Dmi

1n; bfix þ Dbi
1n; a1; . . . ;

mr1 þ Dmi
r1; bfix þ Dbir1; . . . ;mrn þ Dmi

rn; bfix þ Dbirn; ar� ð15Þ

In the equation, Δmij and Δbij signify the numbers of small random, αi designates a random
number distributed arbitrarily and homogeneously in the fuzzy system output range. The eval-
uation function f for*si is calculated based upon the fuzzy system performance in Eq 15.

PSO looks for the best originator part parameters. Ps represents the population size. Eq 4
sets the elements in position*si . When t = 0, the*s1ð0Þ; . . . ;

*spð0Þ or initial positions are created

arbitrarily according to the best-performingFS found in ACO (*sPSO).
*s1ð0Þ is considered simi-

lar to *sPSO. The left Ps − 1 particles,*s1ð0Þ; . . . ;
*spð0Þ, are created by addition of uniformly-dis-

tributed random numbers to*sPSO shown as:
*sið0Þ ¼

*sPSO þ
*wi ; i ¼ 2; . . . ; Ps ð16Þ

*wi represents a random vector. The primary speed values of all particles,
*við0Þ; i ¼ 1; . . . ; Ps, are generated randomly. Each particle’s performance is evaluated accord-
ing to the FS it signifies. f is described as the E(t) or error index mentioned above. The best
position (*pi) of each particle and the best particle*pig in the whole population is obtained
according to f. Eqs 10 and 11 overhaul the velocity and position of each particle. The whole
learning procedure is accomplished as soon as a pre-defined paradigm is obtained [73].

There are five PSOmain parameters used during conducting experiment as shown in
Table 3, which are maximum number of iterations, population size of the domain, inertia

Table 3. Parameter characteristics used in this study.

Population Size Iterations InertiaWeight Damping Ratio Learning coefficient

Personal Global

40 1000 1 0.99 1 2

doi:10.1371/journal.pone.0162627.t003
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weight damping ratio and inertia weight, global learning coefficient and personal learning coef-
ficient. For this case study, we determined these parameters optimum values by trial and error
procedure.

Evaluation of model performances
Statistical tests offer a certain level of assurance about the validity, non-randomness of the [74].
Specifically, in this paper, we used root mean square error (RMSE), Eq 17 and coefficient of
determination (R2), Eq 18 to compare forecasting errors of between different models and deter-
mine the proportion of the variance of one variable that is predictable from the other variable,
respectively.

The following are the statistical indicators adopted to examine the ANFISmodel
performance:

1. root-mean-square error (RMSE)

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1
ðOi � PiÞ

2

n

v
u
u
t

ð17Þ

2. Coefficientof determination (R2)

R2 ¼

Xn

i¼1
ðOi �

�OiÞ:ðPi �
�PiÞ

� �2

Xn

i¼1
ðOi �

�OiÞ:

Xn

i¼1
ðPi �

�PiÞ

ð18Þ

n is the total number of test data, Pi = measurement values and Oi = ANFIS value.

Evaluations

Simulation findings
The preliminary data aids in creating the hybrid soft computing method, and three methods
were principally used to predict the data. The scatterplot in Fig 9 shows the estimation of best
mobile malware parameters. Next, the fit line with equation y = α0 + αl was generated.

Performance analysis
The available experimental data were used for assessing the performance of methods and iden-
tifying importance of the parameters. The R2 and RMSE were used to make comparison
between the real and predicted values for the soft computing method. Tables 4 and 5 present
the summary of comparison betweenANFIS-DE, ANFIS-PSO and ANFIS-ACO. The perfor-
mance analysis prediction of mobile malware using ANFIS-PSO is presented in Fig 10.

The ANFIS-PSO decision surface for mobile malware detection is shown in Fig 11 for the
two extracted parameters, Maximum_Frame and Frame_STD.

It can be noted from Fig 10, when the model output is smaller than 0.5, the decision should
be uninfected and when the model output is larger than 0.5 the decision should be infected.
Finally based on this observation,we created SIMULINK block diagram for ANFIS-PSO detec-
tion of android mobile malware Fig 12.
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Fig 9. Performance of ANFIS-DE, ANFIS-ACO and ANFIS-PSO for estimationof mobile malware. (a)
ANFIS-DE fit line. (b) ANFIS-ACO fit line. (c) ANFIS-PSO fit line.

doi:10.1371/journal.pone.0162627.g009
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Conclusion
The number and sophistication of Android malware are increasing and evolving, which neces-
sitates the development of more effectivemalware detection systems. Recent advances in the
literature suggests that artificial intelligence techniques are a promising approach to detect
mobile malware. Generally, mobile malware communicates with a compromised server or a
server under the control of an attacker, via a network. Thus, in this work, we focused on net-
work based features. Specifically, application traffic was filtered for its parameters and calcula-
tion was performed on these parameters to obtain the required features. We also proposed
three system agents to capture and manage the pcap file for the data preparation phase to
improve our detection system in terms of efficient data processing.

It is known that ANFIS scheme is computationally efficient and well-adaptable with optimi-
zation and adaptive techniques. This scheme can also be combined with expert systems and
rough sets for other applications, as well as used with other systems to handle more complex
parameters. Another advantage of ANFIS is its speed of operation, which is much faster than
in other control strategies. The laborious task of training membership functions is performed
in ANFIS using metaheuristic optimization algorithms (due to the nature of fuzzy systems).

A novel hybrid method (integrating ANFIS and PSO) was proposed in this study to forecast
the best parameters of a mobile malware analysis. The ANFIS-PSO is compared with two
hybrid optimization approaches, namely: ANFIS-ACO and ANFIS-DE. Our findings demon-
strated the utility of the proposedmethod. For example, ANFIS-PSO outperforms other
approaches with RMSE, 0.43133 in training and 0.43106 in testing. Its coefficient of determina-
tion (R2) also achieves an improved performance (e.g. 0.7692 in training and 0.7721 in testing).
For example, a majority (77%) of the variations in predicted result can be explained by the lin-
ear relationship between actual value and predictedmodel. This suggests that the prediction
model has a strong positive linear correlation in terms of its accuracy in predicting and detect-
ing Android malware.

Future work includes extending the research to a refined selection of variables (e.g. due to
evolution of malware). Another potential research area is to address the known challenges in
the selection of input variables, such as identifying and discarding irrelevant variables (noise).

Table 4. Analysis of Mean Square Error (MSE) and Standard Deviation (StD) for different methods.

ANFIS-ACO ANFIS-DE ANFIS-PSO

Training Data

MSE 0.20948 0.19487 0.18605

StD 0.4577 0.44144 0.43133

Test Data

MSE 0.21098 0.19576 0.18581

StD 0.45932 0.44245 0.43107

doi:10.1371/journal.pone.0162627.t004

Table 5. Analysis of performance for differentmethods to identify the optimum parameters of a mobile malware predictionmodel.

Method Training Testing

Error (RMSE) Coefficientof determination (R2) Error (RMSE) Coefficient of determination (R2)

ANFIS-PSO 0.43133 0.7692 0.43106 0.7721

ANFIS-ACO 0.45769 0.7311 0.45932 0.7392

ANFIS-DE 0.44144 0.7413 0.44244 0.7562

doi:10.1371/journal.pone.0162627.t005
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Fig 10. Predictionof the optimum parameters of mobile malware analysis by ANFIS-PSO for testing
data.

doi:10.1371/journal.pone.0162627.g010

Fig 11. ANFIS-PSO decisionsurface for the detectionmodel: input1—Maximum_Frame, input2—
Frame_STD.

doi:10.1371/journal.pone.0162627.g011
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It is, therefore, useful to designmethods that require reduced number of input variables (i.e.
reducing the complexity of the model) yet achieving better efficiency and accuracy.
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