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Introduction

The 2016 drug design Grand Challenge 2 competition con-
sisted of six blind sub-challenges focused on the FXR pro-
tein: (a) the ligand-based prediction of binding potency for 
102 compounds with an experimentally measured affinity, 
(b) the prediction of spatial coordinates of 36 molecular 
complexes with experimentally resolved atomic coordinates 
(pose prediction), (c) the high-throughput prediction of bind-
ing potency by structure based methods (before and after 
disclosure of the 36 experimentally resolved complexes) 
for the 102 compounds and (d) relative free energy esti-
mations within the subset of homologous compounds (two 
subsets of 15 sulfonamides and 18 spiros compounds). We 
participated in four sub-challenges: we were ranked first and 
second respectively in the free energy and pose predictions 
sub-challenges. Our approach showed mediocre accuracy 
in the high-throughput structure-based virtual screening 
sub-challenges both before and after the release of the 36 
experimentally resolved binding poses.

The goal of structure-based high throughput virtual 
screening is to find and evaluate energetically favorable 
binding modes between a target protein and millions of can-
didate small organic compounds in a timeframe for which 
one is willing to tolerate. Current approaches for the scan-
ning of possible binding configurations usually exclude the 
majority of the protein’s internal structural degrees of free-
dom with the goal of only sampling a sufficient number of 
conformations for a small flexible compound. While it is 
believed that docking algorithms perform reasonably well in 
determining the geometries of the docked complexes, they 
usually fail to accurately evaluate the corresponding free 
energy of binding [2, 3]. This may not be surprising since 
even an approximate estimation of entropy—the major term 
describing free energy in biomolecular complexes—requires 
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sampling over at least the typically observed range of inter-
nal conformational degrees of freedom of all the partici-
pating molecules. Simulations of the molecular dynamics 
are considered the most established and physically robust 
methods for routinely scanning through the probable states 
of the molecular ensembles. MD, in principle, provides a 
good estimation of the entropy contribution to the binding 
free energy of a compound and is usually carried out through 
a cohort of specialized techniques, such as free energy per-
turbation, thermodynamic integration, umbrella sampling, 
Jarzynski non-equilibrium pulling, multiple replica scaled 
regression models, explicit multiple routes sampling (from 
long MD) and even simplified linear interaction energy 
(LIE) methods [4–9]. Unfortunately, the MD approach 
can overwhelm available computational resources, which 
makes it impractical for all but the smallest throughput vir-
tual screening experiments. As a potential solution, we are 
developing a machine learning (ML) approach, inspired by 
advances in machine vision algorithms, that can effectively 
generalize practical rules by observing only a limited subset 
of robust physical MD simulations, and then use the learned 
experience to examine and classify a large set of binding pre-
dictions generated by a much less computationally demand-
ing molecular docking experiment.

Artificial neural networks (ANN), including convolu-
tional neural networks (CNN), are machine learning mod-
els that can possess a large learning capacity [10]. CNNs 
have limited connectivity between neurons of consecutive 
layers and therefore possess a smaller amount of trainable 
parameters but typically display only a modest decrease 
in performance relative to fully connected ANNs. CNNs 
can be a relevant choice in cases where several first layers 
of local patterns in input signals can be helpful in gen-
eralizing them into more abstract categories. Important 
examples of such problems are in machine vision and 
speech recognition where the CNN fragment can gener-
alize pixels into lines and ellipses or sounds into words. 
Convolution layers are also useful for generalization of 
proximal patterns in molecular complexes because all the 

bonded interactions are local at an angstrom scale and 
non-bonded van-der-Waals interactions decrease as rapidly 
as ~ r−6 with only electrostatic interactions being distant. 
In practice, a combination of convolutional and fully con-
nected layers is usually used in machine vision or speech 
recognition so that the convolution layers work until signal 
proximity is important and then fully connected layers can 
perform a classification using their more generalized rep-
resentation [11]. In this work, we generally follow a simi-
lar strategy with the difference that our fully connected 
layers are located within the middle of the convolution 
encoder-decoder chain (see Fig. 1). The rationale of this 
design is to introduce predictive perturbations into the 
encoder-decoder data flow as our aim is to synthesize the 
evolved geometries instead of the input ones. For predic-
tive perturbations we define an additional interconnection 
between the convolution encoder and the LIE prediction 
preceptor which in our model couples otherwise independ-
ent hypothesis generating channels.

Deep learning systems, as CNN implementations are 
often referred to, have been previously used to create a func-
tion that predicts the free energy of molecular binding (a 
score) using the structural information generated by docking 
software [12]. Our approach is inspired by that approach but 
it principally differs in how the deep learning generalization 
is formulated. Particularly, in this study we are not estimat-
ing free energy or score but constructing a neural network 
approach which is able to learn the complex relationships 
between the complexed molecules and their behavior over 
time under conditions of a NPT (constant pressure) thermo-
dynamic ensemble. In our opinion, an artificial intelligence 
(AI) approach for drug design can be built upon a ANN 
that is focused on predicting fundamental thermodynamic 
quantities (like receptor conformational entropy) and trained 
on results of rigorous computational modeling such as MD. 
As a consequence, such machine learning solutions will be 
capable of working with very limited sets of experimentally 
known binders, relying, instead, on deep understanding of 
the fundamental physical principles of their interactions.

Fig. 1   ANN architectures trained to predict a MD outcome from 
docking poses. The 3D (de-)convolutional layers are shown with 
boxes and perceptron layers are shown with flat vertical lines. The 
data flow (from left to right) is shown with arrows: red—convolu-

tional encoder, orange—convolutional decoder, magenta—energy 
predicting perceptron. The ‘X’ represents fully connected layers 
within the model. The NN output is a voxel image and a vector of 
predicted LIE features
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A recent Schrodinger Inc. (USA) implementation of the 
automated free energy perturbation protocol FEP+ (https://
www.schrodinger.com/fep) had biased field of free energy 
calculations toward an alchemical ligand transmutation 
approach. It is difficult to overestimate the contribution of 
Schrodinger Inc to practical drug modeling as they have 
turned free energy calculations into the de facto standard 
metric for industrial drug design. We maintain, however, 
that pulling techniques that actively assess the drug-ligand 
interaction have the potential to provide considerably higher 
accuracy in practice. The rationale behind our speculation 
is that alchemical and pulling approaches solve the biggest 
problem in FEP modeling—finding and sampling the low-
est energy transformation routes on potential energy sur-
face (PES)—with very different strategies. While alchemi-
cal FEP+ and similar methods described in the literature 
[13, 14] seek low-energy routes via direct sampling in the 
space of chemical compounds and indirectly scanning the 
space of receptor conformations, pulling methods [15–22] 
are focused on the direct exploration of protein conformation 
space. Although both approaches are formally correct, in our 
opinion, the pulling methods are in a better position to derive 
accurate estimations, because the sampling of protein con-
formation space, although being considerably more difficult, 
describes the interaction more fully than sampling in space 
small organic compounds. We propose a further modifica-
tion of the pulling approach, which is specially designed to 
determine more accurate estimations of binding potency by 
involving multiple dissociation routes in sampling process. 
A good illustration of the multiple routes description of the 
dissociation process, using purine nucleoside phosphory-
lase as an example, is provided by Decherchi et al. [9]. The 
advantages of our free energy estimation method are best 
illustrated by the explicit involvement of so-called orthogo-
nal coordinates in the description of system transition along 
reaction coordinates on the PES. The orthogonal coordinates 
are other, independent from the reaction coordinate, degrees 
of freedom, which strongly affect the shape of the PES. As 
an example of these orthogonal coordinates we can consider 
a dihedral angle that triggers the “open” or “closed” state of 
an allosteric protein loop—although the angle value itself 
does not define bound and unbound states of a compound, 
the value strongly correlates with the height of hills on the 
PES over which an interacting compound dissociates. In 
such model, the potential of mean force (PMF) is a sum of 
integrals over PES, which are weighted by the probability 
density of values of corresponding orthogonal coordinates. 
Consecutively, the most accurate approach to estimate PMF 
is to sample both—orthogonal and reaction coordinates. 
Unfortunately, proteins are very complex and, generally, 
there is no constructive approach to define the important 
orthogonal coordinates for a given ligand-receptor pair. To 
attempt to address this uncertainty, our free energy method 

combines ideas from Jarzynski non-equilibrium pulling [23] 
and quasi-equilibrium umbrella sampling [24].

Jarzynski non-equilibrium pulling method computes 
PMF estimations by repeatedly measuring the work spent 
on molecular separation in a non-equilibrium artificial pull-
ing process. The equilibrium PMF is estimated as average 
of many (typically several hundred) non-equilibrium pull-
ing replications. The pulling experiments themselves have 
to be very short, typically several nanoseconds or even 
less, in order to complete an entire batch within a reason-
able computational budget. With such a short simulation 
time, the system will be unlikely to relax as the reaction 
coordinate proceeds, and its trajectory will be close to a 
straight line in the space of generalized orthogonal coor-
dinates. Thus, this method is essentially a route sampling 
approach with the main drawback being the poor sampling 
of low-energy processes. For the routes sampling described 
within this paper we consider finding (and evaluating) only 
representative set of sufficiently distinct smooth low-energy 
dissociation trajectories. By contrast, umbrella sampling is 
a quasi-equilibrium method with perfect relaxation sampling 
and typical simulation duration of tens, or hundreds even, 
of nanoseconds per window. Thus, the umbrella sampling 
method draws a line that perfectly curls along low-energy 
pathways in the space of generalized orthogonal coordinates. 
But, to remain within a reasonable computational budget, 
only one route is typically sampled and the major error of the 
method comes from this insufficient sampling of the differ-
ent routes. We thus combine Jarzynski non-equilibrium pull-
ing and umbrella sampling into a hybrid method whereby 
reasonable routes of sampling and individual trajectory 
curling are constructed within an affordable computational 
budget. Our approach was prototyped and described pre-
viously [25] and here we have further extended it with an 
formal assessment of PMF convergence for the tracking of 
the estimation outliers.

Materials and methods

In all our protocols described in this section, molecular 
dynamic simulations are combined with variety of other 
methods. In particular, (i) for the pose predictions sub-
challenge we used a combination of MD with molecular 
docking and artificial neural network implementations; (ii) 
for large-scale compound scoring we used replicated LIE 
MD runs of the complex in the bound state and (iii) for free 
energy estimations we used parallel non-equilibrium MD 
pullings followed by quasi-equilibrium umbrella samplings 
and assessed PMF convergence as an ad-hoc procedure for 
the detection of outliers. Although in the Grand Challenge 
competition we used only four parallel pullings and umbrella 
samplings, we believe that with more computation resources 

https://www.schrodinger.com/fep
https://www.schrodinger.com/fep
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our hybrid free energy estimation method can be even fur-
ther extended toward the usage of Jarzynski inequality for 
an even more accurate PMF evaluation.

4D molecular docking

4D Docking, also known as ensemble docking, is a protocol 
for pose generation, which independently repeats the dock-
ing of each compound into each receptor model to from a 
set of preselected structures. To construct binding poses we 
used the Autodock Vina docking software [26]. Three known 
FXR conformations (PDB accession codes 3DCT, 3OOF 
and 3BEJ) were manually selected for 4D docking and up to 
20 top-scored poses for each conformation (up to 60 poses 
per compound in total) were aggregated and analyzed. The 
choice of the three crystal structures was motivated by the 
authors previous drug design experience and the rationale to 
provide a small but representative set of distinct protein con-
formations. As such, the selected poses are not guaranteed to 
be the optimal ones and only reflect author’s understanding 
of FXR docking problem. Throughout this manuscript we 
refer to the structure generated with 4D docking (or reported 
in literature) as the “structure after docking” to distinguish 
them from structures generated through MD simulation.

MD simulations

MD simulations were carried out with the GROMACS-4.5.5 
MD package [27]. For all complexes, the force field param-
eters were added using our heuristic: for the protein part 
AMBER-ILDN parameters [28] as implemented in 
GROMACS, for compounds bonded parameters from GAFF 
[29] were used together with Kirchhoff Coulomb charges 
[30] and Leonard-Jones parameters from YFF1 [31] which 
were additionally fit for better correspondence with the 
AMBER-ILDN parameters. The fit was scaled using Leon-
ard-Jones interaction constants with two constant multipliers 
(one for repulsive and one attractive components) computed 
by the least square fit of interaction potentials for all match-
ing atom types in YFF1 and AMBER-ILDN.

All MD simulations were carried out with Leonard-Jones 
and Coulomb short-range interactions cut off at 1.4 and 
0.9 nm respectively and neighbor-searching updates made 
for each ten steps of the MD integrator. Long-range elec-
trostatic interactions were modeled with the particle mesh 
Ewald algorithm [32]. To model solvated complexes, the 
structures were placed in periodic box with TIP3 explicit 
water molecules and 0.1 M of NaCl and then relaxed by 
l-bfgs minimization followed by 50 ps of MD under a con-
stant volume (NVT) ensemble with restrained positions of 
protein and the compound heavy atoms. Simulated annealing 
[33] was used to warm up the system from the initial veloci-
ties assigned accordingly to the Boltzmann distribution at 

the temperature of boiling nitrogen T = 77 K to body tem-
perature T = 310 K. Following this NVT warm up, 100 ps 
of constant pressure (NPT) equilibration was performed. 
Complex and other atoms were coupled to a separate tem-
perature coupling baths and the temperature was maintained 
at T = 310 K. For equilibration, the weak coupling [34] was 
used to maintain pressure isotropically at 1.0 bar and the 
Berendsen weak coupling method was sued to maintain con-
stant temperature. All subsequent productive runs were per-
formed with the more accurate Nose–Hoover thermostat [35, 
36] with a temperature coupling time constant of 0.1 ps and 
the Parrinello-Rahman barostat [37] with a pressure cou-
pling time constant of 1.0 ps under a NPT ensemble. This 
combination of thermostat and barostat ensured that a true 
NPT ensemble was sampled.

For LIE analyses, we carried out 8 MD simulations with a 
random seed for Maxwell velocities generations for 16.2 ns 
each for every analyzed pose: 0.2 ns warmup, 12 ns of com-
plex relaxation and 4 ns of statistic collection. Complex 
coordinates, together with Leonard-Jones and Coulomb 
interaction energies of the binding site residues and com-
pound, were collected every 0.05 ns. For the binding site we 
manually defined a list of FXR residues {265, 270, 273, 284, 
286, 287, 288, 290, 291, 294, 325, 328, 329, 331, 332, 335, 
336, 352, 357, 365, 369, 384, 447, 451, 454, 461, 465, 469}. 
Because our free energy estimations using an artificial intel-
ligence approach had not yet been implemented by the time 
of the competition, we used the LIE free energy equation 
to rank poses. LIE free energy estimations were calculated 
accordingly to: 

where S is the loss of rotational and translational entropy 
of the compound (computed according to a quasi-har-
monic approximation), α, β, γ, δ and ε are fitting param-
eters and k = 0.2 in our protocol. To determine the training 
set for the LIE parameters we used seven experimentally 
resolved structures (PDB accession codes 3BEJ, 3FLI, 
3OKH, 3OKI, 3OOF, 3OOK, 3RUT) and five manually 
constructed complexes with other close homologues com-
pounds reported in literature [38, 39]. The fitted parame-
ters set was α = – 0.059274, β = 0.343518, γ = 0.012304, 
δ = 0.110224, ε = − 0.00003, U0

Coul = + 6418.28 kJ mol− 1 
U0

LJ = – 1458.75 kJ mol− 1.
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To generate crystal-like complexes after the simulations, 
an additional cooling down run was performed for 0.2 ns. 
For this run, the geometry (and velocities) were taken from 
the last frame of productive MD simulation and then pro-
ceeded using the thermostat as described above but where 
the temperature was linearly decreased in time until reaching 
the boiling point of liquid nitrogen by the end of the simu-
lation. Due to the final low temperature, the protein-drug 
complexes are frozen into a single structure after the MD 
simulations. Such behavior approximately corresponds to 
the typical conditions of X-ray experiments where freezing 
liquid nitrogen is also used. Through this manuscript we 
refer to the frozen structures after a MD simulation cool 
down run as the “structure after MD” to distinguish them 
from structures generated by molecular docking or X-ray 
refinement.

Four independent dissociation trajectories per compound 
were generated from the same starting structure of its com-
plex with the FXR protein by applying a forced pulling 
for 3.2 ns for each at a slightly different but physiological 
temperatures of 300, 305, 310 and 315 K (one run at each 
temperature). In all cases the artificial spring force constant 
was 1000 kJ mol−1 nm−2 and the pull rate was 1.0 nm ns−1. 
FXR coordinates were manually aligned to superimpose 
the active site entrance with Z coordinate axis, compounds 
were set as mobile fragments and the binding site of FXR 
as a reference group, i.e. a group where the center of mass 
is used as the reference point for computing the distance 
to the mobile fragment (compound). The reference group 
was not constrained but the coordinates of the atoms in the 
anchoring fragment (Cα atoms of residues 379Q-391L) were 
restrained with restraining potential 1000 kJ mol−1 nm− 2 and 
the pulling was performed along z-axis (0., 0., + 1.). The 
four pulled trajectories were sampled with umbrella sam-
pling technique under 22 windows centered at the reaction 
coordinate ξ = {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 
1.0, 1.2, 1.4, 1.6, 1.8 2.0, 2.2, 2.4, 2.6, 2.8, 3.0, 3.2} nm of 
artificial separation relative to equilibrium complex geom-
etry and for a duration of 32 ns per window.

The standard free energy of binding, ΔGo, was computed 
from multiple independent umbrella PMFs, W, in two stages. 
At the initial step, the results of the individual runs were 
averaged (with an arithmetic mean): 

where p is the probability of a dissociation process follow-
ing a scenario which is close (in the sense of proximity, 
which can be covered by finite time umbrella sampling) to 
the one described by i-th trajectory and Wi is estimation of 
work which is required to dissociate along the i-th trajectory. 
Due to small amount of runs we used an arithmetical aver-
age in (2) instead of the well-known Jarzynski inequality 

(2)ΔW =

∑

i

piΔWi ≈ ΔW

exp (−ΔW∕RT) ≤ exp
(

−ΔWi∕RT
)

. Although Jarzynski 
inequality is physically correct (and recommended for use 
with routes coverage of c.a. 16 independent trajectories), 
the arithmetical average is better for the small number (four 
in this case) of parallel umbrella runs we conducted. The 
rationale behind the arithmetic average is that if several dis-
tinct but well smoothed trajectories are suggested to form a 
reasonable representation of the most probable dissociation 
scenarios (which is a good approximation for many practical 
cases), then probability of system to dissociate along each of 
them is also expected to be similar (otherwise it contradicts 
the assumption about a sufficient equilibration). Therefore, 
any large differences in umbrella sampling estimations are 
interpreted as errors and the simple average is preferred over 
exponential averaging to negate the outliers. In this particu-
lar setup, four independent dissociation trajectories starting 
from the same complex structure were generated at a variety 
of physiological temperatures as described above and sam-
pled at 310 K. Then, the averaged PMF was converted into 
a standard free energy of binding. Following [40] we deter-
mine the standard free energy of binding as the sum of two 
terms—PMF work, normalized to the meaning of the bound 
state (an integral in denominator) and a normalization of the 
actually sampled unbound volume, Vunbound, to the volume of 
a standard concentration of 1M Vo = 1661 A3: 

where z is the reaction coordinate starting from zero and 
growing in a positive direction, W(z) is the function of 
potential energy dependent of reaction coordinate, ΔW—is 
an estimation of PMF computed accordingly to the Eq. (2) 
using a set of representative trajectories; because the sum-
mation for ΔW computations are done over the interesting 
(i.e. W(z) > > 0) region of the reaction coordinate, the − 1 
term in the middle statement of (3) is not essential. The 
integral in denominator defines the meaning of the complex 
bound state in terms of the one dimensional pulling process 
and its value is not important for the computation of the 
relative ΔGo for the series of homologous compounds as the 
meaning of their bound state is almost identical, but it is the 
major term for errors when comparing between chemically 
diverse structures. Although there are several theoretical 
studies about the nature of Vunbound and the integration limits 
in the PMF part [15, 40, 41], here we used a simpler empiri-
cal approach—we pre-computed PMF for three (benzimi-
dazole) compounds with known affinity and fitted Eq. (3) 
against kw and Cv constants. We also note that standard free 
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energy of binding is typically of a little interest in actual 
drug optimization projects simply because it doesn’t change 
the predicted compounds potency ranking for derivatives 
within a series.

Artificial neuronal network

The interpretation of molecular complexes is challenging 
problem because entropy, unlike potential energy, is difficult 
to quantify. We choose to develop a ANN to generalize the 
entropy contribution from observing the movement of the 
structure through MD. Thus, our approach for ANN archi-
tecture (Fig. 1) combines of two ideas: (i) the recognition of 
3D structure, employing machine vision techniques, and (ii) 
classification of neural activity patterns in structure specu-
lating layers with respect of potential energy produced by 
equilibrium molecular dynamic simulation at the speculated 
geometry.

The recognition sub-problem is solved with nested 
encode-decoder convolutional layers with two differences 
from the classic machine vision approach (i) molecular input 
images are 3D maps of voxels instead of 2D arrays of pixels 
and (ii) the ‘colors’ are used a generalized chemical proper-
ties (e.g. hydrophobic or hydrogen bonding potency) instead 
of reflecting photon wavelengths. In our protocol, the input 
voxel maps are constructed from atomic coordinates using 
an atomic density formalism ρ(r): 

where r is the distance from the center of the voxel to the 
given atom center, rion is ionic radius of the atom and rvdw 
is its Van-der-Waals radius. The atomic density formalism 
ensures that the voxels within the ionic radii apart from the 
atomic center coordinates are set to the maximal absolute 
feature density value (equal to 1.0) and the other surround-
ing voxels are additively colored through a Gaussian curve 
centered at the atom coordinate (with a constraint that 
ρ(r) ≤ 1); the scale of the Gaussian curve area is set to 1.0 
and its standard deviation to half of the difference between 
the ionic and Van-der-Waals radius of the atom. The densi-
ties maps from different atoms are additive but the absolute 
value of the sum is not allowed to exceed 1.0 per voxel. The 
atomic density is then projected onto one of the five different 
chemical features maps, depending of what the atom type is. 
The five input 3D maps are: a polar hydrogen density map 
(hydrogen bond donor map), hydrophobic motifs (carbon, 
chlorine, bromine and iodine atoms), nitrogen (hydrogen 
bond acceptor type 1), oxygen and fluorine maps (hydro-
gen bond acceptor type 2) and a d-elements map (sulfur 
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and phosphor atoms). Finally, to improve the contrast of 
the molecular 3D images presented to the ANN, we mark 
ligand feature densities with a negative sign of feature den-
sity and receptor atoms with positive values; empty space 
is zero. In the ANN, the recognition process goes through 
three pairs plus one nested convolutional encoder-decoder 
layers (shown as boxes on Fig. 1 due to the 3D convolutional 
proximity). Because the goal of our ANN is to take into 
account the distribution of the complexes low-energy states 
(which is barely ‘visible’ from standalone 3D images), the 
classification was not computed for each 3D complex alone. 
Instead we trained the encoder-decoder component with a 
multitude of replications generated by parallel MD starting 
from the same docked pose; we also did not enforce any 
sparsity of feature maps [42] to capture more noise from 
emerging ‘misclassified’ patterns generated with training of 
multiple expected outputs per one input.

In order to account for entropy in ANN, we (i) trained an 
autoencoder using multiple structures after docking and after 
MD for each compound and (ii) connected a perceptron mod-
ule (shown as flat vertical bars on Fig. 1) to the two innermost 
convolutional layers. The rationale of our design is that mul-
tiple structures per compound during training can be general-
ized by our deep encoder-decoder layers to represent the vari-
ety of states in the real system. The perceptron then classifies 
the emerging patterns which encode variety of states in the 
analyzed system and perceive the entropy. For this reason we 
avoid pooling layers in our CNN. ANN training was systemati-
cally repeated after new MD data was added to the training set. 
The conjugate gradient Polak-Ribiere optimization technique 
[43, 44] was used as a local minimizer and a Genetic algorithm 
as a global optimizer [45]. The combination is computationally 
intensive but, in our opinion, allows for the construction of a 
good classification which is free of ReLUs [46].

Assessing PMF convergence

For assessing PMF convergence we monitored the evolution 
of free energy estimations as the simulation proceeded in 
time and when more statistics were collected. The approach 
considers umbrella sampling as a quasi-static process that 
continuously fixes errors introduced by a non-equilibrium 
pulling process. Our hypothesis is that after a short equili-
bration period, the parallel umbrella sampling fixes the errors 
uniformly and independently with respect to each other, so 
that the error fixing rate depends approximately only on the 
total amount of introduced errors. Our model of PMF con-
vergence therefore considers a linear dependence of the 
amount of fixed errors at time t (measured as a finite differ-
ence ΔW(t + Δt) − ΔW(t)∕Δt) and the convergence of the 
error fixing rate at time t (measured as the finite difference 
Δ(ΔW(t + Δt) − ΔW(t))∕Δt2) due to the decreased amount 
of all possible error that can be fixed. By replacing the finite 
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differences with derivatives one can obtain the differential 
equation: 

where the coefficient k stands for the linear regression 
parameter of the assessing PMF convergence model. The 
solution of Eq. (5) is a saturating (exponential decay) curve: 

for which parameters C0 and C1 are obtained by fitting to 
the empirical ΔW(t) table. Importantly, that function (6) 
has an asymptote limt→∞ ΔW(t) = C0 − C1 which theoreti-
cally allows extrapolation of PMF estimations to an infinite 
simulation time (when all errors are fixed) from reasonably 
long and accurate runs. Although the amount of available 
computational resources during Grand Challenge 2 was not 
sufficient for us to assess the PMF convergence extrapola-
tion well, we were able to carry out good “sanity” checks for 
“unlucky” sets of routes encountered in the parallel umbrella 
sampling. As “unlucky” we consider a set of the four simu-
lated routes that do not represent the lowest-most dissocia-
tion scenarios well. We believe that fixing of umbrella errors 
is a good place to observe the successful representation of 
low energy routes. Our method offers two additional kinds of 
the sanity checks (in addition to standard umbrella windows 
overlap check): (i) standard deviations in the set of parallel 
umbrella estimations (σΔW in Eq. 2) and (ii) the value and 
sign of regression coefficient k in Eq. 6. As a marker of a 
good estimation we can use a small (but not too small) value 
of σΔW together with a small positive value of k. The typi-
cal protocol is to compute PMF and estimations for entire 
series of compounds, gather statistics of σΔW and k in the set 
and consider additional replications for compounds with the 
biggest (most suspicious) deviation.

General logic of our protocols

Here we outline the overall logic of our multiple stages pose 
prediction and free energy estimation protocols.

Our iterative trainable pose prediction protocol (Fig. 2) 
combines energetic (in form of LIE) and geometrical simi-
larity models. The initial training data set was composed of 
seven resolved bound compounds structures and five manu-
ally constructed complexes of their close homologues, with 
reported experimental activity. MD runs were computed 
(with eight replications) for each complex in the training 
set as it is described above. Complex geometries and inter-
action energies (i.e. <UCoul

Lig>, <ULJ
Lig>, <UCoul

Site> and 
<ULJ

Site>) were extracted for each compound and LIE model 
weight parameters were fitted against known experimental 
values. While interaction energies of the complexes were 

(5)
d2ΔW(t)

dt2
= −k

dΔW(t)

dt

(6)ΔW(t) = C0 − C1(1 − exp (−kt))

iteratively predicted by ANN, their corresponding LIE 
model weights were kept constant though the process. At 
each iteration, a naїve convolutional ANN (shown on Fig. 1) 
was trained to reproduce the voxels geometry of complexes 
after MD and the average interactional parameters of the LIE 
model using coordinates after docking as input. The trained 
ANN is then speculated voxels geometries and average inter-
actional energies for every docked pose generated with 4D 
docking for 102 FXR compounds. The top binding poses per 
compound were selected from both geometrical and inter-
action channels of ANN. The energetic score was a sum of 
ANN predicted interaction averages weighted by constants 
from the LIE model and the geometrical score was similarity 
between the predicted voxels maps after MD and voxel maps 
constructed from coordinates of resolved complexes. The 
new top-scored pose candidates were analyzed with paral-
lel MD runs. The new geometries after MD were converted 
into voxel maps and interactional averages were computed 
from the recorded trajectories. The simulation results for 
each of the newly analyzed poses were then used to enrich 
current training set (LIE weights were not recalculated). The 
iteration was then repeated till convergence, each time with 
a larger training set. After two iterations the algorithm con-
verged i.e. the trained ANN could not predict any new top 
scored poses that were not simulated by MD during previ-
ous iterations. The best trajectories were eventually cooled 
down with simulated annealing to the temperature of liquid 
nitrogen and the final complex structures were sent to the 
D3R team for evaluation.

For the free energy protocol, we generated four disso-
ciation trajectories per compound with non-equilibrium 
pulling at different temperatures and sampled each of them 
with quasi-equilibrium umbrella sampling. As the starting 

Training
set

loop gnikco
D 

D4

Na ve
NN

ї

Trained
NN

MD
confirmation

Enrichment of the training set

Fig. 2   Artificial neuron network, 4D molecular docking and simu-
lations of molecular dynamics are working together for the accurate 
prediction of FXR binding poses. A subset of complexes, used as a 
training set at the current iteration is shown in green; the yellow is the 
fraction of poses for which the evolution in time is predicted by the 
trained ANN learned from the training subset. The thin green arrow 
indicates the extension of the training set with new results from the 
MD simulation
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geometries in our pulling simulations were used poses pre-
dicted with our poses prediction protocol as it is described 
above. An important parameter of the pulling models—the 
direction vector of dissociation force—was set manually 
for one selected protein conformation and then all analyzed 
complexes were aligned on this selected structure with the 
manually defined dissociation vector. The sampled trajecto-
ries were analyzed with the WHAM method [47, 48] and by 
assessing the PMF convergence models we were also able 
to highlight the suspected outliers (although unfortunately 
we had no time to recalculate a better estimation for them).

Results and discussion

The Grand Challenge 2, the blinded drug modeling competi-
tion, held by the D3R online resource (https://drugdesign-
data.org/) allowed us to evaluate several protocols in a 
consistent and unbiased way. We participated in four sub-
challenges, all with a structure-based methodology: pose 
predictions, rapid compound ranking, rapid compounds 
ranking after using the correct binding pose and a com-
putationally intensive (relative) free energy estimation. 
An important detail of the challenge is that experimen-
tal/literature data were available for only one of the three 
major chemotypes presented in the competition. Our results 
(summarized on Fig.  3) are particularly interesting for 
the pose prediction sub-challenge 3b and the free energy 
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Fig. 3   Performance of our screening techniques (green bars) in dif-
ferent sub-challenges. The results are sorted so the left most are the 
best and the grey bars refer to protocols with incomplete predictions. 

a Compounds scoring before releasing of the crystal structures, b 
binding pose predictions, c compounds scoring after the release of the 
crystal structures, d the evaluation of the free energy of binding
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measurement sub-challenge 3d, where innovative protocols 
were applied, whilst compound scoring with classical LIE 
approach 3a and 3c was only of average accuracy.

Our approach for binding pose prediction was to combine 
machine learning with MD. Pose prediction is a necessary 
step for compound potency estimation when using a struc-
ture based approach. Therefore, we tested the approach with 
a simpler problem first before implementing a more complex 
scoring ANN. As we lacked a compound scoring machine 
learning protocol at the time of the competition, we used the 
LIE method for an estimation of compound binding potency. 
The method was chosen because it was also a component of 
the pose prediction pipeline. Although, the results of com-
pounds scoring with LIE approach alone are not impres-
sive, the method showed good accuracy as a component of 
the binding pose prediction pipeline. We therefore believe 
that our second place in the pose prediction sub-challenge is 
mostly attributed to the machine learning component which 
was able to generalize noisy LIE observations from multiple 
instances. Another important advantage of the ANN gener-
alization is the ability to predict reasonable LIE parameters 
very quickly, spending less than a second per hundred of 
analyzed poses. This allowed us rescreen up to 60 poses per 
each compound on the fly and select the most promising 
poses in a manner similar to calculating multiple replica MD 
simulations in an explicit solvent. The prototyped method is 
of interest for high-throughput virtual screening because a 
typical compound database contains many millions of com-
pounds, which can be analyzed quickly with an ANN, but 
contain a much smaller number of specific chemical classes 
which can be tractable to study using the much more com-
putationally demanding MD studies.

Our ANN showed good recognition of all the chemical 
structures, which were similar to those in the training set 
(Fig. 4). The initial (experimental) part of our training set 
was mostly composed of benzimidazoles, eight (3OKH, 
3OKI, 3OOF, 3OOK and four more manually constructed) 
out of 13 structures, and all benzimidazoles (shown as 
green) are estimated with perfect average error 1.03 A with-
out any dramatic outliers observed within a subset of 21 
compounds. Conversely, other compounds (miscellaneous), 
where their chemotypes were not represented in the training 
set, displayed a much larger average error of 4.51 A with two 
good estimations apparently selected fortuitously. The non-
trivial outcome within this challenge is that ANN provided 
good poses for spiro- derivatives (average error 2.01 A) and 
sulfonamides (average error 1.91 A). The errors are big-
ger than for benzimidazoles, but are much smaller than the 
errors for the miscellaneous compounds. Importantly, as nei-
ther of these two chemical classes (spiro and sulfonamides) 
had analogues in the training set, an ANN was dynamically 
trained to consider the outcome of MD simulations for the 
predicted binding of these classes. The reason why MD-
based training did not work for miscellaneous compounds 
but worked for these two chemical classes, is likely because 
these two are represented as a small chemical series of three 
compounds each. This presumably allowed the ANN to gen-
eralize binding hypotheses, which were consistent for all 
members of the series. Another advantage of analyzing a 
series of derivatives is that should a promising binding pose 
be chosen (fortuitously) and successfully measured with 
MD for one of the members, the generalization of the ANN 
confers the estimation to every other series member. With 
the miscellaneous compounds, the generalization, if there 

Fig. 4   Accuracy of the pose 
prediction protocol (per-com-
pound view). The four different 
chemotypes are shown in colors 
and stand-alone compounds are 
shown as grey
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were any, could not make useful predictions due to a lack 
of generalization of their individual spatial voxels patterns.

Isoxazoles represent another interesting example that 
illustrates vulnerability of our approach and which likely 
was detrimental to our performance in the pose sub-chal-
lenge. The two compounds (FXR_4 and FXR_23) form a 
series and are likely to be generalized together by ANN. 
Unfortunately, the two more isoxazoles series members from 
the initial training set (3RUT and one manually constructed) 
display significantly different binding modes. Guided by the 
similarity concept, our ANN classified new candidates to 
the existing wrong binding modes (average error is 6.89 A, 
even worse than for miscellaneous group) and no MD could 
compensate for such strong bias in the initial data. It would 
be interesting to ask whether an ANN could predict good 
poses for these two compounds from MD only, but, as it 
follows from the miscellaneous subset of compounds, it 
highly likely that the ANN would generate more accurate 
estimations if authors provided no misleading examples in 
the training data. It remains a large and unresolved problem 
as how to determine the criteria at which the experience 
gained from MD simulations can negate observations from 
a human-predefined initial training set.

In summary, there exists great potential for machine 
learning approaches to improve the present state of the art in 
the molecular modeling field. In our opinion, AI can super-
vise the rational design of compounds in a similar way to 
human medicinal chemistry experts but with the capacity to 
assess in detail many millions of compounds. Here we pro-
totyped ANN for usage in high-throughput virtual screening 
systems. Our next goal toward implementing artificial intel-
ligence for compound scoring is to elucidate the extremely 
difficult multiple-state and multiple-route entropy functions 
of binding to biological macromolecules where the AI is 
observing a large number of sampling events from the MD 
simulations of free energy estimations and applying gener-
alizations in series in a similar manner as was used for the 
pose prediction challenge.

For compound ranking and for comparison with a non-
ANN approach we used a classic LIE model. The LIE 
method is simple and relatively rapid compared to MD based 
scoring methods and possess rationale in form of maximiz-
ing the time-averaged (weighted) interactional energies. 
For entropy in short length MD runs this method involves 
regression parameters which are fitted from a representative 
training set. This also possesses probabilistic model of free 
energy estimations from a number of short runs to facilitate 
replicate sampling. The largest problem with LIE in this 
competition was the insufficient representation of binders in 
the training set. Only one chemotype (benzimidazoles, with 
minor inclusion of isoxazoles) out of the three dominating 
chemotypes from the set of ranked compounds had reported 
experimental data in the training set. This is likely to be 

responsible for the poorer performance of LIE—the rela-
tive predicted potency of the chemotypes showing no clear 
regression with experiment. Considering its rapidity and the 
good contribution to the pose prediction sub-challenge, we 
speculate that even an approximate fit of model parameters 
is sufficient to capture the maximum interactions trend in a 
series of chemical derivatives and thus LIE method can be 
of some use as a component of more complex MD-based 
affinity estimating protocols.

For the free energy sub-challenge, we used own tech-
nique that combines multiple non-equilibrium pulling simu-
lations and the subsequent studying of the trajectories with 
quasi-equilibrium umbrella sampling. The approach is com-
putationally intensive but the estimations are competitive 
(Figs. 3d, 5a). The main idea of our protocol is to account 
for the probabilistic nature of each estimation. Considering 
the multitude of association (dissociation) trajectories, there 
is neither a correct nor an impossible search scenario. Dif-
ferent independent estimations of free energy from the MD 
simulations are all perfectly valid (within accepted modeling 
approximations). The observed potency (free energy) of 
binding comes from weighted averaging over an ensemble of 
possible dissociation scenarios. The logic of our approach is 
to generate several different scenarios—limited only by the 
available computational power—and study them all together 
to determine what the weighted average should it be. This 
is done by generating distinct dissociation trajectories with 
multiple pulling experiments and then smoothing the entire 
set with a quasi-equilibrium sampling protocol. Due to 
prohibitive computational cost, we considered a smaller 
amount of routes and quasi-equilibrium smoothing runs 
than is required to saturate the accuracy of the theoretical 
estimations. For example, we generated only four independ-
ent dissociation trajectories for sampling instead of a more 
desirable 16 per compound and sampled each trajectory for 
32 ns instead of approximately 50 ns. Therefore, we believe 
that even better accuracy for our free energy method could 
be achieved giving a larger investment in computation.

Because of limited computational resources and for 
efficiency in lead optimization, one can not expect an 
(umbrella) sampling protocol that achieves accuracy to be 
totally independent from the starting conditions provided 
by non-equilibrium pulling process. This means contami-
nation of the estimations with errors caused by additional 
energy which is silently borrowed from external thermostat. 
To visualize the borrowed energy contribution we propose 
the use of replicate umbrella samplings for a representa-
tive set of low-energy dissociation scenarios. Our idea is 
that each estimation consists of a constant free energy term 
and variable amount of energy borrowed from the external 
bath. The amount of borrowed energy is mostly dependent 
on the dissociation scenario so averaging over several sam-
pled scenarios should compensate for the error. In addition, 
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averaging along the lowest energy routes is expected to be 
the most accurate because passing of any additional energy 
hills along a dissociation route decreases sampling windows 
overlap in generalized orthogonal coordinates. We there-
fore try to sample the most probable subset of routes with 
the expectation that such estimations are the most accurate, 
but, as this is not guaranteed, error tracking is necessary. 
While errors in the state sampling are monitored by stand-
ard umbrella, the route sampling errors are more difficult 
to detect. To reveal errors caused by insufficient sampling 
in dissociation routes we assessed PMF convergence and 
detected poorly converging averages by observing their con-
vergence history. By combining these two techniques we 
ensure that (i) the limited multiple replica approach pro-
vides a reasonably accurate estimation of binding affinity 

for many compounds with a minimal amount of required 
computation and (ii) assessing PMF convergence reveals 
incorrectly estimated outliers that will require additional 
study. Because the majority of the estimation errors are 
contributed by the “unlucky” selection of subsets of pulling 
scenarios (we assume that convergence in overlapping of 
umbrella windows is successfully confirmed), one can moni-
tor the time-dependent convergence of free energy estima-
tions in order to measure the uniformity of error correction 
in the quasi-equilibrium phase of the analysis. If the routes 
of sampling are balanced, then the errors are uniformly fixed 
so that the average estimation of parallel umbrella sampling 
smoothly converges in accordance with an exponential decay 
law (e.g. the case of FXR_12 compound, Fig. 5b). Otherwise 
the convergence rate becomes abnormally slow (as in case 
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Fig. 5   a Assessing PMF convergence helps to reveal difficulties in 
free energy estimations. b A well converged free energy estimation. 
c The largest expected underestimated outlier FXR_73 (violet circle), 

d the second largest overestimated outlier FXR_83 (orange circle) 
shows significant deviations from the well-estimated FXR_12 (green 
cycle)
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of FXR_83, Fig. 5d) or does not follow an expected behav-
ior (as in FXR_73, Fig. 5c); either of which indicates poor 
accuracy of the resultant estimations. Although we did not 
know the correct free energy values at the time of submis-
sion, we added these three time-dependent diagrams to our 
protocol to illustrate our knowledge about the largest incor-
rect estimations within the blind test. Ultimately, FXR_73 
was our most discrepant outlier, FXR_83 is the second larg-
est overestimated outlier (although we had no evidence that 
FXR_81 was incorrectly over-estimated) and FXR_12 was 
an accurately estimated case. In a real drug design project, 
we would consider repeating the computations for the sus-
pected outliers with new starting seeds which (eventually) 
should provide more balanced routes sampling and more 
accurate predictions.

Conclusions

Here we have demonstrated two promising approaches to 
improve quality of computer-aided drug design: (i) applying 
of ideas from the machine vision field to incorporate knowl-
edge about molecular complex behavior from MD simula-
tions into high-throughput virtual screening and (ii) improve 
the free energy sampling quality of the umbrella method 
with multiple non-equilibrium dissociation trajectories and 
assessing PMF convergence for detecting outliers. During 
Grand Challenge 2 we also determined areas, especially in 
high-throughput compound scoring and ranking, where our 
technological approaches are now being improved.

Open Access  This article is distributed under the terms of the 
Creative Commons Attribution 4.0 International License (http://crea-
tivecommons.org/licenses/by/4.0/), which permits unrestricted use, 
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.
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