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Abstract

To deal with the large number of malicious mobile applications (e.g. mobile malware), a
number of malware detection systems have been proposed in the literature. In this paper,
we propose a hybrid method to find the optimum parameters that can be used to facilitate
mobile malware identification. We also present a multi agent system architecture compris-
ing three system agents (i.e. sniffer, extraction and selection agent) to capture and manage
the pcap file for data preparation phase. In our hybrid approach, we combine an adaptive
neuro fuzzy inference system (ANFIS) and particle swarm optimization (PSO). Evaluations
using data captured on a real-world Android device and the MalGenome dataset demon-
strate the effectiveness of our approach, in comparison to two hybrid optimization methods
which are differential evolution (ANFIS-DE) and ant colony optimization (ANFIS-ACO).

Introduction

The ubiquity and popularity of mobile devices is likely to increase in the foreseeable future. For
example, according to the Global Web Index, 80% of Internet users own at least a smartphone
and the online mobile shopping showed 150% increase in 2015 compared to 2014 [1]. Due to
the widespread use of mobile devices and the amount of personal information stored on these
devices, they have become the targets of cybercriminals such as malware authors and hackers
[2-5]. Android devices are one of the most targeted platforms due to its market share, and
open nature of the operating system [6-9]. One popular mitigation strategy used by mobile
device users is anti-malware app. However, a recent systematic evaluation of popular free
Android cloud-based anti-malware apps concluded:

that no single cloud anti-malware app can be solely relied upon to mitigate known malware.
The findings were also concerning, particularly that malware threats are becoming more
sophisticated and targeted, using various attack vectors to escalate permissions and exfiltrate
data [10]
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Not surprisingly, mobile security and malware detection has been the subject of recent
research. In order to detect malware, one could deploy an intrusion detection system (IDS)
which can be either anomaly-based or signature-based (also called behavioral-based). The sig-
nature-based approach relies on a predefined pattern or malware signature. While such
approach is popular, they are ineffective in detecting unknown malware [11,12]. Unlike signa-
ture-based detection, the anomaly-based approach seeks to differentiate between normal and
abnormal conditions. For example, abnormal conditions include specific malware characteris-
tics (e.g. malware code and its logical structure) or behaviors, identified during the analysis of
such applications (i.e. malware analysis).

Malware analysis, a process of understanding how a particular piece of malware functions
by dissecting and studying the code and its behavior with the aims of mitigating the threat [13],
can be broadly categorized into static or dynamic analysis. Techniques such as machine learn-
ing have been utilized to differentiate normal and abnormal patterns in suspicious applications.
For example, Dimitrios et al. [14] evaluated the suitability of five machine learning classifiers,
namely: Radial Basis Function (RBF), Bayesian Networks, K-Nearest Neighbors (KNN) and
Random Forest in detecting anomalies on mobile devices. Similarly, Feizollah et al. [15] ana-
lyzed the performance of machine learning classifiers in detecting Android malware and find-
ings as high as 99.94% detection rate for KNN. Despite the amount of efforts on the topic,
mobile malware detection remains a topic of active research (and the focus of this paper).

In recent times, a number of studies have seek to evaluate the effectiveness of computational
intelligence-based solution for improved performance [16]. For example, FUGE [17] uses
fuzzy theory and genetic method in cloud job scheduling algorithm. Findings from the authors’
evaluations suggested the approach is efficient in terms of execution time, execution cost, and
average degree of imbalance. Similarly, FR-TRUST [18] uses fuzzy theory to compute a peer
trust level, and has been demonstrated to provide a high—ranking accuracy. In the study of
malware, however, there are relatively few research works that use the fuzzy inference system
because this is a complex NP problem. It is unlikely that efficient algorithms for solving this
problem are deterministic; hence, the interest in heuristic algorithms.

We introduce an integrated method to detect mobile malware in this paper. Specifically, we
use neural network function and regression to generalize the relationships between inputs
based on the Adaptive Neuro-Fuzzy Inference System (ANFIS). The particle swarm optimiza-
tion was also combined in our approach in order to optimize the malware prediction model.
We then seek to evaluate the effectiveness of our approach and compare its performance with
other hi-tech soft computing hybrid approaches.

The rest of this paper is structured in sections as follows: review of the related work (see Sec-
tion 2), research methodology (see Section 3), proposed ANFIS framework (see Section 4), and
evaluation of findings (see Section 5). Finally, the last section concludes this study.

Related Work

Malware detection approaches are categorized into anomaly-based and signature-based detec-
tion [19]. The signature-based method finds malware by comparing collected information
from monitored users and system activities to an existing list of known malicious files database
(i.e. malware signatures) [20]. While this approach has worked in the past, it is largely ineffec-
tive against new malware whose signature does not yet exist, or malware that uses “oligo-
morphic”, “polymorphic” and “metamorphic” to avoid detection by encrypting or modifying
parts of the code [21]. Such an approach also requires user to constantly update the signature
database. Anomaly-based approach monitors and analyzes network traffic, system, user activ-
ity levels, etc. for a particular pattern of behavior. An intrusion is flagged when there is a
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deviation from the normal behavior patterns [22]. Machine learning classifiers, such as support
vector machine, neural network, genetic algorithm, fuzzy logic, and decision tree, have been
used in malware detection models [23]. To optimize malware detection model, selection of par-
ticular features is important in the machine learning classification process.

Malware analysis can be static or dynamic [24]. In static analysis, a program is examined by
inspection without execution the actual application. Such process is normally performed man-
ually by malware analysts to understand the logical structure, flow and data content stored
within the binary itself, behavior of the suspicious application, etc. [25,26], [27]. For instance
using Android Application Package (APK) file, [28] and [29] used file permissions as key refer-
ence points to detect malware on Android devices. However, Android malware such as Droid-
KungFuUpdate can avoid from being detected by not requesting access to suspicious
permissions [30]. Do, Martini and Choo [31] in a recent work demonstrated how data can be
exfiltrated from an Android device using inaudible sound waves via the device’s speaker, which
requires no permission. With the constant evolution of (mobile) malware and significant
increase in the number of applications, it would be impossible to manually analyze all suspi-
cious applications. In dynamic analysis, application activities such as network traffic and sys-
tem calls are analyzed while the application is running. For example, Crowdroid [32] collected
the device’s kernel system calls to determine the application patterns. However, collecting sys-
tem calls is a complicated task which requires device to be rooted. This can result in devices
being more vulnerable to malicious exploitation. Yerima et. al [33] analyzed requested permis-
sions of 2000 applications and determined that more than 93% of malware applications request
for network connectivity (e.g. to communicate with the command and control server and to
exfiltrate data). This indicated that, malicious applications tend to use network more than nor-
mal applications. Hence, we focus on analyzing mobile network traffic.

A variable selection process through the ANFIS was used to find the most significant
parameters in malware detection. The aim was to find a subset of the logged variables that
shows good prognostic abilities [34-36], and one can filter irrelevant variables by use of former
knowledge. Donald A. [37] proposed genetic algorithm (GA) based variable selection for opti-
mization, which aim to decrease the error between true values and prediction model by choos-
ing the suitable explanatory variables (input). the ANFIS [38,39] was employed as a powerful
tool for the variable selection in this paper. ANFIS has also been used in several engineering
fields for modelling [40-43], predictions [44-46] and control [47-50]. The main idea of neuro-
adaptive learning methods is to perform the fuzzy modelling procedure for data learning
[51,52]. The ANFIS forms the fuzzy inference system with pairs (input/output) of data [53].
This approach enables fuzzy logic to adapt the membership function parameters to best track
the given input/output data by the fuzzy inference system.

Metaheuristic optimization algorithms have become popular choice for solving complex
problem [54]. As pointed out by one of the reviewers that combining ANFIS and Particle
Swarm Optimization (PSO) for prediction problems has been widely studied and understood
[55-57]. Pooranian and Shojafar [58], for example, proposed combining PSO with the gravita-
tional emulation local search (GELS) to solve the independent task scheduling problem in grid
computing. Jiang also proposed a PSO based ANFIS approach to improve accuracy in model-
ling customer satisfaction, and demonstrated that such an approach achieves better perfor-
mance than fuzzy regression (FR), ANFIS and Genetic Algorithm (GA) based ANFIS
approaches [59]. Other combinations of PSO and ANFIS have been proposed in forecasting
such as in short-term wind power [60], and spur dike’s parameters [61]. In order to increase its
accuracy and performance, this paper applied three optimization techniques to ANFIS which
are ANFIS-PSO (ANFIS-particle swarm optimization), ANFIS-DE (ANFIS-differential evolu-
tionary) and ANFIS-ACO (ANFIS-ant colony optimization). These hybrid algorithms help
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Fig 1. Data collection phase.

doi:10.1371/journal.pone.0162627.9001

improve the ANFIS performance by tuning the membership function towards zero error
analysis.

Research Methodology

This section describes our experiment setup, which consists of two phases, namely: data collec-
tion, and feature selection, extraction and labelling phase.

Data Collection

We gathered and analyzed network traffic developed by Android apps. In this phase, different
approaches were used to capture malware and normal network traffic (Fig 1).

Twenty popular (and reputable) apps from four different app categories were downloaded
from Google Play and installed on a mobile device running Android operating system Jelly
Bean version 4.1.2 (see Table 1). Prior to installation, we checked the authenticity of the apps.
The network traffic from running these apps was captured in a real-time network environment,
where each app was run for 30 minutes.

Of the 1260 malware data samples from 49 families in the Malgenome [30] dataset, we captured
the network patterns of 1,000 samples. The samples were analyzed in real-time with public mal-
ware-detection sandbox, namely: Anubis Iseclab [62] and automatic Android program analysis,
SanDroid [63], since the malware data samples in the dataset were generated by these platforms.

Table 1. Normal application categorization.

App Total | Description

Social 3 Enables user to interact with other users or find people who share common interest
such as hobbies, religion, politics, and alternative lifestyles

Communication | 6 Enables user to make (free) phone call, video call, send multimedia message,
attach file using network connection

Game 10 Enables user to play for enjoyment with certain situation either for educational or

amusement purpose. It can be grouped with network connection or connected with
social website.

Tool 1 Enables user to customize phone feature
doi:10.1371/journal.pone.0162627.t001
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Feature Selection, Extraction and Labelling

In this multi agent system architecture (Fig 2), three system agent is proposed to capture and
manage the pcap file for data preparation phase. The details of each agent and its role are given
in the next section.

Sniffer Agent. In the sniffer agent, the pcap file is capture from the network connection
between mobile apps and internet. Sniffer module using tShark (a network protocol analyzer)
[64], to retrieved all related information (see Fig 3). Later the sniffed data is fed to extraction
agent.

Extraction Agent. Extraction agent consist of filter module which filter the collected net-
work traffic using Java and Wireshark routine to clear the captured packets from unwanted

No. Time Source Destination Protocol Length Info

50081 1105851.0492 10.0.2.15 208.43.117.142 TCP 385 [TcP segment of a reassembled PDU]

50082 1105851.0492 208.43.117.142 10.0.2.15 TCP 54 http-55921 [ACK] Seq=1 Ack=332 Win=8760 Len
50083 1105851.0896.10.0.2.15 208.43.117.142 TCP 1514 [TCP segment of a reassembled PDU]

50084 1105851.0896 208.43.117.142 10.0.2.15 TCcP 54 http-55921 [ACK] Seq=1 Ack=1792 win=8760 Le
50085 1105851.0897 10.0.2.15 208.43.117.142 HTTP 574 POST /device?api_key=0ku7SpgzGkINt5COVbzzpm
50086 1105851.0897 208.43.117.142 10.0.2.15 TCP 54 http-55921 [ACK] Seq=1 Ack=2311 win=8760 Le
50087 1105851.0990.10.0.2.2 10.0.2.15 TCP 179 [TcP segment of a reassembled PDU]

50089 1105851.1004 10.0.2.15 10.0.2.2 TCP 78 [TCP segment of a reassembled PDU]

50090 1105851.1004 10.0.2.2 10.0.2.15 TCP 54 52523-personal-agent [ACK] Seq=9907121 Ack=
50091 1105851.2411.10.0.2.15 198.74.57.199 TCP 74 59481-http [SYN] Seq=0 Win=5840 Len=0 MSS=1.
50092 1105851.5326 198.74.57.199 10.0.2.15 TCP 58 http-59481 [SYN, ACK] Seq=0 Ack=1 win=8192
50094 1105851.6182.10.0.2.15 10.0.2.2 TCP 186 [TCP segment of a reassembled PDU]

50095 1105851.618210.0.2.2 10.0.2.15 TCP 54 52523-personal-agent [ACK] Seq=9907121 Ack=
50096 1105851.622510.0.2.2 10.0.2.15 TCP 78 [Tcp segment of a reassembled PDU]

50097 1105851.623010.0.2.15 10.0.2.2 TCcP 80 personal-agent-52523 [PSH, ACK] Seq=677906
50098 1105851.631510.0.2.2 10.0.2.15 TCP 54 52523-personal-agent [ACK] Seq=9907145 Ack=

Fig 3. Sample of captured packets.
doi:10.1371/journal.pone.0162627.9003
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Filter module
1.  Input: pcap file;
2. getArguments pcap from network
traffic;
3. Loop read each packet;
4 If packet header = TCP;
5 data < write tcp;
6. Choose all info and write to csv;
7 Else If packet header = UDP;
8 data <— write udp;
9. Endif:
10. End loop;

Fig 4. Pseudocode of filter module.

doi:10.1371/journal.pone.0162627.9004

data. For example, we only use TCP packets in the network traffic data and remove UDP and
Domain name system (DNS) packets from it. The pseudocode of this module is shown in Fig 4.

Selection Agent. This agent is one of the most important agents in this model. This agent
has two modules which is Feature Module and Label Module. Feature Module choose a num-
ber of features to be used as main attributes to classify mobile malware. The features were cho-
sen from a wide range of features in unbiased packet level features of the TUIDS intrusion
dataset. The main challenge in this phase was to identify the best applicable features in particu-
lar, which result in higher detection accuracy and avoiding an overfitting model. The dataset
needs to be filtered and refined from numerous excessive features. Some of the features are
linked, which can complicate the process of malware detection. Furthermore, features with
redundant information from other features may reduce the detection model accuracy and
increase computational time and complexity of the model. In this study, a specific method to
select the best attributes from machine learning tool Weka [65] called ClassifierSubsetEval was
applied.

We choose seven connection-based features to analyze, as shown in Table 2. The extracted
features were stored as a sequence of comma separated values (CSV) file. Next, after dataset
was extracted with selected features, it was passed to Label module which labeled the dataset
according to Fig 5. This phase remove noise in dataset and to ensure experiment validity. The
final dataset from a combination of normal and infected data consists of three hundred thou-
sand rows of data with seven features, prior to splitting into 70% training and 30% testing data-
set. In order to avoid overfitting issue, we train our model with a wide range of examples and
split datasets.

Proposed Approach

We introduce an approach in this paper that combines adaptive neuro fuzzy inference system
(ANFIS) and particle swarm optimization (PSO). We used PSO to improve performance of
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Table 2. Input and output parameters.

Inputs/Output Parameters Description

input 1 Maximum_Frame The maximum number of frame in last P packets.

input 2 Frame_STD Standard Deviation for frame in P packets

input 3 Count_ACK The number of Acknowledge packet in the last P packets.
input4 Minimum_Frame The minimum number of frame in last P packets.

input5 Average_Dest_Port Average number of unique destination portin the last P packets.
input 6 Average_Frame The average frame flowing in the last P packets.

input7 Average_Source_Port Average number of unique source portin the last P packets.
output 1 0,1 Uninfected = 0, Infected = 1

doi:10.1371/journal.pone.0162627.t002

=TCP =UDP
m Dsagree
MF>=1514 MF<1514
1314>AF>722 AF<=722
MF<65 MF>64
. Avg Destination
fr Port
ADP<31054 ADP>31054
Agree ACK
ACK>24 feNses
ASP<37781 ASP>37781
Agree Disagree

Fig 5. Decision tree for data labeling.

doi:10.1371journal.pone.0162627.9005
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ANFIS by adjusting the membership functions and minimizing the error. Forecasts from
ANTFIS can be used to reconstruct future behavior of the malware.

Particle swarm optimization (PSO)

PSO is an approach for optimizing “continue” and “discontinue” decision making functions,
which develop by Dr. Kennedy and Dr. Eberhart in 1995 [55]. PSO has been used to model ani-
mals’” sociological and biological behavior (like groups of birds searching for food) [66]. The
PSO has also been employed in population-based search approach, in which a particle of a pop-
ulation is present for each individual potential solution or swarm. In this method, the position
of particle is changed constantly in a search space until reaching to the optimum solutions and
computational restrictions are reached.

Former experiential research shows the efficiency and advantages of the mentioned method
for optimization [67], [68].

For example, in an optimization issue with D variables, a swarm of N particles is estab-
lished in a way that every particle will be allotted to an arbitrary position in the hyperspace
with D measurements. Position of each particle for this situation is associated with a possible
answer for the optimization matter. Both v and x are flight speed of a particle over a solution
space and its position (direction). A scoring capacity is allocated to every individual x in the
swarm, which gains a wellness value. The latter is an indication of its competence to address
the issues.

A particle’s best prior position is represented by Pbest, and Gbest signifies the best swarm
particle. Each particle can log its own Pbest and find its Gbest. Subsequently, all particles that
move over the D-dimensional solution space should follow the rules updated for new positions
until they achieve optimum position. The subsequent deterministic and stochastic update rules
show how a particle’s position and velocity are updated (Eq 1):

Vi(t) = wvi(t - 1) + pl(beesti - xi(t)) + p2(xGbest - xi(t)) (1)

x,(t) = x(t = 1) +v(t) (2)

In the above equation, random variables are shown by q; and g, and x represents an inertia
weight.

Positive acceleration constants are represented by C; and C, and the random variables are
outlined as g; = r1¢; and g, = 7,5, with (ry, 75, U(0,1)). The stochastic and weights of growing
speed terms that lead to a particle reaching to the Gbest and Pbest have speeding up constants
of C; and C,. A particle can move a long distance from the target locales when the qualities are
few, while huge qualities cause the abrupt particles development to target locales. In line with
the average practice in [69], both C; and C, constants are equal to 2.0 in this study. In Eq 2, the
best likely amendment of dormancy x provides a harmony between the nearby and worldwide
examinations, which reduces the amount of emphases on finding an ideal arrangement. A
latency rectification capacity called the IWA or “idleness weight approach” was used in this
exploration work [69,70]. The x (latency weight) is changed amid the IWA according to the
associated relationship:

(@) — @,
R T (3)

max

In Eq 3, Xpay and X, represent the primary and ultimate inertia weights, the current num-
ber of iteration is represented by Itr and the maximum number of iteration is represented by

Ttrax.
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Fig 6. ANFIS structure.
doi:10.1371/journal.pone.0162627.9006

ANFIS

The term adaptive neuro-fuzzy inference system was introduced by Jang, 1993 refer to combi-
nation of Fuzzy Logic and Artificial Neural Network to produce a powerful processing tool
[71]. For every input, two fuzzy if-then rule were generate in this study with maximum equal
to 1 and minimum equal to 0. Fig 6 shows the ANFIS arrangement and inputs.

Assume two inputs fuzzy if-then rules of Takagi and Sugeno’s type [72] were adopted:

ifiisAandjisCandkisEandlisGthenf, =pi+qj+rk+sl+t (4)

Layer 1 contains membership functions (MFs) of input variables and feed input values for
the next layer. Each node in 1*' layer is adaptive as: 0 = u(i), where y(i); are membership
functions.

The bell-shaped membership functions (Fig 7) is presented in Eq 5 for which the lowest and
highest amounts are 0 and 1, respectively.

b
1+ (u)zb

a

f(x;a,b,0) = (5)

The function is subject to the following parameters, namely a, b and c. Each of these param-
eters define as follows: a is half width of the curve; b defines the gradient together with a; and ¢
is the midpoint of the membership function as shown in Fig 7.

In the 2nd layer (the membership layer), the weight of MFs is considered. The first layer
provides the input values for layer 2. The nodes in the second layer are fixed node. The output
is the product from all incoming signals and be described as,

w; = .“(i),' : H(i)f+1 (6)

Output of every node indicates the weight strength of a rule.

In layer 3 which is the rule layer, every node does the pre-condition matching of the fuzzy
rules, that calculate each rule’s activation level as well as the normalized firing strength. This is
a fixed layer as well, and each node computes the proportion of ith rule of the firing strength to

PLOS ONE | DOI:10.1371/journal.pone.0162627 September9, 2016 9/21
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the sum of ith firing strengths of all rules as:

w.
w = —, fori=1,2 (7)

w, +w,

The outputs of this layer are named as normalized weights or firing strengths.
In layer 4 or defuzzification layer, all the adaptive nodes provide the resulting output values
from the inference of rules.

O'=w -f=wpi+qjtrk+sl+t (8)

Here, the parameters set is shown as {p;, g;, 7> 5> t}.

Layer 5 or the output layer summarizes the inputs output from layer 4. This layer also trans-
forms the results of fuzzy classification into a crisp. Here, the single node is fixed node and the
whole incoming signals is sum up to produce overall output as below,

O?Zwr-f%iw"f ©)

The PSO method was used in this paper to help ANFIS adjust the membership function
parameters [70]. The main advantage of PSO technique is its friendly way of calculation in a
network topology of given size. The membership functions were triangular in this study.

ANFIS-PSO algorithm

Fig 8 depicts the diagram of the sequential PSO and ANFIS combination [73]. In PSO, swarm
starts with a group of random solutions, each of which is called a particle, and ?, represents the
particle’s position. Likewise, a particle swarm moves in the problem space, where 7: expresses
the particle’s velocity. A function fis evaluated at each time step through input ?, Every parti-

—

cle records its best position related to the best fitness gained to this point, in E vector. pf
tracks the most appropriate position identified by any neighborhood member. In universal
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Fig 8. Diagram of sequential combination of PSO and ANFIS.
doi:10.1371/journal.pone.0162627.9008

version of PSO, E represents the most appropriate point in the entire population. A new
velocity is achieved for any particle i in each iteration according to the best positions of individ-

ual, m\), and p¢(t) neighborhood. The new velocity can be presented by:

V(t+1) = wy, () +¢,0,.(p, (1) — %, (1)) + 6,0, (2 (1) — %, (1)) (10)

In Eq 10, w represents the inertia weight. The positive acceleration coefficients are shown by
¢y and ¢,. QT] and (Tz represent uniformly-distributed random vectors in [0,1], in which a ran-

dom value is tried for every dimension. v_i\limit inthe [-v, ., v,,] seriesis reliant on the prob-
lem. Provided that the velocity exceeds the mentioned limit, in some cases it is rearranged
within its suitable limits. The position of every particle alters depending upon the velocities as
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Table 3. Parameter characteristics used in this study.

Population Size

40
doi:10.1371/journal.pone.0162627.t003

Inertia Weight Damping Ratio Learning coefficient
Personal Global
1 0.99 1 2
follows
s(t+1) = s(0) + v(t+1) (11)

According to Eqs 10 and 11, the particles incline to gather nearby the best. PSO use for
designing a FS, or parameter optimization is expressed as:

R, :if x,(k)isA, And ... And x,(k) is A,, , Then u(k)is a, (12)

in ?

Here, a; is a crisp value, k represents the time step, the input variables are x;(k), . . ., x,,(k),
Ajjis a fuzzy set and u(k) signifies the output variable for system.

For the FS in Eq 12 which comprises r rules and #n input variables, its free parameters are
defined through a position vector:

—

s=[m,,b,,...,m, b, a,...... ,m, . b . ....m

b,,a]c R’ (13)

rn) Crn) r

m,=x(k), b, = by, j=1,...,n (14)

7 J

Following the process of rule creation and initialization, the preliminary antecedent part

parameters are outlined. According to Eqs 13 and 14, the ith solution vector s, is created as:

N .
i

S = [Su S -+ Sipl = [myy +Amy by + AV my, A+ Aml b 4 Ab)a,,

i 1n? ~fix 1ny ™1
m,y + Amy by + AV, m, + Amy b 4 Ab,La ] (15)

rn? rm? r

In the equation, Am;; and Ab;; signify the numbers of small random, ; designates a random
number distributed arbitrarily and homogeneously in the fuzzy system output range. The eval-

uation function f for ?, is calculated based upon the fuzzy system performance in Eq 15.

PSO looks for the best originator part parameters. P, represents the population size. Eq 4
sets the elements in position ?, When t =0, the ?]\(0), ce ;(0) or initial positions are created
arbitrarily according to the best-performing FS found in ACO (5 ). ?1 (0) is considered simi-

lar to s . The left P, — 1 particles, ?1(0), ce ?P\(O), are created by addition of uniformly-dis-

tributed random numbers to s,, shown as:

:(O)ZS_\%O—FW;,I':?,...,PS (16)
Wi represents a random vector. The primary speed values of all particles,
W(O), i=1,...,P,are generated randomly. Each particle’s performance is evaluated accord-

ing to the FS it signifies. fis described as the E(¢) or error index mentioned above. The best
position (E) of each particle and the best particle E in the whole population is obtained
according to f. Eqs 10 and 11 overhaul the velocity and position of each particle. The whole
learning procedure is accomplished as soon as a pre-defined paradigm is obtained [73].
There are five PSO main parameters used during conducting experiment as shown in
Table 3, which are maximum number of iterations, population size of the domain, inertia
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weight damping ratio and inertia weight, global learning coefficient and personal learning coef-
ficient. For this case study, we determined these parameters optimum values by trial and error
procedure.

Evaluation of model performances

Statistical tests offer a certain level of assurance about the validity, non-randomness of the [74].
Specifically, in this paper, we used root mean square error (RMSE), Eq 17 and coefficient of
determination (R?), Eq 18 to compare forecasting errors of between different models and deter-
mine the proportion of the variance of one variable that is predictable from the other variable,
respectively.

The following are the statistical indicators adopted to examine the ANFIS model
performance:

1. root-mean-square error (RMSE)

Zn (Oi _Pi)2
RMSE = \| &=~ (17)

2. Coefficient of determination (R?)

R =

Z;(Oi - Oi)-ijl(P,. —P)

n is the total number of test data, P; = measurement values and O; = ANFIS value.

Evaluations
Simulation findings

The preliminary data aids in creating the hybrid soft computing method, and three methods
were principally used to predict the data. The scatterplot in Fig 9 shows the estimation of best
mobile malware parameters. Next, the fit line with equation y = a0 + ol was generated.

Performance analysis

The available experimental data were used for assessing the performance of methods and iden-
tifying importance of the parameters. The R> and RMSE were used to make comparison
between the real and predicted values for the soft computing method. Tables 4 and 5 present
the summary of comparison between ANFIS-DE, ANFIS-PSO and ANFIS-ACO. The perfor-
mance analysis prediction of mobile malware using ANFIS-PSO is presented in Fig 10.

The ANFIS-PSO decision surface for mobile malware detection is shown in Fig 11 for the
two extracted parameters, Maximum_Frame and Frame_STD.

It can be noted from Fig 10, when the model output is smaller than 0.5, the decision should
be uninfected and when the model output is larger than 0.5 the decision should be infected.
Finally based on this observation, we created SIMULINK block diagram for ANFIS-PSO detec-
tion of android mobile malware Fig 12.
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Fig 9. Performance of ANFIS-DE, ANFIS-ACO and ANFIS-PSO for estimation of mobile malware. (a)
ANFIS-DE fit line. (b) ANFIS-ACO fit line. (c) ANFIS-PSO fit line.

doi:10.1371/journal.pone.0162627.9009
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Table 4. Analysis of Mean Square Error (MSE) and Standard Deviation (StD) for different methods.

Training Data
MSE
StD
Test Data
MSE
StD

doi:10.1371/journal.pone.0162627.t1004

ANFIS-ACO ANFIS-DE ANFIS-PSO
0.20948 0.19487 0.18605
0.4577 0.44144 0.43133
0.21098 0.19576 0.18581
0.45932 0.44245 0.43107
Conclusion

The number and sophistication of Android malware are increasing and evolving, which neces-
sitates the development of more effective malware detection systems. Recent advances in the
literature suggests that artificial intelligence techniques are a promising approach to detect
mobile malware. Generally, mobile malware communicates with a compromised server or a
server under the control of an attacker, via a network. Thus, in this work, we focused on net-
work based features. Specifically, application traffic was filtered for its parameters and calcula-
tion was performed on these parameters to obtain the required features. We also proposed
three system agents to capture and manage the pcap file for the data preparation phase to
improve our detection system in terms of efficient data processing.

It is known that ANFIS scheme is computationally efficient and well-adaptable with optimi-
zation and adaptive techniques. This scheme can also be combined with expert systems and
rough sets for other applications, as well as used with other systems to handle more complex
parameters. Another advantage of ANFIS is its speed of operation, which is much faster than
in other control strategies. The laborious task of training membership functions is performed
in ANFIS using metaheuristic optimization algorithms (due to the nature of fuzzy systems).

A novel hybrid method (integrating ANFIS and PSO) was proposed in this study to forecast
the best parameters of a mobile malware analysis. The ANFIS-PSO is compared with two
hybrid optimization approaches, namely: ANFIS-ACO and ANFIS-DE. Our findings demon-
strated the utility of the proposed method. For example, ANFIS-PSO outperforms other
approaches with RMSE, 0.43133 in training and 0.43106 in testing. Its coefficient of determina-
tion (R2) also achieves an improved performance (e.g. 0.7692 in training and 0.7721 in testing).
For example, a majority (77%) of the variations in predicted result can be explained by the lin-
ear relationship between actual value and predicted model. This suggests that the prediction
model has a strong positive linear correlation in terms of its accuracy in predicting and detect-
ing Android malware.

Future work includes extending the research to a refined selection of variables (e.g. due to
evolution of malware). Another potential research area is to address the known challenges in
the selection of input variables, such as identifying and discarding irrelevant variables (noise).

Table 5. Analysis of performance for different methods to identify the optimum parameters of a mobile malware prediction model.

Method Training

Error (RMSE)
ANFIS-PSO 0.43133
ANFIS-ACO 0.45769
ANFIS-DE 0.44144

doi:10.1371/journal.pone.0162627.t005

Testing
Coefficient of determination (R?) Error (RMSE) Coefficient of determination (R?)
0.7692 0.43106 0.7721
0.7311 0.45932 0.7392
0.7413 0.44244 0.7562
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Fig 10. Prediction of the optimum parameters of mobile malware analysis by ANFIS-PSO for testing
data.
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Fig 11. ANFIS-PSO decision surface for the detection model: inputi—Maximum_Frame, input2—
Frame_STD.

doi:10.1371/journal.pone.0162627.9011

PLOS ONE | DOI:10.1371/journal.pone.0162627 September9, 2016 16/21



o ®
@ : PLOS | ONE DyHAP: Dynamic Hybrid ANFIS-PSO Approach for Predicting Mobile Malware

0

Input 1
0

Input 2
0 —» <05 —>|I|
Input 3
0 » ANFIS-PSO

Not Infected

Input 4
Detection System
0 L >=05 [ »
Input 5
0

Infected

Input 6
0

Input 7
Fig 12. SIMULINK block diagram for ANFIS-PSO detection of android mobile malware.
doi:10.1371fournal.pone.0162627.9012

It is, therefore, useful to design methods that require reduced number of input variables (i.e.
reducing the complexity of the model) yet achieving better efficiency and accuracy.
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