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ABSTRACT

DNA methylation is an important epigenetic mecha-
nism for regulating gene expression. Aberrant DNA
methylation has been observed in various human
diseases, including cancer. Single-nucleotide poly-
morphisms can contribute to tumor initiation, pro-
gression and prognosis by influencing DNA methy-
lation, and DNA methylation quantitative trait loci
(meQTL) have been identified in physiological and
pathological contexts. However, no database has
been developed to systematically analyze meQTLs
across multiple cancer types. Here, we present
Pancan-meQTL, a database to comprehensively pro-
vide meQTLs across 23 cancer types from The Can-
cer Genome Atlas by integrating genome-wide geno-
type and DNA methylation data. In total, we identified
8 028 964 cis-meQTLs and 965 050 trans-meQTLs.
Among these, 23 432 meQTLs are associated with
patient overall survival times. Furthermore, we iden-
tified 2 214 458 meQTLs that overlap with known loci
identified through genome-wide association studies.
Pancan-meQTL provides a user-friendly web inter-
face (http://bioinfo.life.hust.edu.cn/Pancan-meQTL/)
that is convenient for browsing, searching and down-
loading data of interest. This database is a valuable
resource for investigating the roles of genetics and
epigenetics in cancer.

INTRODUCTION

The interpretation of the function of genomic variants, par-
ticularly in non-coding regions, is a major challenge for
the genetic dissection of complex diseases such as cancer
(1). Genome-wide association studies (GWAS) have iden-
tified numerous genetic loci that influence the risk of hu-
man cancer (2,3), but most of these loci are located in non-
coding regions and are without clear molecular mechanisms
that contribute to the phenotypic outcome. Previous stud-
ies considered a diverse set of functional regions, including
miRNA binding sites, protein modification sites and tran-
scription factor binding sites (4,5). However, the link be-
tween variants and epigenetic signals involved in the regula-
tion of key biological processes has been largely overlooked.

As a major epigenetic mechanism that directs gene ex-
pression, DNA methylation plays a key role in the regu-
lation of crucial biological and pathological processes (6).
Aberrant DNA methylation is frequently observed in vari-
ous cancers (7) and represents an attractive biomarker and
therapeutic target (8,9). Increasing evidence indicates that
single-nucleotide polymorphisms (SNPs) contribute to tu-
mor initiation, progression and prognosis by influencing
DNA methylation levels (10,11). Therefore, DNA methy-
lation may be an important molecular-level phenotype that
links a genotype with the trait of a complex disease. It is fun-
damentally vital to build a public data repository to iden-
tify SNPs that significantly affect DNA methylation lev-
els, i.e. methylation quantitative trait loci (meQTL). Recent
methodological advances allow for genome-wide screening
of meQTLs in different tissues, including blood (12), lung
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(13) and brain (14). However, no database has been de-
veloped to systematically analyze meQTLs across multiple
cancer types.

The Cancer Genome Atlas (TCGA) provides genome-
wide genotype data and DNA methylation data for ∼10
000 cancer samples, making it possible to systematically
conduct meQTL analysis across cancer types. We identi-
fied millions of meQTLs across 23 cancer types and have
made them available for browsing, searching and down-
loading through Pancan-meQTL (http://bioinfo.life.hust.
edu.cn/Pancan-meQTL/), a database for systematic evalu-
ation of the effects of genetic variants on DNA methylation
across diverse cancer types.

DATA COLLECTION AND PROCESSING

Genotype data collection, imputation and processing

We downloaded genotype data (level 2) from TCGA data
portal (https://portal.gdc.cancer.gov/) (Figure 1A). We kept
7735 samples with both genotype data and methylation
data. We then combined colon adenocarcinoma (COAD)
and rectum adenocarcinoma (READ) as colorectal can-
cer (CRC) (15) and removed cancer types with sample size
<100 primary tumor samples. Thus, for further analysis,
we had 7242 samples across 23 cancer types. We performed
genotype imputation and filtering per cancer type as de-
scribed in our previous study (16). After imputation and
quality filtering, on average, 4 318 218 genotypes per can-
cer type were included in the meQTL analysis.

Methylation data collection and processing

Methylation beta values (level 3) obtained from TCGA
data portal (https://gdc-portal.nci.nih.gov/) were measured
by the Illumina Infinium HumanMethylation450 BeadChip
array, which contained 485 512 probes for each sample.
Due to the specific nature of methylation patterns on sex
chromosomes (17), we focused on autosomes. In each can-
cer type, probes were filtered by the following criteria: (i)
methylation beta value missing rate > 0.05, (ii) mapping to
multiple locations on the genome (18) and (iii) containing
known SNP (1000 Genome Phase3 (19), MAF > 0.01) at
CpG sites (20,21) (Figure 1B). On average, 369 244 high-
quality methylation probes per cancer type were used for
analyses. To minimize the effects of outliers on the regres-
sion scores, the values for each probe across samples per
cancer type were transformed into a standard normal dis-
tribution based on rank (17,22,23).

Covariates

To correct for known and unknown confounders and in-
crease the sensitivity of our analyses, we included several
covariates. The top five principal components calculated by
smartpca in the EIGENSOFT program (24) were included
to control for ethnicity differences. To remove hidden batch
effects and other confounders in the methylation data, we
used PEER software (25) to select the first 15 PEER fac-
tors from the methylation data as covariates. We included
the common confounders of age, sex, and tumor stage as
additional covariates (21,23,26).

Identification of meQTLs

Identification of meQTL is straightforward that to test
whether individuals carrying different genotypes show dif-
ferent methylation levels (17,20,27,28). For each cancer
type, we performed linear regression with MatrixEQTL
(29) to determine the effects of genetic variation on methy-
lation levels. We calculated the pairwise associations be-
tween each SNP and CpG site. We used HumanMethyla-
tion450 BeadChip array annotation to extract the location
(hg19) of methylation probes. We downloaded the SNP lo-
cation (hg19) from dbSNP (https://www.ncbi.nlm.nih.gov/
projects/SNP/). We defined meQTLs as SNPs with false dis-
covery rates (FDRs) calculated by MatrixEQTL <0.05 and
the absolute value of correlation coefficient (r) ≥0.3. If the
SNP was within 1 Mb from the probe location (22), we de-
noted it as cis-meQTL; and if the SNP was beyond that
point, we denoted it as trans-meQTL.

Identification of survival-associated meQTLs

To prioritize promising meQTLs, we identified meQTLs
that may be associated with patient survival times. We
downloaded the clinical data, including patient overall sur-
vival times, from TCGA data portal (https://gdc-portal.nci.
nih.gov/). For each meQTL, we used the log-rank test to ex-
amine the association between genotypes and patient over-
all survival times. We plotted Kaplan–Meier (KM) curves
to show the survival times for individuals carrying differ-
ent genotypes. We defined meQTLs with FDR <0.05 as
survival-meQTLs.

Identification of meQTLs in GWAS regions

Risk SNPs identified in GWAS studies were down-
loaded from GWAS catalog (http://www.ebi.ac.uk/gwas/)
(2). GWAS linkage disequilibrium (LD) regions were ex-
tracted from SNAP (https://personal.broadinstitute.org/
plin/snap/ldsearch.php) (30) with parameters (SNP data
set: 1000 Genomes Pilot 1; LD r2 threshold: 0.5; popula-
tion panel: CEU; distance limit: 500 kb). The meQTLs that
overlapped with GWAS tagSNPs and LD SNPs were iden-
tified as GWAS-meQTLs.

Enrichment analysis

To assess the enrichment of meQTLs in DNA regulatory
elements and GWAS loci, we generated a control data set
of non-meQTL SNPs with minor allele frequency (MAF)
and distance matched to the set of meQTLs for each can-
cer type. We downloaded transcription factor binding sites
(TFBSs) of related ENCODE cell lines from the UCSC
genome browser, and extracted cancer-specific GWAS loci
from GWAS catalog. Enrichment analyses of meQTLs were
performed by two-tailed Fisher’s exact test with the follow-
ing 2 × 2 table: columns; meQTL SNPs and non-meQTL
SNPs, rows; SNPs within and not within the TFBSs/GWAS
loci.

http://bioinfo.life.hust.edu.cn/Pancan-meQTL/
https://portal.gdc.cancer.gov/
https://gdc-portal.nci.nih.gov/
https://www.ncbi.nlm.nih.gov/projects/SNP/
https://gdc-portal.nci.nih.gov/
http://www.ebi.ac.uk/gwas/
https://personal.broadinstitute.org/plin/snap/ldsearch.php
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Figure 1. Data collection, processing and database construction. Pancan-meQTL collected the genotype, methylation and clinical data from TCGA to
evaluate the effects of SNPs on methylation levels. For each cancer type, the data were processed using a series of filtering and quality control steps. Four
datasets, cis-meQTLs, trans-meQTLs, survival-meQTLs and GWAS-meQTLs, are included in the database.

DATABASE CONTENT AND USAGE

Samples in Pancan-meQTL

Pancan-meQTL included 23 cancer types with sample size
≥100 in TCGA, covering 7242 tumor samples. The sam-
ple size of each cancer type ranged from 103 in skin cu-
taneous melanoma (SKCM) to 664 in breast invasive car-
cinoma (BRCA) (Table 1). For the genotype data, we ob-
tained a median of 4 487 756 SNPs for each cancer type after
imputation and quality control, ranging from 2 721 411 for
BRCA to 5 121 896 for acute myeloid leukemia (LAML).
For the methylation data, there were, on average, 384 903
probes for each cancer type after probe filtering and quality
control. The range was from 380 594 for CRC to 385 618
for testicular germ cell tumors (TGCT).

meQTLs in Pancan-meQTL

Per cancer type, the associations between each SNP and
methylation probe were analyzed for cis- and trans-meQTL
mapping by linear regression with adjusted covariates. In
the cis-meQTL analysis, we identified a total of 13 619 801
meQTL-CpG pairs at FDR < 0.05 and |r| ≥0.3 in 23 can-
cer types, which corresponded to a median P-value <4.34
× 10−7. We found a total of 8 028 964 cis-meQTLs across
the cancer types, with a median of 318 082 meQTLs per
cancer type, and a range from 150 232 in SKCM to 574
577 in prostate adenocarcinoma (PRAD) (Table 1). These
meQTLs control DNA methylation at a median of 11 284
CpG sites per cancer type. On average, 35.1% cis-meQTLs
are associated with multiple CpG sites. In trans-meQTL
analysis, we identified 3 044 224 meQTL-CpG pairs at FDR
< 0.05 and |r| ≥0.3 in 23 cancer types, which corresponded
to a median of P-value < 1 × 10−9. There are 965 050 trans-
meQTLs, with a median of 46 185 meQTLs per cancer type,
and a range from 6332 in SKCM to 82 497 in kidney renal
clear cell carcinoma (KIRC) (Table 1).

We further identified 23 432 meQTLs associated with pa-
tient overall survival times across different cancer types at
FDR < 0.05. The number of survival-meQTLs ranged from
218 in BRCA to 11 212 in PRAD. We compared meQTL re-
sults to GWAS data and found 2 214 458 meQTLs that over-
lap with GWAS linkage disequilibrium regions of one or
multiple traits. Enrichment analyses showed that meQTLs
are significant enriched in most of TFBSs, such as CTCF,
SIN3AK20 and NRSF (Supplementary Figure S1) and
GWAS loci (Supplementary Table S1).

WEB DESIGN AND INTERFACE

The database was built based on Apache, MySQL, PHP and
Javascripts (Figure 1C). A user-friendly web interface is pro-
vided to facilitate searching, browsing and downloading.

Querying meQTLs

We provide several entries for querying. Pancan-meQTL
contains four datasets: cis-meQTLs, trans-meQTLs,
survival-meQTLs and GWAS-meQTLs (Figure 2A and
B). We developed four corresponding pages to display
each dataset (Figure 2A). Users can enter each page from
the browser bar to query SNPs, methylation data, and
methylation-related genes of interest. On the ‘home’ page,
we set a search section for users to query the four meQTL
datasets. Also from the home page, users can search
results by cancer type from the corresponding cancer
type diagram. A quick search option is available on each
page (top right) for searching by SNP ID, methylation
probe or methylation-related gene symbol. Moreover, we
provide a batch search page on the ‘Pancan-meQTLs’ page
(Figure 2C). On this page, users can input multiple SNPs,
methylation probes or genes of interest. A heatmap will
show all the r values across all analyzed cancer types. For
example, with inputs of ‘rs11047888’ and ‘rs4975682’, our
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Figure 2. Overview of Pancan-meQTL database. (A) Browser bar, with a quick search box on the right. (B) Four modules in Pancan-meQTL: cis-meQTLs,
trans-meQTLs, survival-associated meQTLs and GWAS-related meQTLs. (C) Batch search box allows users to input multiple SNPs, methylation probes
and genes of interest. (D) Example of heatmap in pancan-meQTLs page showing the correlation coefficient across cancer types. (E) Records of cis-meQTLs
on cis-meQTLs page. (F) Example of meQTL boxplot. (G) Records of survival-meQTLs on survival-meQTLs page. (H) Example of a Kaplan–Meier plot
on survival-meQTL page.
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Table 1. Overview of samples and meQTLs in Pancan-meQTL

Cis Trans

Cancer type Disease full name
No. of
samples

No. of
methyla-
tion
probes

No. of
geno-
types Pairs meProbesa cis meQTLs Pairs meProbesa meQTLs

BLCA Bladder urothelial
carcinoma

405 384903 4182865 502774 8136 301392 216341 46165 51295

BRCA Breast invasive carcinoma 664 384084 2721411 340881 7289 203391 47355 1804 31118
CESC Cervical squamous cell

carcinoma and
endocervical
adenocarcinoma

290 383425 4289322 531458 11284 318082 212025 48741 46185

CRC Colon adenocarcinoma +
Rectum adenocarcinoma

354 380594 3879590 555556 10781 316517 185943 40872 55402

ESCA Esophageal carcinoma 173 382712 4357977 408020 15726 260629 21790 5427 13297
HNSC Head and neck squamous

cell carcinoma
501 385146 4245789 706915 10590 392427 100579 16599 51195

KIRC Kidney renal clear cell
carcinoma

306 384916 4487756 827668 14184 455287 598701 95277 82497

KIRP Kidney renal papillary cell
carcinoma

271 384786 4827856 830528 14986 486170 232041 52484 58017

LAML Acute myeloid leukemia 122 385529 5121896 408043 10758 283314 22473 606 17201
LGG Lower grade glioma 487 385198 4611830 789126 11092 454090 151792 24257 61737
LIHC Liver hepatocellular

carcinoma
367 383962 4152031 449509 9378 272962 127824 28610 46149

LUAD Lung adenocarcinoma 448 384670 4343043 525439 8848 297745 110266 19790 52156
LUSC Lung squamous cell

carcinoma
359 385034 3676672 598237 10039 334937 191909 44240 60597

PAAD Pancreatic
adenocarcinoma

177 382517 4989296 903193 24432 513599 120777 41820 34727

PCPG Pheochromocytoma and
paraganglioma

175 385235 4701955 589160 19388 385289 34905 2175 23719

PRAD Prostate adenocarcinoma 479 385067 4801718 1129044 16366 574577 188046 46160 66084
SARC Sarcoma 257 382095 4083674 458278 14059 287992 64709 22198 24734
SKCM Skin cutaneous melanoma 103 384364 4838338 200763 6689 150232 8399 399 6332
STAD Stomach adenocarcinoma 367 383290 4265676 687004 10723 382962 77711 9612 49489
TGCT Testicular germ cell

tumors
148 385618 4807863 470576 14871 309018 36183 3791 25912

THCA Thyroid carcinoma 498 385449 4842972 830377 11908 477575 248274 36261 72317
THYM Thymoma 120 385609 4940146 562478 17015 352356 28228 1981 22009
UCEC Uterine corpus

endometrial carcinoma
171 385407 4961809 314774 14181 218421 17953 2911 12881

ameProbes: methylation probes regulated by meQTLs.

results show that rs11044788 has significant correlations
with cg11559192 and cg25763538 in 17 and 16 cancer types,
respectively; whereas rs4975682 correlates with cg14565270
and cg03265642 in two and six cancer types, respectively
(Figure 2D).

Querying on the cis/trans-meQTL page, a table with
SNP ID, SNP genomic position, SNP alleles, methylation
probe, methylation position, methylation-related gene sym-
bol, gene position, beta value (effect size of SNP on gene
expression), r value and P-value of meQTL will be returned
(Figure 2E). For each record, a vector diagram of boxplot is
provided to display the association between SNP genotypes
and methylation levels (Figure 2F).

Querying on the survival-meQTL page, details with SNP
ID, SNP genomic position, SNP alleles, log-rank test P-
value and median survival times of different genotypes will
be displayed (Figure 2G). A vector diagram of the KM plot
is embedded in each record to display the association be-
tween SNP genotypes and overall survival times (Figure
2H).

Querying on the GWAS-meQTLs page will return the
SNP information, related methylation, gene information
and related GWAS traits. Search boxes are designed for re-
trieving specific cancer types, SNP, methylation probe and
gene.

Downloading data and figures

All the cis/trans-meQTLs for each cancer type can be down-
loaded from the ‘Download’ page. The queried results can
be downloaded from the query page by clicking the ‘Down-
load’ button. The r values of the batch search can be down-
loaded from the ‘Pancan-meQTL’ page. The vector dia-
grams of the boxplot and KM plot can be downloaded from
the cis/trans-meQTL and survival-meQTL pages, respec-
tively.

Help section

The ‘Help’ page provides information for data collection,
processing, result summary and contact. Pancan-meQTL
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welcomes any feedback by email to the address provided in
the ‘Contact us’ section.

CONCLUSION

We developed Pancan-meQTL as a resource that provides
millions of meQTLs in multiple cancer types. Pancan-
meQTL is the first public database that focuses on cancer-
specific meQTLs. Our comprehensive analyses across 23
cancer types provide a great opportunity to investigate the
patterns of meQTLs among cancer types. Among meQTLs,
we also identified abundant meQTLs associated with pa-
tient survival time or located in known GWAS loci. These
meQTLs are potentially promising candidates for genetic
research. The Pancan-meQTL database will be continually
updated as large-scale genotypic and methylation data be-
come available. As a comprehensive database that char-
acterizes meQTLs across multiple cancer types, Pancan-
meQTL will be valuable for improving the interpretation of
cancer risk-associated SNPs identified in genetic studies. It
represents an important resource for cancer and epigenetic
research.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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