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Abstract: Polyphenols are naturally derived compounds that are increasingly being explored for
their various health benefits. In fact, foods that are rich in polyphenols have become an attractive
source of nutrition and a potential therapeutic strategy to alleviate the untoward effects of metabolic
disorders. The last decade has seen a rapid increase in studies reporting on the bioactive properties of
polyphenols against metabolic complications, especially in preclinical models. Various experimental
models involving cell cultures exposed to lipid overload and rodents on high fat diet have been used
to investigate the ameliorative effects of various polyphenols against metabolic anomalies. Here,
we systematically searched and included literature reporting on the impact of polyphenols against
metabolic function, particularly through the modulation of mitochondrial bioenergetics within the
skeletal muscle. This is of interest since the skeletal muscle is rich in mitochondria and remains one
of the main sites of energy homeostasis. Notably, increased substrate availability is consistent with
impaired mitochondrial function and enhanced oxidative stress in preclinical models of metabolic
disease. This explains the general interest in exploring the antioxidant properties of polyphenols and
their ability to improve mitochondrial function. The current review aimed at understanding how
these compounds modulate mitochondrial bioenergetics to improve metabolic function in preclinical
models on metabolic disease.

Keywords: polyphenols; skeletal muscle; mitochondrial function; insulin resistance; metabolic
syndrome

1. Introduction

Polyphenols are naturally derived compounds that are widely studied for their health
benefits [1]. In fact, polyphenols can be grouped into four major categories, which include
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flavonoids, phenolic acids, stilbenes, and lignans. Flavonoids, one of the larger classes
of polyphenols, can be further grouped into flavones, flavonols, flavanols, flavanones,
isoflavones, proanthocyanidins, and anthocyanins [2]. Chemically, flavonoids have the
universal structure of a 15-carbon skeleton, containing two phenyl rings and a hetero-
cyclic ring. This carbon structure can be abbreviated as C6-C3-C6 [2]. Consumed food or
beverage sources such as tea, fruits, and vegetables are known to contain high levels of
polyphenols which include aspalathin, catechin, hesperetin, cyanidin, proanthocyanidins,
quercetin, and rutin [3]. There is a significant interest in understanding the bioactivities
of these compounds, with the PubMed search showing that over 4599 relevant records
can be accessed to date, and a considerable growth in publications has been seen in the
last decade [4]. In addition, many plants that are rich in polyphenols such as Aspalathus
linearis “rooibos tea plant” [5] and Camellia sinensis “tea plant” [6] are widely investigated
for their health benefits such as improving cardiovascular function and combating can-
cer [7,8]. In fact, our group has been actively involved in understanding the therapeutic
effects of rooibos, including assessing its ameliorative effects against diverse metabolic
complications [9,10]. Accumulatively, we have shown that polyphenolic compounds such
as aspalathin, isoorientin, and rutin can activate various physiological pathways such as
protein kinase B (AKT) and AMP-activated protein kinase (AMPK) to improve insulin
signaling and regulate energy metabolism [11,12]. Likewise, polyphenolic compounds
such as gallic acid and catechins can reduce body weight and attenuate metabolic abnor-
malities, especially scavenging free radical species through their abundant antioxidant
properties [13].

Indeed, the bioactivity of polyphenols has been mainly attributed to their abundant
antioxidant properties, which have been linked with improved metabolism, reduced in-
flammation, and ameliorating oxidative stress [14]. Notably, inflammation and oxidative
stress are some of the key destructive components that are implicated in the development
of metabolic anomalies and deteriorated metabolic health. Inflammation is characterized
by enhanced pro-inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and
interleukin-6 (IL-6) [15]. On the other hand, oxidative stress arises because of overproduc-
tion of reactive oxygen species (ROS) that trigger suppression of intracellular antioxidant
such as glutathione, superoxide dismutase, catalase, and thioredoxins [16]. Recently,
impaired mitochondrial dysfunction has been reported to play an important role in the gen-
eration of oxidative stress through the altered actions of the electron transport chain [17].
For example, enhanced substrate delivery including free fatty acids (FFAs), especially
under the conditions of metabolic syndrome, can impede the actions of the mitochondrial
electron transport chain, resulting in the leakage of electrons and the overproduction of
ROS. In fact, a few studies have correlated impaired mitochondrial bioenergetics with
the generation of oxidative stress and reduced metabolic function [18]. As a result, many
studies have targeted the main energy regulating tissues with abundant mitochondria,
such as the skeletal muscle, to understand how increased substrate availability reduces or
affects metabolic function [19,20]. Similarly, several studies have been published focusing
on understanding how polyphenols affects mitochondrial bioenergetics in conditions of
metabolic stress [21,22]. Currently, there is limited reviews on this topic or those targeting
the modulation effect of polyphenols on skeletal muscle physiology. Thus, the current study
aims to systematically extract and discuss relevant literature on the impact of polyphe-
nols and plants rich in these compounds on their ameliorative effects against metabolic
complications by targeting mitochondrial bioenergetics within the skeletal muscle.

2. Methodology for Study Selection and Inclusion
2.1. Data Sources and Search Strategies

The present review included preclinical trials obtained from a comprehensive search
conducted on electronic databases, such as PubMed, from date of conception up to
30 December 2020. Two investigators, SXHM and KZ, independently conducted the search
process and evaluated studies for eligibility and a third reviewer (PVD) was consulted
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in cases of disagreements. The systematic search was conducted using medical subject
heading (MeSH) terms such as “polyphenols”, “bioactive compounds”, “mitochondria”,
“metabolic syndrome”, and “skeletal muscle”. The search was restricted to English only.
Mendeley reference manager version 1.19.4-dev2 software (Elsevier, Amsterdam, The
Netherlands) was used to identify any duplicated studies.

2.2. Inclusion and Exclusion Criteria

This review includes in vitro and in vivo studies reporting on the impact of polyphe-
nols on mitochondrial bioenergetics and related complications in skeletal muscle. In this
review, only preclinical studies reporting on evidence involving skeletal muscle, polyphe-
nols, and/or bioactive compounds and mitochondrial bioenergetics were included. This
review is focused on better understanding the importance of polyphenols and bioactive
compounds on pre-clinical studies, therefore human studies, books, letters, case reports,
and reviews were excluded.

2.3. Data Extraction and Representation

Studies from the initial search on PubMed were screened for eligibility, they were then
subsequently evaluated by full-text screening. Data was extracted by two investigators
(SXHM and KZ) independently with (PVD) as a third investigator in case of any disagree-
ments. Data extraction was performed in the following format: polyphenols/bioactive
compounds, experimental model, effective dose, and intervention period, and main find-
ings and author details (name and year of publication).

3. Results
3.1. An Overview of Results

The primary outcome of the study was to evaluate the impact of polyphenols on
mitochondrial bioenergetics, oxidative stress, and/or any other metabolic complications
within the skeletal muscle. Figure 1 shows the flow chart of the study selection. Briefly,
7 studies were initially identified; however, after screening and reviewing the titles and
abstracts, only 40 studies were eligible for the full-text assessment. After reviewing the
full-text articles, a total of 25 studies were irrelevant to the topic of interest. Therefore,
15 met the inclusion criteria and were discussed within the review.

3.2. A Brief Overview on Polyphenolic Compounds and Their Impact on Mitochondrial
Bioenergetics and Linked Metabolic Function in Various Preclinical Models

In addition to giving a brief background on the source and bioavailability profile,
both in vivo and in vitro studies are discussed based on each polyphenolic compound,
systematically extracted from the literature, as represented in Tables 1 and 2.
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Table 1. A summary of the in vitro studies reporting on the impact of polyphenols on mitochondrial bioenergetics and
metabolic function within the skeletal muscle.

Polyphenols Experimental Model Effective Dose and
Duration Main Findings Ref.

Resveratrol

C2C12 myoblast 25 µM resveratrol for 24 h

Enhanced mitochondrial function and biogenesis
in a NAD-dependent deacetylase sirtuin-1
(SIRT1)-dependent manner. This included

increasing ATP content and peroxisome
proliferator-activated receptor γ coactivator 1-α

(PGC1α) protein expression

[21]

C2C12 myotubes 20 or 50 µM resveratrol for
6 or 24 h, respectively

High dose reduced ATP production and activated
AMP-activated protein kinase (AMPK)
phosphorylation. Resveratrol induced

overexpression of SIRT1 decreased PGC1α
acetylation and PGC1α coactivator activity

[23]

C2C12 myoblast 20, 40, 60 µM resveratrol
for 24 h

Increased miR-27b expression and mtDNA, which
improved mitochondrial function and glucose

uptake in a Sirt1-dependent manner
[24]

Palmitate-induced
mitochondrial

dysfunction C2C12
myotubes

25 µM resveratrol for 24 h

Ameliorated mitochondrial dysfunction and
oxidative stress as evident by improved mtDNA

content and increased expression of mitochondrial
biogenesis-r elated protein including PGC1α,
mitochondrial transcription factor (TFAM),

mitofusin 2 (mfn2), and drosophila melanogaster
(drp1), as well as reduced ROS production

[17]

(S)-[6]-gingerol L6 rat myotubes 50, 100 and 150 µM
(S)-[6]-gingerol for 24 h

Activated AMPKα, which was accompanied by an
increased mitochondrial content number, as well

as an improved gene expression of PGC-1α
[25]

Naringenin and
quercetin

Palmitate-induced
insulin resistance L6

myotubes

75 µM naringenin or 750
mM quercetin for 16 h

Increased glucose transporter (GLUT)4
translocation, AMPK phosphorylation, and SIRT1

and PGC1α expression
[26]
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Table 1. Cont.

Polyphenols Experimental Model Effective Dose and
Duration Main Findings Ref.

Pinosylvin Rats L6 myotubes 20 or 60 µM pinosylvin
for 24 h

Pinosylvin activated SIRT1 in vitro and
stimulated glucose uptake through the

activation of AMPK
[27]

Icariin C2C12 myocytes 20, 40, 80 µg/mL icariin
for 24 h

Increased irisin/fibronectin type lll domain
containing 5 (FNDC5), PGC1α gene expression,

and dose-dependently increased AMPK
phosphorylation

[28]

Flavonoids
(mulberry.)

Palmitate-induced
insulin resistance L6

myotubes

100 nmol/L insulin, 0.75
mmol/L Palmitic acid
(PA) and MLF (5,10, 20,

40 and 80µg/mL) for 24 h

MLF and metformin significantly ameliorated
glucose uptake by activating AMPK and

reduced ROS production in L6 cells.
Furthermore, MLF improved mitochondrial

function by increasing the expression of PGC1α

[29]

Table 2. A summary of in vivo studies reporting on the impact of polyphenols on mitochondrial bioenergetics and metabolic
function within the skeletal muscle.

Polyphenols Experimental Model Effective Dose and
Duration Main Findings Ref.

Resveratrol

High-fat diet (HFD)
induced obese C57BL/6J

mice

400 mg/kg/day resveratrol
for 15 weeks

Increased oxygen consumption was accompanied by
regulation of the genes for mitochondrial biogenesis
such as peroxisome proliferator-activated receptor γ

coactivator 1 α (PGC1α) acetylation and activity

[30]

HFD-fed Sprague Dawley
rats

100 mg/kg b.w./day
resveratrol for 8 weeks

Reduced intramuscular lipid accumulation and
ameliorated insulin resistance, in part by enhancing

NAD-dependent deacetylase sirtuin 1 (SIRT1) activity,
increasing mitochondrial biogenesis and β-oxidation

[14]

Catch-up growth-induced
insulin resistance Sprague

Dawley rats

100 mg/kg b.w./day
resveratrol treatment for 4

and 8 weeks

Enhanced SIRT1 activity and improved
mitochondrial number and insulin sensitivity, as well

as decreased levels of reactive oxygen species and
restored antioxidant enzyme activities, including
superoxide dismutase (SOD), catalase (CAT), and

glutathione peroxidase (GPx)

[31]

C57/BL6J mice

25–30 mg/kg b.w/day (low
dose) and 215–230 mg/kg

b.w/day (high dose)
resveratrol for 8 months

50 µM dose significantly decreased ATP levels early
as 1 h after treatment and activated AMPK

independently of SIRT1. At 25 µM resveratrol
increased mitochondrial function by increased

expression of PGC1α, PGC1β, and TFAM including
the transcription factor B2 (TFB2M) in a

SIRT1-dependent manner. This was also supported
by an increase on mtDNA content. Furthermore,

resveratrol AMP-activated protein kinase (AMPK)
and increased NAD+ levels

[21]

HFD-induced insulin
resistance Sprague Dawley

rats

100 mg/kg/day resveratrol
for 8 weeks

Ameliorated insulin resistance through increased
SIRT1 and SIRT3 expressions and elevated mtDNA

and mitochondrial biogenesis. This included
enhancing mitochondrial antioxidant enzymes

including SOD, CAT, and GPx

[32]

HFD-fed C57BL/6J mice 0.02, 0.04, and 0.06%
resveratrol for 12 weeks

Reduced the plasma insulin and glucose
concentrations, which were accompanied by an

increased miR-27b overexpression, which improved
mitochondrial function in a Sirt1-dependent manner

[24]

HFD-induced sarcopenic
obesity Sprague Dawley

rats

0.4% resveratrol for 20
weeks

Ameliorated mitochondrial dysfunction and
oxidative stress via the serine–threonine kinase LKB1
(PKA/LKB1)/AMPK pathway. This was evident by

increased activity of complexes I, II, and IV, and
raised PGC1α, TFAM, and mfn2, as well as decreased
drp1 expression. Moreover, there was an increase in
the total antioxidative capability (T-AOC), SOD, GPx,

MDA, and carbonyl protein

[17]
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Table 2. Cont.

Polyphenols Experimental Model Effective Dose and
Duration Main Findings Ref.

Proanthocyanidins

Obese Zucker fatty rats
(fa/fa)

35 mg/kg b.w./day
proanthocyanidins 68 days

Decreased citrate synthase activity and oxidative
phosphorylation complexes I and II levels and Nrf1

gene expression, which in turn reduced reactive
oxygen species (ROS) production

[33]

Diet-induced obese
Wistar rats

25 mg/kg b.w./day
proanthocyanidins for 21

days

Reduced insulin resistance, improved mitochondrial
respiration, mitochondrial oxidative capacity, and

fatty acid oxidation as evident by increased
mitochondrial enzymatic activities, AMPK

phosphorylation, and the expression of peroxisome
proliferator-activated receptor α (Pparα) and UCP2

[34]

Flavan 3-ols fraction
derived from cocoa

powder
C57BL/J mice 50 mg/kg b.w./day

flavan-3-ols for 2 weeks

Enhanced lipolysis and promoted mitochondrial
biogenesis marked by increased carnitine

palmitoyltransferase 2 (CPT2) expression and
mitochondria copy number

[35]

Naringenin and
quercetin

High-fructose
diet-induced insulin
resistance Wistar rats

50 mg/kg b.w./day
naringenin and quercetin for

6 weeks

Both naringenin and quercetin reduced the plasma
glucose and insulin levels accompanied by a

significant increase in SIRT1 and PGC1α expression,
AMPK phosphorylation, and glucose transporter type

4 (GLUT4) translocation

[26]

Icariin C57BL/6 mice 10 or 40 mg/kg/day icariin
for 14 days

Decrease in body weight gain by increasing FNDC5,
PGC-1α, and p-AMPK expression levels [28]

Flavonoids Type 2 diabetic (db/db)
mice

180 mg/kg flavonoids for 7
weeks

Ameliorated insulin resistance and symptoms
associated with diabetes through increased p-AMPK
and PGC1α, raised m-GLUT4 and T-GLUT4 protein
expression, and improved mitochondrial function

[29]

3.2.1. Resveratrol

Resveratrol (3,5,4′-trans-trihydroxystilbene, Figure 2) is a polyphenolic phytoalexin
also belonging to the stilbene family that is abundant in grape skin and seeds, but is
also found in various types of plant foods such as berries, peanuts, and wine [36]. This
polyphenol is widely available and it is synthesized by more than 70 species of plants [37].
Although it exhibits low bioavailability and solubility [37], experimental data on resveratrol
have been widely reviewed, and it has shown potential benefits for human health and
exhibits protective effects against metabolic complications such as inflammation, oxidative
stress, and aging. Moreover, resveratrol has shown promising properties in ameliorating
complications linked with diseases such as diabetes and obesity. Evidence from studies
by Price et al. [21] and Higashida et al. [23] demonstrated that resveratrol enhanced mito-
chondrial function and biogenesis in a SIRT1-dependent manner, and this was consistent
with improved mtDNA content in palmitate-treated skeletal muscle cells and HFD-fed
mice. This includes increasing the protein expression of PGC1α and other mitochondrial
functional genes such as TFAM, mfn2, and drp1, as well as the activity of mitochondrial
complexes I–V in skeletal muscle cells [21,23,24].
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Furthermore, in vivo studies suggest that resveratrol exhibits strong antioxidant prop-
erties in improving skeletal muscle function in various HFD-induced insulin-resistant



Molecules 2021, 26, 2791 7 of 14

models [17,31,32]. These effects were shown by a decreased level of ROS, a strong indi-
cator of oxidative stress, which occurred concomitant with restored antioxidant enzyme
activities, including SOD, CAT, and GPx. Furthermore, Huang et al. [17] demonstrated that
resveratrol ameliorated insulin resistance in HFD-induced obese Sprague Dawley rats by
reducing intramuscular lipid accumulation and enhancing SIRT1 activity. This was, in part,
by increasing mitochondrial biogenesis and β-oxidation in the skeletal muscle of these
rats. More evidence included in this review demonstrated that resveratrol increased the
phosphorylation of AMPK in the skeletal muscle of both C57/BL6J mice and HFD-induced
sarcopenic obesity Sprague Dawley rats [17,21]. Overall, resveratrol demonstrates a wide
array of benefits in improving metabolic function, in part by effectively regulating energy
metabolism and mitochondrial bioenergetics within the skeletal muscle.

3.2.2. Gingerol

Gingerol is the primary bioactive phenylpropanoid in the rhizome of ginger (Z. offici-
nale Roscoe; Zingiberaceae) (Figure 3) which is known for its pungent taste and aroma [25].
Ginger is widely used a spice and medicinal herb, highlighting the general interest in
the potential health benefits of the bioactive compounds found in this functional food
product [39]. Generally, ginger contains pungent phenolic substances known as gingerols,
shogaols, paradols, and zingerone [39]. Amongst the constituents of gingerols [6]-gingerol
(1-[4′-hydroxy-3′-methoxyphenyl]-5-hydroxy-3-decanone) is the major pharmacologically
active component [40,41]. This polyphenol is known to display a variety of biological
properties, including anticancer [42], antioxidant, anti-inflammatory [43], and antifungal
effects [44]. Our literature search showed that this bioactive compound has the potential
to enhance mitochondrial function in L6 rat myotubes. Briefly, was is demonstrated that
treating normal L6 myotubes with 50, 100, and 150 µM (S)-[6]-gingerol for 24 h could acti-
vate AMPKα and further improve mitochondrial content number and the gene expression
of PGC1α in vitro [45]. Other studies reported that the polyphenol found in ginger could
affect metabolic function by reducing blood glucose levels in diabetic animal models and
increase glucose uptake in in vitro cultured cells [43,46]. Overall, (S)-[6]-gingerol displays
the potential beneficial effects on metabolic function by modulating skeletal muscle mi-
tochondrial function, further suggesting that ginger may be effective in preventing the
development of metabolic syndromes. However, additional data is required to confirm its
metabolic properties, there has been concern with regard to the low solubility and poor
oral absorption of [6]-Gingerol, as reported elsewhere [42]
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3.2.3. Quercetin and Naringenin

Quercetin (3,3′,4′,5,7-pentahydroxyflavone, Figure 4) has the ability to exhibit robust
antioxidant, anti-apoptosis, and anti-inflammatory properties in different preclinical mod-
els [48]. For example, in our literature search, we found that quercetin also has the ability
to enhance mitochondrial function [49]. Alternatively, Mutlur Krishnamoorthy, and Carani
Venkatraman (2017) [26] showed that treating palmitate-induced insulin resistance L6
myotubes with 750 mM quercetin or 75 µM naringenin for 16 h could improve glucose
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homeostasis and mitochondrial bioenergetics by enhancing GLUT4 translocation, as well
as increasing AMPK phosphorylation, and SIRT1 and PGC1α expression. Apparently,
the comparative efficacy of quercetin and naringenin in ameliorating various metabolic
anomalies has been subject to increasing preclinical research [22].

Naringenin (2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one)
is a naturally occurring flavonoid found mostly in some edible fruits, such as citrus
species [50]. This flavonoid has been the subject of ongoing research to assess its broad
biological effects in preclinical models. For example, this flavonoid has an ability to
decrease some lipid peroxidation biomarkers and promote carbohydrate metabolism in
preclinical models of metabolic syndrome [26]. Furthermore, naringenin has been shown
to have antioxidant and anti-inflammatory effects [51]. A similar effect was observed in
an in vivo study, where high fructose diet-induced insulin resistance Wister rats showed
decreased mitochondrial function [52]. However, this effect was reversed in rats that were
also fed 50 mg/kg body weight/day naringenin and quercetin for 6 weeks [26]. Here, both
naringenin and quercetin reduced the plasma glucose and insulin levels, including GLUT4
translocation, as well as the expression of SIRT1, PGC1α, and AMPK phosphorylation in
the insulin resistant Wister rats [26], suggesting that both these polyphenols may improve
metabolic function in part by regulating energy metabolism, or by improving glucose
uptake and targeting markers of mitochondrial function.
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fruits, coffee, and tea in the form of a glycoside [53,54].

3.2.4. Pinosylvin

Pinosylvin (3,5-dihydroxy-trans-stilbene, Figure 5) is part of the stilbenoids group,
which is a group of polyphenols found in plants, berries, and nuts. These polyphenolic
compounds exhibit antimicrobial and antifungal function in plants [55]. Recent information
reveals that A stilbene-based compounds might have potential as antiviral agents [56].
Although the widely investigated naturally occurring stilbenoids such as resveratrol are
acknowledged, on the other hand, emerging evidence suggests that pinosylvin is gaining
attention due to it anti-inflammatory properties [57]. Pinosylvin is a natural polyphenol
trans-stilbenoid that is produced by plants as a secondary metabolite to protect against
microbes and insects [57]. This polyphenol is mainly found in heartwoods and leaves of
Pinus sylvestris. Pinosylvin exerts various biological activities including anti-inflammatory
effects [57]. In fact, Modi et al. [27] reported that treating cultured skeletal muscle cells (L6
myotube) with 20 or 60 µM pinosylvin for 24 h activated SIRT1 and stimulated glucose
uptake through the activation of AMPK. Although the role of this stilbenoid is emerging,
its effects on mitochondrial bioenergetics or function is still very limited.
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3.2.5. Icariin

Icariin is a typical flavonol glycoside also known as the primary active component
of Epimedii Herba (Figure 6) [28]. Icariin is commonly known as yin yang hou or goat
weed [28]. The extracts of Epimedii Herba have been commonly used in Chinese herbal
medicine to treat sexual functions, skeletal muscle deterioration, and other diseases [28,59].
Various pharmacological effects of icariin have been reported, including immunoregulation
and vasodilation through the enhanced production of bioactive nitric oxide, as well as
showing activity against multiple cardiovascular diseases through antioxidant and anti-
inflammatory action [28,60]. In this review, we found that icariin might have a beneficial
effect on the mitochondrial function [28], in part through effective modulation of energy
metabolism related pathways/genes such as irisin/FNDC5, PGC1α gene expression, and
dose-dependently increased AMPK phosphorylation in normal C2C12 cells. Interestingly,
the same effect was also observed in C57BL/6 mice that were fed 10 or 40 mg/kg/day
icariin for 14 days, displaying decreased body weight and enhanced expression of FNDC5,
PGC1α, and p-AMPK levels. Other studies reported that icariin was also found to have
a protective effect against diet-induced obesity by ameliorating insulin resistance [61,62].
Overall, the preclinical evidence summarized in this review seems to validate the anec-
dotal capacity of icariin to act on the skeletal muscle and modulate energy metabolism to
potentially ameliorate metabolic disease related complications.
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3.2.6. Flavonoids, Flavanols and Proanthocyanidins

Flavones and flavonols (Figure 7) are the most prominent ketone-containing com-
pounds [64]. Furthermore, flavan-3-ols, also known as flavanols, are unique for containing
the 2-phenyl-3,4-dihydro-2H-chromen-3-ol skeleton [65]. These compounds encompass
catechin, epicatechin gallate, epigallocatechin, epigallocatechin gallate, proanthocyanidins,
aflavins, and arubigins [2,66]. In fact, increasing literature has reported on the impact of
these compounds in improving metabolic function in various preclinical models [33,67].
Reducing oxidative stress and inflammation, as well as regulating insulin signaling path-
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ways such as the PI3K/AKT and energy homeostasis mechanisms such as the AMPK are
the prominent effects by which these compounds may improve metabolic function [68].
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Similarly, data from this review suggest that flavonoids from mulberry (Morus alba L.)
leaves can perform the same as metformin (an established glucose lowering drug) in im-
proving muscle glucose uptake and mitochondrial function in L6 muscle cells [31]. These
actions were, achieved by activating AMPK and increasing the expression of PGC-1α and
GLUT4 [31]. Importantly, the actions of these flavonoids were consistent with improved
mitochondrial function in the skeletal muscle of db/db mice. Furthermore, flavan 3-ols
fractions derived from cocoa powder were shown to promote lipolysis and mitochondrial
biogenesis consistent with increasing β-oxidation through regulating carnitine palmitoyl-
transferase 2 (CPT2) expression and mitochondria copy number in mice with metabolic
syndrome [35]. As one of the major flavonoids, proanthocyanidins were shown to improve
skeletal muscle mitochondrial bioenergetics in obese Zucker fatty rats by reducing citrate
synthase activity, oxidative phosphorylation complexes I and II levels, and Nrf1 gene
expression, which in turn translated to ameliorated ROS production [33]. These actions
were parallel to reduced insulin resistance, improved mitochondrial respiration, mitochon-
drial oxidative capacity, and fatty acid oxidation, with effective regulation of prominent
energy regulation markers such as AMPK, Pparα, and UCP2 [33]. Overall, flavonoids and
flavonols show great potential in improving metabolic function by effectively regulating
skeletal muscle energy metabolism and mitochondrial bioenergetics in preclinical models
of metabolic disease.

4. Summary and Future Perspective

It is now widely accepted that a healthy diet is essential to defend the human body
against certain types of diseases, especially non-communicable diseases such as obesity,
type 2 diabetes, and cardiovascular diseases [71]. Certainly, food sources such as fruits and
vegetables have become an attractive source of nutrients and health benefits. In fact, these
food sources are known to contain various biological compounds, including polyphenols,
that present with enhanced potential beneficial effects in improving metabolic function.
Accumulative preclinical evidence suggests that polyphenols can improve metabolic func-
tion by effectively regulating energy metabolism, as well as enhancing glucose uptake and
mitochondrial function. Here, it was apparent that polyphenolic compounds such as gin-
gerol, icariin, and resveratrol can target the skeletal muscle to regulate energy metabolism
and improve mitochondrial function in preclinical models of metabolic syndrome. This
is important to establish since it is already known that the pathogenesis of metabolic
diseases like diabetes is consistent with skeletal muscle mitochondria deficiency, leading to
impaired cellular functions [34–36]. Apparently, in addition to the effective modulation of
cellular mechanisms such as insulin signaling and energy regulating pathways through
PI3K/AKT and AMPK, these polyphenols seem to target PGC1α and other mitochondrial
functional genes such as TFAM, mfn2, and drp1 to improve mitochondrial bioenergetics.
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These findings also highlight the potential impact naturally derived compounds and mi-
cronutrients can have on improving human health by targeting major organ tissues such
as the skeletal muscle, as previously discussed [72]. In fact, the summarized data remain
essential in developing precise therapeutic targets to be further tested in human subjects
and to protect against the rapid rise of metabolic diseases. Although the current study
informs on essential preclinical mechanisms that may be involved in the amelioration of
metabolic complications, additional experiments and elucidations are still necessary to
better understand the therapeutic potential of polyphenols, especially the relevance of their
metabolism and bioavailability in the human body.
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